

 [image: Learning JavaScript Design Patterns]

 Learning JavaScript Design Patterns

Addy Osmani

Editor
Mary Treseler

Copyright © 2012 Adnan Osmani

 Creative Commons
 Attribution-NonCommercial-ShareAlike
 3.0 unported license. You are free to remix, tweak, and
 build upon this work non-commercially, as long as you credit Addy
 Osmani (the copyright holder) and license your new creations under
 the identical terms. Any of the above conditions can be waived if
 you get permission from the copyright holder. For any reuse or
 distribution, you must make clear to others the license terms of
 this work. The best way to do this is with a
 link
 to the license.

[image:]

O'Reilly Media

Preface

Design patterns are reusable solutions to commonly occurring problems
 in software design. They are both exciting and a fascinating topic to
 explore in any programming language.
One reason for this is that they help us build upon the combined
 experience of many developers that came before us and ensure we structure
 our code in an optimized way, meeting the needs of problems we're attempting
 to solve.
Design patterns also provide us a common vocabulary to describe
 solutions. This can be significantly simpler than describing syntax and
 semantics when we're attempting to convey a way of structuring a solution in
 code form to others.
In this book we will explore applying both classical and modern design
 patterns to the JavaScript programming language.
Target Audience

This book is targeted at professional developers wishing to improve
 their knowledge of design patterns and how they can be applied to the
 JavaScript programming language.
Some of the concepts covered (closures, prototypal inheritance) will
 assume a level of basic prior knowledge and understanding. If you find
 yourself needing to read further about these topics, a list of suggested
 titles is provided for convenience.
If you would like to learn how to write beautiful, structured and
 organized code, I believe this is the book for you.

Acknowledgments

I will always be grateful for the talented technical reviewers who
 helped review and improve this book, including those from the community at
 large. The knowledge and enthusiasm they brought to the project was simply
 amazing. The official technical reviewers tweets and blogs are also a
 regular source of both ideas and inspiration and I wholeheartedly
 recommend checking them out.
	Luke Smith (http://lucassmith.name,
 @ls_n)

	Nicholas Zakas (http://nczonline.net, @slicknet)

	Andrée Hansson (http://andreehansson.se, @peolanha)

	Alex Sexton (http://alexsexton.com, @slexaxton)

I would also like to thank Rebecca Murphey (http://rebeccamurphey.com, @rmurphey) for providing the
 inspiration to write this book and more importantly, continue to make it
 both available on GitHub and via O'Reilly.
Finally, I would like to thank my wonderful wife Ellie, for all of
 her support while I was putting together this publication.

Credits

Whilst some of the patterns covered in this book were implemented
 based on personal experience, many of them have been previously identified
 by the JavaScript community. This work is as such the production of the
 combined experience of a number of developers. Similar to Stoyan
 Stefanov's logical approach to preventing interruption of the narrative
 with credits (in JavaScript Patterns), I have listed
 credits and suggested reading for any content covered in the references
 section.
If any articles or links have been missed in the list of references,
 please accept my heartfelt apologies. If you contact me I'll be sure to
 update them to include you on the list.

Reading

Whilst this book is targeted at both beginners and intermediate
 developers, a basic understanding of JavaScript fundamentals is assumed.
 Should you wish to learn more about the language, I am happy to recommend
 the following titles:
	JavaScript: The Definitive Guide by David
 Flanagan

	Eloquent JavaScript by Marijn
 Haverbeke

	JavaScript Patterns by Stoyan
 Stefanov

	Writing Maintainable JavaScript by Nicholas
 Zakas

	JavaScript: The Good Parts by Douglas
 Crockford

Chapter 1. Introduction

One of the most important aspects of writing maintainable code is
 being able to notice the recurring themes in that code and optimize them.
 This is an area where knowledge of design patterns can prove
 invaluable.
In the first part of this book, we will explore the history and
 importance of design patterns which can really be applied to any programming
 language. If you're already sold on or are familiar with this history, feel
 free to skip to the chapter 'What is a
 Pattern?' to continue reading.
Design patterns can be traced back to the early work of a civil
 engineer named Christopher
 Alexander. He would often write publications about his experience in
 solving design issues and how they related to buildings and towns. One day,
 it occurred to Alexander that when used time and time again, certain design
 constructs lead to a desired optimal effect.
In collaboration with Sara Ishikawa and Murray Silverstein, Alexander
 produced a pattern language that would help empower anyone wishing to design
 and build at any scale. This was published back in 1977 in a paper titled 'A
 Pattern Language', which was later released as a complete hardcover book.
Some 30 years ago, software engineers began to incorporate the
 principles Alexander had written about into the first documentation about
 design patterns, which was to be a guide for novice developers looking to
 improve their coding skills. It's important to note that the concepts behind
 design patterns have actually been around in the programming industry since
 its inception, albeit in a less formalized form.
One of the first and arguably most iconic formal works published on
 design patterns in software engineering was a book in 1995 called
 Design Patterns: Elements Of Reusable Object-Oriented
 Software. This was written by Erich Gamma,Richard
 Helm,Ralph
 Johnson andJohn Vlissides - a
 group that became known as the Gang of Four (or GoF for short).
The GoF's publication is considered quite instrumental to pushing the
 concept of design patterns further in our field as it describes a number of
 development techniques and pitfalls as well as providing twenty-three core
 Object-Oriented design patterns frequently used around the world today. We
 will be covering these patterns in more detail in the section ‘Categories of
 Design Patterns’.
In this book, we will take a look at a number of popular JavaScript
 design patterns and explore why certain patterns may be more suitable for
 your projects than others. Remember that patterns can be applied not just to
 vanilla JavaScript (i.e standard JavaScript code), but also to abstracted
 libraries such as jQuery or dojo as well. Before we begin, let’s
 look at the exact definition of a ‘pattern’ in software design.

Chapter 2. What is a Pattern?

A pattern is a reusable solution that can be applied to commonly
 occurring problems in software design - in our case - in writing
 JavaScript-powered applications. Another way of looking at patterns are as
 templates for how you solve problems - ones which can be used in quite a few
 different situations.
So, why is it important to understand patterns and be familiar with
 them?. Design patterns have three main benefits:
	Patterns are proven solutions:
 They provide solid approaches to solving issues in software development
 using proven solutions that reflect the experience and insights the
 developers that helped define and improve them bring to the
 pattern.

	Patterns can be easily reused:A
 pattern usually reflects an out of the box solution that can be adapted
 to suit your own needs. This feature makes them quite robust.

	Patterns can be expressive:When
 you look at a pattern there’s generally a set structure and ‘vocabulary’
 to the solution presented that can help express rather large solutions
 quite elegantly.

Patterns are not an exact solution.
 It’s important that we remember the role of a pattern is merely to provide
 us with a solution scheme. Patterns don’t solve all design problems nor do
 they replace good software designers, however, they do support them. Next we’ll take a look at some of
 the other advantages patterns have to offer.
	Reusing patterns assists in preventing
 minor issues that can cause major problems in the application
 development process.What this means is when code is built on
 proven patterns, we can afford to spend less time worrying about the
 structure of our code and more time focusing on the quality of our
 overall solution. This is because patterns can encourage us to code in a
 more structured and organized fashion avoiding the need to refactor it
 for cleanliness purposes in the future.

	Patterns can provide generalized solutions
 which are documented in a fashion that doesn't require them to be tied
 to a specific problem. This generalized approach means that
 regardless of the application (and in many cases the programming
 language) you are working with, design patterns can be applied to
 improve the structure of your code.

	Certain patterns can actually decrease the
 overall file-size footprint of your code by avoiding
 repetition.By encouraging developers to look more closely at
 their solutions for areas where instant reductions in repetition can be
 made, e.g. reducing the number of functions performing similar processes
 in favor of a single generalized function, the overall size of your
 codebase can be decreased.

	Patterns add to a developers vocabulary,
 which makes communication faster.

	Patterns that are frequently used can be
 improved over time by harnessing the collective experiences other
 developers using those patterns contribute back to the design pattern
 community. In some cases this leads to the creation of
 entirely new design patterns whilst in others it can lead to the
 provision of improved guidelines on how specific patterns can be best
 used. This can ensure that pattern-based solutions continue to become
 more robust than ad-hoc solutions may be.

We already use patterns everyday

To understand how useful patterns can be, let's review a very simple
 element selection problem that the jQuery library solves for us
 everyday.
If we imagine that we have a script where for each DOM element on a
 page with class "foo" we want to increment a counter, what's the simplest
 efficient way to query for the list we need?. Well, there are a few
 different ways this problem could be tackled:
	Select all of the elements in the page and then store them.
 Next, filter this list and use regular expressions (or another means)
 to only store those with the class "foo".

	Use a modern native browser feature such as querySelectorAll() to select all of the
 elements with the class "foo".

	Use a native feature such as getElementsByClassName() to similarly get
 back the desired list.

So, which of these is the fastest?. You might be interested to know
 that it's actually number 3. by a factor of 8-10 times the alternatives.
 In a real-world application however, 3. will not work in versions of
 Internet Explorer below 9 and thus it's necessary to use 1. where 3. isn't
 supported.
Developers using jQuery don't have to worry about this problem, as
 it's luckily abstracted away for us. The library opts for the most optimal
 approach to selecting elements depending on what your browser
 supports.
Core internally uses a number of different design patterns, the most frequent one being a
 facade. This provides a simple set of abstracted interfaces (e.g $el.css(), $el.animate()) to several more complex
 underlying bodies of code.
We're probably all also familiar with jQuery's $('selector'). This is significantly more easy
 to use for selecting HTML elements on a page versus having to manually
 handle opt for getElementById(),
 getElementsByClassName(), getElementByTagName and so on. Although we know
 that querySelectorAll() attempts to
 solve this problem, compare the effort involved in using jQuery's facade
 interfaces vs. selecting the most optimal selection paths ourselves.
 There's no contest! abstractions using patterns can offer real-world
 value.
We'll be looking at this and more design patterns later on in the
 book.

Chapter 3. 'Pattern'-ity Testing, Proto-Patterns & The Rule Of Three

Remember that not every algorithm, best-practice or solution
 represents what might be considered a complete pattern. There may be a few
 key ingredients here that are missing and the pattern community is generally
 weary of something claiming to be one unless it has been heavily vetted.
 Even if something is presented to us which appears to meet the criteria for a pattern, it
 should not be considered one until it has undergone suitable periods of
 scrutiny and testing by others.
Looking back upon the work by Alexander once more, he claims that a
 pattern should both be a process and a ‘thing’. This definition is obtuse on
 purpose as he follows by saying that it is the process should create the
 ‘thing’. This is a reason why patterns generally focus on addressing a
 visually identifiable structure i.e you should be able to visually depict
 (or draw) a picture representing the structure that placing the pattern into
 practice results in.
In studying design patterns, you may come across the term
 ‘proto-pattern’ quite frequently. What is this? Well, a pattern that has not
 yet been known to pass the ‘pattern’-ity tests is usually referred to as a
 proto-pattern. Proto-patterns may result from the work of someone that has
 established a particular solution that is worthy of sharing with the
 community, but may not have yet had the opportunity to have been vetted
 heavily due to its very young age.
Alternatively, the individual(s) sharing the pattern may not have the
 time or interest of going through the ‘pattern’-ity process and might
 release a short description of their proto-pattern instead. Brief
 descriptions or snippets of this type of pattern are known as
 patlets.
The work involved in fully documenting a qualified pattern can be
 quite daunting. Looking back at some of the earliest work in the field of
 design patterns, a pattern may be considered ‘good’ if it does the
 following:
	Solves a particular problem:
 Patterns are not supposed to just capture principles or strategies. They
 need to capture solutions. This is one of the most essential ingredients
 for a good pattern.

	The solution to this problem cannot be
 obvious: You can often find that problem-solving techniques
 attempt to derive from well-known first principles. The best design
 patterns usually provide solutions to problems indirectly - this is
 considered a necessary approach for the most challenging problems
 related to design.

	The concept described must have been
 proven: Design patterns require proof that they function as
 described and without this proof the design cannot be seriously
 considered. If a pattern is highly speculative in nature, only the brave
 may attempt to use it.

	It must describe a
 relationship: In some cases it may appear that a pattern
 describes a type of module. Although an implementation may appear this
 way, the official description of the pattern must describe much deeper
 system structures and mechanisms that explain its relationship to
 code.

We would be forgiven for thinking that a proto-pattern which fails to
 meet guidelines isn't worth learning from, however, this is far from the
 truth. Many proto-patterns are actually quite good. I’m not saying that all
 proto-patterns are worth looking at, but there are quite a few useful ones
 in the wild that could assist you with future projects. Use best judgment
 with the above list in mind and you’ll be fine in your selection
 process.
One of the additional requirements for a pattern to be valid is that
 they display some recurring phenomenon. This is often something that can be
 qualified in at least three key areas, referred to as the rule of
 three. To show recurrence using this rule, one must
 demonstrate:
	Fitness of purpose - how is the
 pattern considered successful?

	Usefulness- why is the pattern
 considered successful?

	Applicability - is the design
 worthy of being a pattern because it has wider applicability? If so,
 this needs to be explained.When reviewing or defining a pattern, it is
 important to keep the above in mind.

Chapter 4. The Structure Of A Design Pattern

You may be curious about how a pattern author might approach outlining
 structure, implementation and purpose of a new pattern. Traditionally, a
 pattern is initially be presented in the form of a rule that establishes a relationship
 between:
	A context

	A system of forces that arises
 in that context and

	A configuration that allows
 these forces to resolve themselves in context

With this in mind, lets now take a look at a summary of the component
 elements for a design pattern. A design pattern should have a:
	Pattern name and a description

	Context outline – the contexts
 in which the pattern is effective in responding to the users
 needs.

	Problem statement – a statement
 of the problem being addressed so we can understand the intent of the
 pattern.

	Solution – a description of how
 the user’s problem is being solved in an understandable list of steps
 and perceptions.

	Design – a description of the
 pattern’s design and in particular, the user’s behavior in interacting
 with it

	Implementation– a guide to how
 the pattern would be implemented

	Illustrations – a visual
 representation of classes in the pattern (e.g. a diagram))

	Examples – an implementation of
 the pattern in a minimal form

	Co-requisites – what other
 patterns may be needed to support use of the pattern being
 described?

	Relations – what patterns does
 this pattern resemble? does it closely mimic any others?

	Known usage – is the pattern
 being used in the ‘wild’?. If so, where and how?

	Discussions – the team or
 author’s thoughts on the exciting benefits of the pattern

Design patterns are quite a powerful approach to getting all of the
 developers in an organization or team on the same page when creating or
 maintaining solutions. If you or your company ever consider working on your
 own pattern, remember that although they may have a heavy initial cost in
 the planning and write-up phases, the value returned from that investment
 can be quite worth it. Always research thoroughly before working on new
 patterns however, as you may find it more beneficial to use or build on top
 of existing proven patterns than starting afresh.

Chapter 5. Writing Design Patterns

Although this book is aimed at those new to design patterns, a
 fundamental understanding of how a design pattern is written can offer you a
 number of useful benefits. For starters, you can gain a deeper appreciation
 for the reasoning behind a pattern being needed. You can also learn how to
 tell if a pattern (or proto-pattern) is up to scratch when reviewing it for
 your own needs.
Writing good patterns is a challenging task. Patterns not only need to
 provide a substantial quantity of reference material for end-users (such as
 the items found in the structure section above), but
 they also need to be able to defend why they are necessary. If you’ve
 already read the previous section on ‘what’ a pattern is, you may think that
 this in itself should help you identify patterns when you see them in the
 wild. This is actually quite the opposite - you can’t always tell if a piece
 of code you’re inspecting follows a pattern.
When looking at a body of code that you think may be using a pattern,
 you might write down some of the aspects of the code that you believe falls
 under a particular existing pattern.In many cases of pattern-analysis you’ll
 find that you’re just looking at code that follows good principles and
 design practices that could happen to overlap with the rules for a pattern
 by accident. Remember - solutions in which neither interactions nor defined
 rules appear are not patterns.
If you’re interested in venturing down the path of writing your own
 design patterns I recommend learning from others who have already been
 through the process and done it well. Spend time absorbing the information
 from a number of different design pattern descriptions and books and take in
 what’s meaningful to you - this will help you accomplish the goals you have
 laid out for yours. Explore structure and semantics - this can be done by
 examining the interactions and context of the patterns you are interested in
 so you can identify the principles that assist in organizing those patterns
 together in useful configurations.
Once you’ve exposed yourself to a wealth of information on pattern
 literature, you may wish to begin your pattern using an
 existing format and see if you can brainstorm new ideas
 for improving it or integrating your ideas in there. An example of someone
 that did this is in recent years is Christian Heilmann, who took the
 existing module pattern and made some fundamentally
 useful changes to it to create the revealing module
 pattern (this is one of the patterns covered later in this book).
If you would like to try your hand at writing a design pattern (even
 if just for the learning experience of going through the process), the tips
 I have for doing so would be as follows:
	Bear in mind practicability:
 Ensure that your pattern describes proven solutions to recurring
 problems rather than just speculative solutions which haven’t been
 qualified.

	Ensure that you draw upon best
 practices: The design decisions you make should be based on
 principles you derive from an understanding of best-practices.

	Your design patterns should be transparent
 to the user: Design patterns should be entirely transparent
 to any type of user-experience. They are primarily there to serve the
 developers using them and should not force changes to behavior in the
 user-experience that would not be incurred without the use of a
 pattern.

	Remember that originality is
 not key in pattern design: When writing
 a pattern, you do not need to be the original discoverer of the
 solutions being documented nor do you have to worry about your design
 overlapping with minor pieces of other patterns.If your design is strong
 enough to have broad useful applicability, it has a chance of being
 recognized as a proper pattern

	Know the differences between patterns and
 design: A design pattern generally draws from proven best
 practice and serves as a model for a designer to create a
 solution. The role of the pattern is to give designers
 guidance to make the best design choices so they can cater to the needs
 of their users.

	Your pattern needs to have a strong set of
 examples: A good pattern description needs to be followed by
 an equally strong set of examples demonstrating the successful
 application of your pattern. To show broad usage, examples that exhibit
 good design principles are ideal.

Pattern writing is a careful balance between creating a design that is
 general, specific and above all, useful. Try to ensure that if writing a
 pattern you cover the widest possible areas of application and you should be
 fine. I hope that this brief introduction to writing patterns has given you
 some insights that will assist your learning process for the next sections
 of this book.

Chapter 6. Anti-Patterns

If we consider that a pattern represents a best-practice, an
 anti-pattern represents a lesson that has been learned. The term
 anti-patterns was coined in 1995 by Andrew Koenig in the November C++ Report
 that year, inspired by the GoF's book Design Patterns.
 In Koenig’s report, there are two notions of anti-patterns that are
 presented. Anti-Patterns:
	Describe abad solution to a particular
 problem which resulted in a bad situation occurring

	Describe how to get out of said situation and
 how to go from there to a good solution

On this topic, Alexander writes about the difficulties in achieving a
 good balance between good design structure and good context:
“These notes are about the process of design; the process of
 inventing physical things which display a new physical order, organization,
 form, in response to function.…every design problem begins with an effort to
 achieve fitness between two entities: the form in question and its context.
 The form is the solution to the problem; the context defines the
 problem”.
While it’s quite important to be aware of design patterns, it can be
 equally important to understand anti-patterns. Let us qualify the reason
 behind this. When creating an application, a project’s life-cycle begins
 with construction however once you’ve got the initial release done, it needs
 to be maintained. The quality of a final solution will either be
 good or bad, depending on the
 level of skill and time the team have invested in it. Here
 good and bad are considered in
 context - a ‘perfect’ design may qualify as an anti-pattern if applied in
 the wrong context.
The bigger challenges happen after an application has hit production
 and is ready to go into maintenance mode. A developer working on such a
 system who hasn’t worked on the application before may introduce a
 bad design into the project by accident. If said
 bad practices are created as anti-patterns, they allow
 developers a means to recognize these in advance so that they can avoid
 common mistakes that can occur - this is parallel to the way in which design
 patterns provide us with a way to recognize common techniques that are
 useful.
To summarize, an anti-pattern is a bad design that is worthy of
 documenting. Examples of anti-patterns in JavaScript are the
 following:
	Polluting the global namespace by defining a large number of
 variables in the global context

	Passing strings rather than functions to either setTimeout or
 setInterval as this triggers the use of eval() internally.

	Modifying the Object class
 prototype (this is a particularly bad anti-pattern)

	Using JavaScript in an inline form as this is inflexible

	The use of document.write where native DOM alternatives such as
 document.createElement are more appropriate. document.write has been
 grossly misused over the years and has quite a few disadvantages
 including that if it's executed after the page has been loaded it can
 actually overwrite the page you're on, whilst document.createElement
 does not. You can see here for a live
 example of this in action. It also doesn't work with XHTML which is
 another reason opting for more DOM-friendly methods such as
 document.createElement is favorable.

Knowledge of anti-patterns is critical for success. Once you are able
 to recognize such anti-patterns, you will be able to refactor your code to
 negate them so that the overall quality of your solutions improves
 instantly.

Chapter 7. Categories Of Design Pattern

A glossary from the well-known design book, Domain-Driven
 Terms,rightly states that:
“A design pattern names, abstracts, and identifies the key
 aspects of a common design structure that make it useful for creating a
 reusable object-oriented design. The design pattern identifies the
 participating classes and their instances, their roles and collaborations,
 and the distribution of responsibilities.
Each design pattern focuses on a particular object-oriented
 design problem or issue. It describes when it applies, whether or not it can
 be applied in view of other design constraints, and the consequences and
 trade-offs of its use. Since we must eventually implement our designs, a
 design pattern also provides sample ... code to illustrate an
 implementation.
Although design patterns describe object-oriented designs,
 they are based on practical solutions that have been implemented in
 mainstream object-oriented programming languages”
Design patterns can be broken down into a number of different
 categories. In this section we’ll review three of these categories and
 briefly mention a few examples of the patterns that fall into these
 categories before exploring specific ones in more detail.
Creational Design Patterns

Creational design patterns focus on handling object creation
 mechanisms where objects are created in a manner suitable for the
 situation you are working in. The basic approach to object creation might
 otherwise lead to added complexity in a project whilst these patterns aim
 to solve this problem by controllingthe creation
 process.
Some of the patterns that fall under this category are: Constructor,
 Factory, Abstract, Prototype, Singleton and Builder.

Structural Design Patterns

Structural patterns are concerned with object composition and
 typically identify simple ways to realize relationships between different
 objects. They help ensure that when one part of a system changes, the
 entire structure of the system doesn't need to do the same. They also
 assist in recasting parts of the system which don't fit a particular
 purpose into those that do.
Patterns that fall under this category include: Decorator, Facade,
 Flyweight, Adapter and Proxy.

Behavioral Design Patterns

Behavioral patterns focus on improving or streamlining the
 communication between disparate objects in a system.
Some behavioral patterns include: Iterator, Mediator, Observer and
 Visitor.

Chapter 8. Design Pattern Categorization

In my early experiences of learning about design patterns, I
 personally found the following table a very useful reminder of what a number
 of patterns has to offer - it covers the 23 Design Patterns mentioned by the
 GoF. The original table was summarized by Elyse Nielsen back in 2004 and
 I've modified it where necessary to suit our discussion in this section of
 the book.
I recommend using this table as reference, but do remember that there
 are a number of additional patterns that are not mentioned here but will be
 discussed later in the book.
A brief note on classes

Keep in mind that there will be patterns in this table that
 reference the concept of 'classes'. JavaScript is a class-less language,
 however classes can be simulated using functions.
The most common approach to achieving this is by defining a
 JavaScript function where we then create an object using the new keyword. this can be used to help define new properties
 and methods for the object as follows:
// A car 'class'
function Car(model) {
 this.model = model;
 this.color = 'silver';
 this.year = '2012';
 this.getInfo = function () {
 return this.model + ' ' + this.year;
 }
}

We can then instantiate the object using the Car constructor we
 defined above like this:
var myCar = new Car('ford');
myCar.year = '2010';
console.log(myCar.getInfo());

For more ways to define 'classes' using JavaScript, see Stoyan
 Stefanov's useful post
 on them.
Let us now proceed to review the table.
	Creational	Based on the concept of creating an object.	 	 	 	 	 	
	Class	 	 	 	 	 	 	
	Factory Method	This makes an instance of several derived classes based on
 interfaced data or events.	 	 	 	 	 	
	Object	 	 	 	 	 	 	
	Abstract Factory	Creates an instance of several families of classes without
 detailing concrete classes.	 	 	 	 	 	
	Builder	Separates object construction from its representation,
 always creates the same type of object.	 	 	 	 	 	
	Prototype	A fully initialized instance used for copying or
 cloning.	 	 	 	 	 	
	Singleton	A class with only a single instance with global access
 points.	 	 	 	 	 	
	 	 	 	 	 	 	 	
	Structural	Based on the idea of building blocks of objects	 	 	 	 	 	
	Class	 	 	 	 	 	 	
	Adapter	Match interfaces of different classes therefore classes can
 work together despite incompatible interfaces	 	 	 	 	 	
	Object	 	 	 	 	 	 	
	Adapter	Match interfaces of different classes therefore classes can
 work together despite incompatible interfaces	 	 	 	 	 	
	Bridge	Separates an object's interface from its implementation so
 the two can vary independently	 	 	 	 	 	
	Composite	A structure of simple and composite objects which makes the
 total object more than just the sum of its parts.	 	 	 	 	 	
	Decorator	Dynamically add alternate processing to objects.	 	 	 	 	 	
	Facade	A single class that hides the complexity of an entire
 subsystem.	 	 	 	 	 	
	Flyweight	A fine-grained instance used for efficient sharing of
 information that is contained elsewhere.	 	 	 	 	 	
	Proxy	A place holder object representing the true object	 	 	 	 	 	
	 	 	 	 	 	 	 	
	Behavioral	Based on the way objects play and work together.	 	 	 	 	 	
	Class	 	 	 	 	 	 	
	Interpreter	A way to include language elements in an application to
 match the grammar of the intended language.	 	 	 	 	 	
	Template Method	Creates the shell of an algorithm in a method, then defer
 the exact steps to a subclass.	 	 	 	 	 	
	Object	 	 	 	 	 	 	
	Chain of Responsibility	A way of passing a request between a chain of objects to
 find the object that can handle the request.	 	 	 	 	 	
	Command	Encapsulate a command request as an object to enable,
 logging and/or queuing of requests, and provides error-handling
 for unhandled requests.	 	 	 	 	 	
	Iterator	Sequentially access the elements of a collection without
 knowing the inner workings of the collection.	 	 	 	 	 	
	Mediator	Defines simplified communication between classes to prevent
 a group of classes from referring explicitly to each
 other.	 	 	 	 	 	
	Memento	Capture an object's internal state to be able to restore it
 later.	 	 	 	 	 	
	Observer	A way of notifying change to a number of classes to ensure
 consistency between the classes.	 	 	 	 	 	
	State	Alter an object's behavior when its state changes	 	 	 	 	 	
	Strategy	Encapsulates an algorithm inside a class separating the
 selection from the implementation	 	 	 	 	 	
	Visitor	Adds a new operation to a class without changing the
 class	 	 	 	 	 	

Chapter 9. JavaScript Design Patterns

We are now going to explore JavaScript implementations of a number of
 both classical and modern design patterns. This section of the book will
 cover an introduction to these patterns, whilst the next section will focus
 on looking at some select patterns in greater detail.
A common question developers regularly ask is what the 'ideal' set of
 patterns they should be using are. There isn't a singular answer to this
 question, but with the aid of what you'll learn in this book, you will
 hopefully be able to use your best judgment to select the right patterns to
 best suit your project's needs.
The patterns we will be exploring in this
 section are the:
	Creational
 Pattern

	Constructor
 Pattern

	Singleton
 Pattern

	Module Pattern

	Revealing Module
 Pattern

	Observer
 Pattern

	Mediator
 Pattern

	Prototype
 Pattern

	Command Pattern

	Facade Pattern

	Factory Pattern

	Mixin Pattern

	Decorator
 Pattern

	Flyweight Pattern

The Creational Pattern

The Creational pattern forms the basis for a number of the other
 design patterns we'll be reviewing in this section and could be considered
 the easiest to understand. It deals with the idea of
 creating new things,
 specifically new objects. In JavaScript, the three common ways to create
 new objects are as follows:
// Each of the following options will create a new empty object:

var newObject = {}; // or

var newObject = Object.create(null); // or

var newObject = new Object();

Where the 'Object' constructor creates an object wrapper for a
 specific value, or where no value is passed, it will create an empty
 object and return it.
There are then four ways in which keys and values can then be
 assigned to an object:
// ECMAScript 3 compatible approaches

// 1. Dot syntax
newObject.someKey = 'Hello World'; // Write properties
var key = newObject.someKey; // Access properties

// 2. Square bracket syntax
newObject['someKey'] = 'Hello World'; // Write properties
var key = newObject['someKey']; // Access properties

// ECMAScript 5 only compatible approaches
// For more information see: http://kangax.github.com/es5-compat-table/

// 3. Object.defineProperty
Object.defineProperty(newObject, "someKey", {
 value: "for more control of the property's behavior",
 writable: true,
 enumerable: true,
 configurable: true
});

// If the above feels a little difficult to read, a short-hand could
// be written as follows:

var defineProp = function (obj, key, value){
 config.value = value;
 Object.defineProperty(obj, key, config);
}

// Create a new empty object
var man = Object.create(null);

// Populate the object with properties

defineProp(man, 'car', 'Delorean');
defineProp(man, 'dob', '1981');
defineProp(man, 'beard', false);

// 4. Object.defineProperties

Object.defineProperties(newObject, {
 "someKey": {
 value: "Hello World",
 writable: true
 },
 "anotherKey": {
 value: "Foo bar",
 writable: false
 }
});

As we will see a little later in the book, these methods can even be
 used for inheritance, as follows:
var driver = Object.create(man);
defineProp(driver, 'topSpeed', '100mph');
driver.topSpeed // 100mph

The Constructor Pattern

The phrase ‘constructor’ is familiar to most developers, however if
 you’re a beginner it can be useful to review what a constructor is before
 we get into talking about a pattern dedicated to it.
Constructors are used to create specific types of objects - they
 both prepare the object for use and can also accept parameters which the
 constructor uses to set the values of member variables when the object is
 first created. The idea that a constructor is a paradigm can be found in
 the majority of programming languages, including JavaScript. You’re also
 able to define custom constructors that define properties and methods for
 your own types of objects.
Basic Constructors

In JavaScript, constructor functions are generally considered a
 reasonable way to implement instances. As we saw earlier, JavaScript
 doesn't support the concept of classes but it does support special
 constructor functions. By simply prefixing a call to a constructor
 function with the keyword 'new', you can tell JavaScript you would like
 function to behave like a constructor and instantiate a new object with
 the members defined by that function.Inside a constructor, the keyword
 'this' references the new object that's being created. Again, a very
 basic constructor may be:
function Car(model, year, miles) {

 this.model = model;
 this.year = year;
 this.miles = miles;

 this.toString = function () {
 return this.model + " has done " + this.miles + " miles";
 };
}

var civic = new Car("Honda Civic", 2009, 20000);
var mondeo = new Car("Ford Mondeo", 2010, 5000);

console.log(civic.toString());
console.log(mondeo.toString());

The above is a simple version of the constructor pattern but it
 does suffer from some problems. One is that it makes inheritance
 difficult and the other is that functions such as toString() are redefined for each of the new
 objects created using the Car constructor. This isn't very optimal as
 the function should ideally be shared between all of the instances of
 the Car type.

Constructors With Prototypes

Functions in JavaScript have a property called a prototype. When
 you call a JavaScript constructor to create an object, all the
 properties of the constructor's prototype are then made available to the
 new object. In this fashion, multiple Car objects can be created which
 access the same prototype. We can thus extend the original example as
 follows:
function Car(model, year, miles) {
 this.model = model;
 this.year = year;
 this.miles = miles;
}

// Note here that we are using Object.prototype.newMethod rather than
// Object.prototype so as to avoid redefining the prototype object
Car.prototype.toString = function () {
 return this.model + " has done " + this.miles + " miles";
};

var civic = new Car("Honda Civic", 2009, 20000);
var mondeo = new Car("Ford Mondeo", 2010, 5000);

console.log(civic.toString());

Here, a single instance of toString() will now be shared between
 all of the Car objects.

The Singleton Pattern

In conventional software engineering, the singleton pattern can be
 implemented by creating a class with a method that creates a new instance
 of the class if one doesn't exist. In the event of an instance already
 existing, it simply returns a reference to that object.
The singleton pattern is thus known because traditionally, it
 restricts instantiation of a class to a single object. With JavaScript,
 singletons serve as a namespace provider which isolate implementation code
 from the global namespace so-as to provide a single point of access for
 functions.
The singleton doesn't provide a way for code that doesn't know about
 a previous reference to the singleton to easily retrieve it - it is not
 the object or 'class' that's returned by a singleton, it's a structure.
 Think of how closured variables aren't actually closures - the function
 scope that provides the closure is the closure.
Singletons in JavaScript can take on a number of different forms and
 researching this pattern online is likely to result in at least 10
 different variations. In its simplest form, a singleton in JS can be an
 object literal grouped together with its related methods and properties as
 follows:
var mySingleton = {
 property1: "something",

 property2: "something else",

 method1: function () {
 console.log('hello world');
 }

};

If you wished to extend this further, you could add your own private
 members and methods to the singleton by encapsulating variable and
 function declarations inside a closure. Exposing only those which you wish
 to make public is quite straight-forward from that point as demonstrated
 below:
var mySingleton = function () {

 // here are our private methods and variables
 var privateVariable = 'something private';

 function showPrivate() {
 console.log(privateVariable);
 }

 // public variables and methods (which can access
 // private variables and methods)
 return {

 publicMethod: function () {
 showPrivate();
 },

 publicVar: 'the public can see this!'

 };
 };

var single = mySingleton();
single.publicMethod(); // logs 'something private'
console.log(single.publicVar); // logs 'the public can see this!'

The above example is great, but let's next consider a situation
 where you only want to instantiate the singleton when it's needed. To save
 on resources, you can place the instantiation code inside another
 constructor function as follows:
var Singleton = (function () {
 var instantiated;

 function init() {
 // singleton here
 return {
 publicMethod: function () {
 console.log('hello world');
 },
 publicProperty: 'test'
 };
 }

 return {
 getInstance: function () {
 if (!instantiated) {
 instantiated = init();
 }
 return instantiated;
 }
 };
})();

// calling public methods is then as easy as:
Singleton.getInstance().publicMethod();

So, where else is the singleton pattern useful in practice?. Well,
 it's quite useful when exactly one object is needed to coordinate patterns
 across the system. Here's one last example of the singleton pattern being
 used:
var SingletonTester = (function () {

 // options: an object containing configuration options for the singleton
 // e.g var options = { name: 'test', pointX: 5};
 function Singleton(options) {

 // set options to the options supplied or an empty object if none provided.
 options = options || {};
 //set the name parameter
 this.name = 'SingletonTester';
 //set the value of pointX
 this.pointX = args.pointX || 6;
 //set the value of pointY
 this.pointY = args.pointY || 10;

 }

 // this is our instance holder
 var instance;

 // this is an emulation of static variables and methods
 var _static = {

 name: 'SingletonTester',

 // This is a method for getting an instance
 // It returns a singleton instance of a singleton object
 getInstance: function (options) {
 if (instance === undefined) {
 instance = new Singleton(options);
 }
 return instance;
 }
 };
 return _static;
})();

var singletonTest = SingletonTester.getInstance({
 pointX: 5
});

console.log(singletonTest.pointX); // outputs 5

The Module Pattern

Modules

Modules are an integral piece of any robust application's
 architecture and typically help in keeping the code for a project
 organized. In JavaScript, there are several options for implementing
 modules including both the well-known module pattern as well as object
 literal notation.
The module pattern is based in part on object literals and so it
 makes sense to review them first.
Object Literals

In object literal notation, an object is described as a set of
 comma-separated name/value pairs enclosed in curly braces ({}). Names inside the object may be either
 strings or identifiers that are followed by a colon. There should be no
 comma used after the final name/value pair in the object as this may
 result in errors.
var myObjectLiteral = {
 variableKey: variableValue,
 functionKey: function(){
 // ...
 }
};

Object literals don't require instantiation using the new operator but shouldn't be used at the
 start of a statement as the opening {
 may be interpreted as the beginning of a block. Outside of an object,
 new members may be added to it using assignment as follows myModule.property = 'someValue';
Below we can see a more complete example of a module defined using
 object literal syntax:
var myModule = {
 myProperty: 'someValue',
 // object literals can contain properties and methods.
 // here, another object is defined for configuration
 // purposes:
 myConfig: {
 useCaching: true,
 language: 'en'
 },
 // a very basic method
 myMethod: function () {
 console.log('I can haz functionality?');
 },
 // output a value based on current configuration
 myMethod2: function () {
 console.log('Caching is:' + (this.myConfig.useCaching) ? 'enabled' : 'disabled');
 },
 // override the current configuration
 myMethod3: function (newConfig) {
 if (typeof newConfig == 'object') {
 this.myConfig = newConfig;
 console.log(this.myConfig.language);
 }
 }
};

myModule.myMethod(); // I can haz functionality
myModule.myMethod2(); // outputs enabled
myModule.myMethod3({
 language: 'fr',
 useCaching: false
}); // fr

Using object literals can assist in encapsulating and organizing
 your code and Rebecca Murphey has previously written about this topic in
 depth
 should you wish to read into object literals further.
That said, if you're opting for this technique, you may be equally
 as interested in the module pattern. It still uses object literals but
 only as the return value from a scoping function.

The Module Pattern

The module pattern was originally defined as a way to provide both
 private and public encapsulation for classes in conventional software
 engineering.
In JavaScript, the module pattern is used to further
 emulate the concept of classes in such a way that
 we're able to include both public/private methods and variables inside a
 single object, thus shielding particular parts from the global scope.
 What this results in is a reduction in the likelihood of your function
 names conflicting with other functions defined in additional scripts on
 the page.
Privacy

The module pattern encapsulates 'privacy', state and
 organization using closures. It provides a way of wrapping a mix of
 public and private methods and variables, protecting pieces from
 leaking into the global scope and accidentally colliding with another
 developer's interface. With this pattern, only a public API is
 returned, keeping everything else within the closure private.
This gives us a clean solution for shielding logic doing the
 heavy lifting whilst only exposing an interface you wish other parts
 of your application to use. The pattern is quite similar to an
 immediately-invoked functional expression (IIFE
 - see the section on namespacing patterns for more on this) except
 that an object is returned rather than a function.
It should be noted that there isn't really an explicitly true
 sense of 'privacy' inside JavaScript because unlike some traditional
 languages, it doesn't have access modifiers. Variables can't
 technically be declared as being public nor private and so we use
 function scope to simulate this concept. Within the module pattern,
 variables or methods declared are only available inside the module
 itself thanks to closure. Variables or methods defined within the
 returning object however are available to everyone.

History

From a historical perspective, the module pattern was originally
 developed by a number of people including Richard
 Cornford in 2003. It was later popularized by Douglas
 Crockford in his lectures. Another piece of trivia is that if you've
 ever played with Yahoo's YUI library, some of its features may appear
 quite familiar and the reason for this is that the module pattern was
 a strong influence for YUI when creating their components.

Examples

Let's begin looking at an implementation of the module pattern
 by creating a module which is self-contained.
var testModule = (function () {
 var counter = 0;
 return {
 incrementCounter: function () {
 return counter++;
 },
 resetCounter: function () {
 console.log('counter value prior to reset:' + counter);
 counter = 0;
 }
 };
})();

// test
testModule.incrementCounter();
testModule.resetCounter();

Here, other parts of the code are unable to directly read the
 value of our incrementCounter() or
 resetCounter(). The counter
 variable is actually fully shielded from our global scope so it acts
 just like a private variable would - its existence is limited to
 within the module's closure so that the only code able to access its
 scope are our two functions. Our methods are effectively namespaced so
 in the test section of our code, we need to prefix any calls with the
 name of the module (e.g. 'testModule').
When working with the module pattern, you may find it useful to
 define a simple template that you use for getting started with it.
 Here's one that covers namespacing, public and private
 variables:
var myNamespace = (function () {

 var myPrivateVar = 0;
 var myPrivateMethod = function (someText) {
 console.log(someText);
 };

 return {

 myPublicVar: "foo",

 myPublicFunction: function (bar) {
 myPrivateVar++;
 myPrivateMethod(bar);
 }
 };

})();

Looking at another example, below we can see a shopping basket
 implemented using the this pattern. The module itself is completely
 self-contained in a global variable called basketModule. The basket array in the module is kept private
 and so other parts of your application are unable to directly read it.
 It only exists with the module's closure and so the only methods able
 to access it are those with access to its scope (ie. addItem(), getItem() etc).
var basketModule = (function () {
 var basket = []; //private
 function doSomethingPrivate() {
 //...
 }

 function doSomethingElsePrivate() {
 //...
 }
 return { //exposed to public
 addItem: function (values) {
 basket.push(values);
 },
 getItemCount: function () {
 return basket.length;
 },
 doSomething: doSomethingPrivate(),
 getTotal: function () {
 var q = this.getItemCount(),
 p = 0;
 while (q--) {
 p += basket[q].price;
 }
 return p;
 }
 }
}());

Inside the module, you'll notice we return an object. This gets automatically assigned to
 basketModule so that you can
 interact with it as follows:
// basketModule is an object with properties which can also be methods
basketModule.addItem({
 item: 'bread',
 price: 0.5
});
basketModule.addItem({
 item: 'butter',
 price: 0.3
});

console.log(basketModule.getItemCount());
console.log(basketModule.getTotal());

// however, the following will not work:
console.log(basketModule.basket); // (undefined as not inside the returned object)
console.log(basket); //(only exists within the scope of the closure)

The methods above are effectively namespaced inside basketModule.
Notice how the scoping function in the above basket module is
 wrapped around all of our functions, which we then call and
 immediately store the return value of. This has a number of advantages
 including:
	The freedom to have private functions which can only be
 consumed by our module. As they aren't exposed to the rest of the
 page (only our exported API is), they're considered truly
 private.

	Given that functions are declared normally and are named, it
 can be easier to show call stacks in a debugger when we're
 attempting to discover what function(s) threw an exception.

	As T.J Crowder has pointed out in the past, it also enables
 us to return different functions depending on the environment. In
 the past, I've seen developers use this to perform UA testing in
 order to provide a code-path in their module specific to IE, but
 we can easily opt for feature detection these days to achieve a
 similar goal.

Advantages

We've seen why the singleton pattern can be useful, but why is
 the module pattern a good choice? For starters, it's a lot cleaner for
 developers coming from an object-oriented background than the idea of
 true encapsulation, at least from a JavaScript perspective.
Secondly, it supports private data - so, in the module pattern,
 public parts of your code are able to touch the private parts, however
 the outside world is unable to touch the class's private parts (no
 laughing! Oh, and thanks to David Engfer for the joke).

Disadvantages

The disadvantages of the module pattern are that as you access
 both public and private members differently, when you wish to change
 visibility, you actually have to make changes to each place the member
 was used.
You also can't access private members in methods that are added
 to the object at a later point. That said, in many cases the module
 pattern is still quite useful and when used correctly, certainly has
 the potential to improve the structure of your application.
Other disadvantages include the inability to create automated
 unit tests for private members and additional complexity when bugs
 require hot fixes. It's simply not possible to patch privates.
 Instead, one must override all public methods which interact with the
 buggy privates. Developers can't easily extend privates either, so
 it's worth remembering privates are not as flexible as they may
 initially appear.
Before we dive into how the module pattern may be implemented
 using different JavaScript frameworks, here's a simple template for
 using the pattern:
var someModule = (function () {

 // private attributes
 var privateVar = 5;

 // private methods
 var privateMethod =
 function () {
 return 'Private Test';
 };

 return {
 // public attributes
 publicVar: 10,
 // public methods
 publicMethod:
 function () {
 return ' Followed By Public Test ';
 },

 // let's access the private members
 getData:
 function () {
 return privateMethod() + this.publicMethod() + privateVar;
 }
 }
})(); // the parens here cause the anonymous function to execute and return

someModule.getData();

How about the module pattern implemented in specific toolkits or
 frameworks?
Dojo
Dojo provides a convenience method for working with objects
 called dojo.setObject(). This takes
 as its first argument a dot-separated string such as myObj.parent.child which refers to a
 property called 'child' within an object 'parent' defined inside
 'myObj'. Using setObject() allows
 us to set the value of children, creating any of the intermediate
 objects in the rest of the path passed if they don't already
 exist.
For example, if we wanted to declare basket.core as an object of the store namespace, this could be achieved as
 follows using the traditional way:
var store = window.store || {};

if (!store["basket"]) {
 store.basket = {};
}
if (!store.basket["core"]) {
 store.basket.core = {};
}

store.basket.core = {
 // ...rest of our logic
}

Or as follows using Dojo 1.7 (AMD-compatible version) and
 above:
require(["dojo/_base/customStore"], function(store){

 // using dojo.setObject()
 store.setObject("basket.core", (function() {
 var basket = [];
 function privateMethod() {
 console.log(basket);
 }
 return {
 publicMethod: function(){
 privateMethod();
 }
 };
 }()));

});

For more information on dojo.setObject(), see the official documentation.
ExtJS
For those using Sencha's ExtJS, you're in for some luck as the
 official documentation incorporates examples
 that do demonstrate how to correctly use the module pattern with the
 framework.
Below we can see an example of how to define a namespace which
 can then be populated with a module containing both a private and
 public API. With the exception of some semantic differences, it's
 quite close to how the module pattern is implemented in vanilla
 JavaScript:
// create namespace
Ext.namespace('myNameSpace');

// create application
myNameSpace.app = function () {
 // do NOT access DOM from here; elements don't exist yet
 // private variables
 var btn1;
 var privVar1 = 11;

 // private functions
 var btn1Handler = function (button, event) {
 alert('privVar1=' + privVar1);
 alert('this.btn1Text=' + this.btn1Text);
 };

 // public space
 return {
 // public properties, e.g. strings to translate
 btn1Text: 'Button 1',

 // public methods
 init: function () {
 if (Ext.Ext2) {
 btn1 = new Ext.Button({
 renderTo: 'btn1-ct',
 text: this.btn1Text,
 handler: btn1Handler
 });
 } else {
 btn1 = new Ext.Button('btn1-ct', {
 text: this.btn1Text,
 handler: btn1Handler
 });
 }
 }
 };
}(); // end of app

YUI
Similarly, we can also implement the module pattern when
 building applications using YUI3. The following example is heavily
 based on the original YUI module pattern implementation by Eric
 Miraglia, but again, isn't vastly different from the vanilla
 JavaScript version:
Y.namespace('store.basket') = (function () {

 // private variables:
 var myPrivateVar = "I can be accessed only within Y.store.basket .";

 // private method:
 var myPrivateMethod = function () {
 Y.log("I can be accessed only from within YAHOO.store.basket");
 }

 return {
 myPublicProperty: "I'm a public property.",
 myPublicMethod: function () {
 Y.log("I'm a public method.");

 // Within basket, I can access "private" vars and methods:
 Y.log(myPrivateVar);
 Y.log(myPrivateMethod());

 // The native scope of myPublicMethod is store so we can
 // access public members using "this":
 Y.log(this.myPublicProperty);
 }
 };

})();

jQuery
There are a number of ways in which jQuery code unspecific to
 plugins can be wrapped inside the module pattern. Ben Cherry
 previously suggested an implementation where a function wrapper is
 used around module definitions in the event of there being a number of
 commonalities between modules.
In the following example, a library function is defined which declares a
 new library and automatically binds up the init function to document.ready when new libraries (ie.
 modules) are created.
function library(module) {
 $(function () {
 if (module.init) {
 module.init();
 }
 });
 return module;
}

var myLibrary = library(function () {
 return {
 init: function () {
 /*implementation*/
 }
 };
}());

For further reading on the module pattern, see Ben Cherry's
 article on it here.

The Revealing Module Pattern

Now that we're a little more familiar with the Module pattern, let’s
 take a look at a slightly improved version - Christian Heilmann’s
 Revealing Module pattern.
The Revealing Module Pattern came about as Heilmann (now at Mozilla)
 was frustrated with the fact that if you had to repeat the name of the
 main object when you wanted to call one public method from another or
 access public variables. He also disliked the Module pattern’s requirement
 for having to switch to object literal notation for the things you wished
 to make public.
The result of his efforts were an updated pattern where you would
 simply define all of your functions and variables in the private scope and
 return an anonymous object at the end of the module along with pointers to
 both the private variables and functions you wished to reveal as
 public.
Advantages
Once again, you’re probably wondering what the benefits of this
 approach are. The Revealing Module Pattern allows the syntax of your
 script to be fairly consistent - it also makes it very clear at the end
 which of your functions and variables may be accessed publicly, something
 that is quite useful. In addition, you are also able to reveal private
 functions with more specific names if you wish.
An example of how to use the revealing module pattern can be found
 below:
 var myRevealingModule = (function(){

 var name = 'John Smith';
 var age = 40;

 function updatePerson(){
 name = 'John Smith Updated';
 }
 function setPerson () {
 name = 'John Smith Set';
 }
 function getPerson () {
 return name;
 }
 return {
 set: setPerson,
 get: getPerson
 };
}());

// Sample usage:
myRevealingModule.get();

Disadvantages
A disadvantage of this pattern is that if a private function refers
 to a public function, that public function can't be overridden if a patch
 if necessary. This is because the private function will continue to refer
 to the private implementation and the pattern doesn't apply to public
 members, only to functions.
It's only members with objects as values that can be used because of
 pass-by-value rules. However, public object members which refer to private
 variables are also subject to the no-patch rule notes above. As a result
 of this, modules created with the revealing module pattern are inherently
 more fragile than those created with the original module pattern.

The Observer Pattern

The Observer pattern is more popularly known these days as the
 Publish/Subscribe pattern. It is a design pattern which allows an object
 (known as a subscriber) to watch another object (the publisher), where we
 provide a means for the subscriber and publisher form a listen and
 broadcast relationship.
Subscribers are able to register (subscribe) to receive topic
 notifications from the publisher when something interesting happens. When
 the publisher needs to notify observers about interesting topics, it
 broadcasts (publishes) a notification of these to each observer (which can
 include specific data related to the topic).
When subscribers are no longer interested in being notified of
 topics by the publisher they are registered with, they can unregister (or
 unsubscribe) themselves. The subject will then in turn remove them from
 the observer collection.
The general idea here is the promotion of loose coupling. Rather
 than single objects calling on the methods of other objects directly, they
 instead subscribe to a specific task or activity of another object and are
 notified when it occurs.
It's often useful to refer back to published definitions of design
 patterns that are language agnostic to get a broader sense of their usage
 and advantages over time. The definition of the observer pattern provided
 in the GoF book, Design Patterns: Elements of Reusable
 Object-Oriented Software, is:
'One or more observers are interested in the state of a
 subject and register their interest with the subject by attaching
 themselves. When something changes in our subject that the observer may be
 interested in, a notify message is sent which calls the update method in
 each observer. When the observer is no longer interested in the subject's
 state, they can simply detach themselves.'
Unlimited numbers of objects may observe topics in the subject by
 registering themselves. Once registered to particular events, the subject
 will notify all observers when the topic has been fired.
Further motivation behind using the observer pattern is where you
 need to maintain consistency between related objects without making
 classes tightly coupled. For example, when an object needs to be able to
 notify other objects without making assumptions regarding those objects.
 Another use case is where abstractions have more than one aspect, where
 one depends on the other. The encapsulation of these aspects in separate
 objects allows the variation and re-use of the objects
 independently.
Advantages

Arguably, the largest benefit of using Pub/Sub is the ability to
 break down our applications into smaller, more loosely coupled modules,
 which can also improve general manageability.
It is also a pattern that encourages us to think hard about the
 relationships between different parts of your application, identifying
 what layers need to observe or listen for behavior and which need to
 push notifications regarding behavior occurring to other parts of our
 apps.
Dynamic relationships may exist between publishers and subscribers
 when using this pattern. This provides a great deal of flexibility which
 may not be as easy to implement when disparate parts of your application
 are tightly coupled.
Whilst it may not always be the best solution to every problem, it
 remains one of the best tools for designing decoupled systems and should
 be considered an important tool in any JavaScript developer's utility
 belt.

Disadvantages

Consequently, some of the issues with this pattern actually stem
 from its main benefit. By decoupling publishers from subscribers, it can
 sometimes become difficult to obtain guarantees that particular parts of
 our applications are functioning as we may expect.
For example, publishers may make an assumption that one or more
 subscribers are listening to them. Say that we're using such an
 assumption to log or output errors regarding some application process.
 If the subscriber performing the logging crashes (or for some reason
 fails to function), the publisher won't have a way of seeing this due to
 the decoupled nature of the system.
Another draw-back of the pattern is that observers are quite
 ignorant to the existence of each other and are blind to the cost of
 switching in subject. Due to the dynamic relationship between subjects
 and observers the update dependency can be difficult to track.

Implementations

Pub/Sub is a design pattern which fits in very well in JavaScript
 ecosystems, largely because at the core, ECMAScript implementations are
 event driven. This is particularly true in browser environments as the
 DOM uses events as it's main interaction API for scripting.
That said, neither ECMAScript nor DOM provide core objects or
 methods for creating custom events systems in implementation code (with
 the exception of perhaps the DOM3 CustomEvent, which is bound to the DOM
 and is thus not generically useful).
Luckily, popular JavaScript libraries such as dojo, jQuery (custom
 events) and YUI already have utilities that can assist in easily
 implementing a Pub/Sub system with very little effort.
// Publish

// Dojo: dojo.publish("channel", [arg1, arg2, arg3]);
dojo.publish("/login", [{username:"test", userData:"test"}]);

// jQuery: $(obj).trigger("channel", [arg1, arg2, arg3]);
$(el).trigger("/login", [{username:"test", userData:"test"}]);

// YUI: el.publish("channel", [arg1, arg2, arg3]);
el.publish("/login", {username:"test", userData:"test"});

// Subscribe

// Dojo: dojo.subscribe("channel", fn);
var handle = dojo.subscribe("/login", function(data){..});

// jQuery: $(obj).on("channel", [data], fn);
$(el).on("/login", function(event){...});

// YUI: el.on("channel", handler);
el.on("/login", function(data){...});

// Unsubscribe

// Dojo: dojo.unsubscribe(handle);
dojo.unsubscribe(handle);

// jQuery: $(obj).off("channel");
$(el).off("/login");

// YUI: el.detach("channel");
el.detach("/login");

For those wishing to use the Pub/Sub pattern with vanilla
 JavaScript (or another library) AmplifyJS includes a clean,
 library-agnostic implementation of Pub/Sub that can be used with any
 library or toolkit. You can of course also write your own implementation
 from scratch or also check out either PubSubJS or OpenAjaxHub, both of
 which are also library-agnostic.
jQuery developers in particular have quite a few other options for
 Pub/Sub (in addition to Amplify) and can opt to use one of the many
 well-developed implementations ranging from Peter Higgins's jQuery
 plugin to Ben Alman's (optimized) gist on GitHub. Links to just a few of
 these can be found below.
	Ben Alman's Pub/Sub gist https://gist.github.com/661855
 (recommended)

	Rick Waldron's jQuery-core style take on the above https://gist.github.com/705311

	Peter Higgins' plugin http://github.com/phiggins42/bloody-jquery-plugins/blob/master/pubsub.js.

	AppendTo's Pub/Sub in AmplifyJS http://amplifyjs.com

	Ben Truyman's gist https://gist.github.com/826794

So that we are able to get an appreciation for how many of the
 vanilla JavaScript implementations of the Observer pattern might work,
 let's take a walk through of a minimalist version of Pub/Sub I released
 on GitHub under a project called pubsubz. This
 demonstrates the core concepts of subscribe, publish as well as the
 concept of unsubscribing.
I've opted to base our examples on this code as it sticks closely
 to both the method signatures and approach of implementation I would
 expect to see in a JavaScript version of the original observer
 pattern.
Sample Pub/Sub implementation

var pubsub = {};

(function(q) {

 var topics = {},
 subUid = -1;

 // Publish or broadcast events of interest
 // with a specific topic name and arguments
 // such as the data to pass along
 q.publish = function(topic, args) {

 if (!topics[topic]) {
 return false;
 }

 var subscribers = topics[topic],
 len = subscribers ? subscribers.length : 0;

 while (len--) {
 subscribers[len].func(topic, args);
 }

 return this;

 };

 // Subscribe to events of interest
 // with a specific topic name and a
 // callback function, to be executed
 // when the topic/event is observed
 q.subscribe = function(topic, func) {

 if (!topics[topic]) {
 topics[topic] = [];
 }

 var token = (++subUid).toString();
 topics[topic].push({
 token: token,
 func: func
 });
 return token;
 };

 // Unsubscribe from a specific
 // topic, based on a tokenized reference
 // to the subscription
 q.unsubscribe = function(token) {
 for (var m in topics) {
 if (topics[m]) {
 for (var i = 0, j = topics[m].length; i < j; i++) {
 if (topics[m][i].token === token) {
 topics[m].splice(i, 1);
 return token;
 }
 }
 }
 }
 return this;
 };
}(pubsub));

Example 1: Basic use of publishers and subscribers

We can now use the implementation to publish and subscribe to
 events of interest as follows:
var testHandler = function (topics, data) {
 console.log(topics + ": " + data);
};

// Subscribers basically "subscribe" (or listen)
// And once they've been "notified" their callback functions are invoked
var testSubscription = pubsub.subscribe('example1', testHandler);

// Publishers are in charge of "publishing" notifications about events
pubsub.publish('example1', 'hello world!');
pubsub.publish('example1', ['test', 'a', 'b', 'c']);
pubsub.publish('example1', [{
 'color': 'blue'
}, {
 'text': 'hello'
}]);

// Unsubscribe if you no longer wish to be notified
pubsub.unsubscribe(testSubscription);

// This will fail
pubsub.publish('example1', 'hello again! (this will fail)');

A jsFiddle version of this example can be found at http://jsfiddle.net/LxPrq/

Real-time stock market application

Next, let's imagine we have a web application responsible for
 displaying real-time stock information.
The application might have a grid for displaying the stock stats
 and a counter for displaying the last point of update, as well as an
 underlying data model. When the data model changes, the application
 will need to update the grid and counter. In this scenario, our
 subject is the data model and the observers are the grid and
 counter.
When the observers receive notification that the model itself
 has changed, they can update themselves accordingly.

Example 2: UI notifications using pub/sub

In the following example, we limit our usage of pub/sub to that
 of a notification system. Our subscriber is listening to the topic
 'dataUpdated' to find out when new stock information is available. It
 then triggers 'gridUpdate' which goes on to call hypothetical methods
 that pull in the latest cached data object and re-render our UI
 components.
Note: the Mediator pattern is occasionally used to provide a
 level of communication between UI components without requiring that
 they communicate with each other directly. For example, rather than
 tightly coupling our applications, we can have widgets/components
 publish a topic when something interesting happens. A mediator can
 then subscribe to that topic and call the relevant methods on other
 components.
var grid = {

 refreshData: function(){
 console.log('retrieved latest data from data cache');
 console.log('updated grid component');
 },

 updateCounter: function(){
 console.log('data last updated at: ' + getCurrentTime());
 }

};

// a very basic mediator

var gridUpdate = function(topics, data){
 grid.refreshData();
 grid.updateCounter();
}

var dataSubscription = PubSub.subscribe('dataUpdated', gridUpdate);
PubSub.publish('dataUpdated', 'new stock data available!');
PubSub.publish('dataUpdated', 'new stock data available!');

function getCurrentTime(){

 var date = new Date(),
 m = date.getMonth() + 1,
 d = date.getDate(),
 y = date.getFullYear(),
 t = date.toLocaleTimeString().toLowerCase(),
 return (m + '/' + d + '/' + y + ' ' + t);

}

Whilst there's nothing terribly wrong with this, there are more
 optimal ways that we can utilize pub/sub to our advantage.

Example 3: Taking notifications further

Rather than just notifying our subscribers that new data is
 available, why not actually push the new data through to gridUpdate
 when we publish a new notification from a publisher. In this next
 example, our publisher will notify subscribers with the actual data
 that's been updated as well as a timestamp from the data-source of
 when the new data was added.
In addition to avoiding data having to be read from a cached
 store, this also avoids client-side calculation of the current time
 whenever a new data entry gets published.
var grid = {

 addEntry: function (data) {

 if (data !== 'undefined') {

 console.log('Entry:'

 + data.title

 + ' Changenet / %'

 + data.changenet

 + '/' + data.percentage + ' % added');

 }

 },

 updateCounter: function (timestamp) {
 console.log('grid last updated at: ' + timestamp);
 }
};

var gridUpdate = function (topics, data) {
 grid.addEntry(data);
 grid.updateCounter(data.timestamp);
 }

var gridSubscription = PubSub.subscribe('dataUpdated', gridUpdate);

PubSub.publish('dataUpdated', {
 title: "Microsoft shares",
 changenet: 4,
 percentage: 33,
 timestamp: '17:34:12'
});

PubSub.publish('dataUpdated', {
 title: "Dell shares",
 changenet: 10,
 percentage: 20,
 timestamp: '17:35:16'
});

Example 4: Decoupling applications using Ben Alman's pub/sub
 implementation

In the following movie ratings example, we'll be using Ben
 Alman's jQuery implementation of pub/sub to demonstrate how we can
 decouple a user interface. Notice how submitting a rating only has the
 effect of publishing the fact that new user and rating data is
 available.
It's left up to the subscribers to those topics to then delegate
 what happens with that data. In our case we're pushing that new data
 into existing arrays and then rendering them using the jQuery.tmpl
 plugin.
HTML/Templates
<script id="userTemplate" type="text/x-jquery-tmpl">
 ${user}
</script>

<script id="ratingsTemplate" type="text/x-jquery-tmpl">
 ${movie} was rated ${rating}/5
</script>

<div id="container">

 <div class="sampleForm">
 <p>
 <label for="twitter_handle">Twitter handle:</label>
 <input type="text" id="twitter_handle" />
 </p>
 <p>
 <label for="movie_seen">Name a movie you've seen this year:</label>
 <input type="text" id="movie_seen" />
 </p>
 <p>

 <label for="movie_rating">Rate the movie you saw:</label>
 <select id="movie_rating">
 <option value="1">1</option>
 <option value="2">2</option>
 <option value="3">3</option>
 <option value="4">4</option>
 <option value="5"ected>5</option>

 </select>
 </p>
 <p>

 <button id="add">Submit rating</button>
 </p>
 </div>

 <div class="summaryTable">
 <div id="users"><h3>Recent users</h3></div>
 <div id="ratings"><h3>Recent movies rated</h3></div>
 </div>

 </div>

JavaScript
(function($) {

 var movieList = [],
 userList = [];

 // subscribers

 $.subscribe("/new/user", function(e, userName){

 if(userName.length){
 userList.push({user: userName});
 $("#userTemplate").tmpl(userList[userList.length - 1]).appendTo("#users");
 }

 });

 $.subscribe("/new/rating", function(e, movieTitle, userRating){

 if(movieTitle.length){
 movieList.push({ movie: movieTitle, rating: userRating});
 $("#ratingsTemplate").tmpl(movieList[movieList.length - 1]).appendTo("#ratings");
 }

 });

 $('#add').on('click', function(){

 var strUser = $("#twitter_handle").val(),
 strMovie = $("#movie_seen").val(),
 strRating = $("#movie_rating").val();

 // publishers

 $.publish('/new/user', strUser);
 $.publish('/new/rating', [strMovie, strRating]);

 });

})(jQuery);

Example 5: Decoupling an Ajax-based jQuery application

In our final example, we're going to take a practical look at
 how decoupling our code using pub/sub early on in the development
 process can save us some potentially painful refactoring later on.
 This is something Rebecca Murphey touched on in her pub/sub screencast
 and is another reason why pub/sub is favored by so many developers in
 the community.
Quite often in Ajax-heavy applications, once we've received a
 response to a request we want to achieve more than just one unique
 action. One could simply add all of their post-request logic into a
 success callback, but there are drawbacks to this approach.
Highly coupled applications sometimes increase the effort
 required to reuse functionality due to the increased
 inter-function/code dependency. What this means is that although
 keeping our post-request logic hardcoded in a callback might be fine
 if we're just trying to grab a result set once, it's not as
 appropriate when we want to make further Ajax-calls to the same data
 source (and different end-behavior) without rewriting parts of the
 code multiple times. Rather than having to go back through each layer
 that calls the same data-source and generalizing them later on, we can
 use pub/sub from the start and save time.
Using pub/sub, we can also easily separate application-wide
 notifications regarding different events down to whatever level of
 granularity you're comfortable with, something which can be less
 elegantly done using other patterns.
Notice how in our sample below, one topic notification is made
 when a user indicates they want to make a search query and another is
 made when the request returns and actual data is available for
 consumption. It's left up to the subscribers to then decide how to use
 knowledge of these events (or the data returned). The benefits of this
 are that, if we wanted, we could have 10 different subscribers
 utilizing the data returned in different ways but as far as the
 Ajax-layer is concerned, it doesn't care. Its sole duty is to request
 and return data then pass it on to whoever wants to use it. This
 separation of concerns can make the overall design of your code a
 little cleaner.
HTML/Templates:
<form id="flickrSearch">

 <input type="text" name="tag" id="query"/>

 <input type="submit" name="submit" value="submit"/>

</form>

<div id="lastQuery"></div>

<div id="searchResults"></div>

<script id="resultTemplate" type="text/x-jquery-tmpl">
 {{each(i, items) items}}
 <p></p>
 {{/each}}
</script>

JavaScript:
(function($) {

 $('#flickrSearch').submit(function(e){

 e.preventDefault();
 var tags = $(this).find('#query').val();

 if(!tags){return;}
 $.publish('/search/tags', [$.trim(tags)]);

 });

 $.subscribe('/search/tags', function(tags){

 $.getJSON('http://api.flickr.com/services/feeds/photos_public.gne?jsoncallback=?',
 { tags: tags, tagmode: 'any', format: 'json'},

 function(data){
 if(!data.items.length){ return; }
 $.publish('/search/resultSet', [data]);
 });

 });

 $.subscribe('/search/tags', function(tags){
 $('#searchResults').html('Searched for:' + tags + '');
 });

 $.subscribe('/search/resultSet', function(results){

 var holder = $('#searchResults');
 holder.html();
 $('#resultTemplate').tmpl(results).appendTo(holder);

 });

});

The Observer pattern is useful for decoupling a number of
 different scenarios in application design and if you haven't been
 using it, I recommend picking up one of the pre-written
 implementations mentioned today and just giving it a try out. It's one
 of the easier design patterns to get started with but also one of the
 most powerful.

The Mediator Pattern

The dictionary refers to a mediator as a neutral party who
 assists in negotiations and conflict resolution.
In software engineering, a mediator is a behavioral design pattern
 that allows us to expose a unified interface through which the different
 parts of a system may communicate. If it appears a system may have too
 many direct relationships between modules (colleagues), it may be time to
 have a central point of control that modules communicate through instead.
 The Mediator promotes loose coupling by ensuring that instead of modules
 referring to each other explicitly, their interaction is handled through
 this central point.
If you would prefer a real-world analogy, consider a typical airport
 traffic control system. A tower (mediator) handles what planes can take
 off and land because all communications (notifications being listened out
 for or broadcast) are done from the planes to the control tower, rather
 than from plane-to-plane. A centralized controller is key to the success
 of this system and that's really the role a mediator plays in software
 design.
In implementation terms, the mediator pattern is essentially a
 shared subject in the observer pattern. This might assume that a direction
 Publish/Subscribe relationship between objects or modules in such systems
 is sacrificed in order to maintain a central point of contact. It may also
 be considered supplemental - perhaps used for application-level
 notifications such as a communication between different subsystems that
 are themselves complex and may desire internal component decoupling
 through Publish/Subscribe relationships.
Another analogy would be DOM event bubbling and event delegation. If
 all subscriptions in a system are made against the document rather than
 individual nodes, the document effectively serves as a mediator. Instead
 of binding to the events of the individual nodes, a higher level object is
 given the responsibility of notifying subscribers about interaction
 events.
A possible implementation of the mediator pattern can be found
 below:
var mediator = (function(){

 // Storage for our topics/events
 var channels = {};

 // Subscribe to an event, supply a callback to be executed
 // when that event is broadcast
 var subscribe = function(channel, fn){
 if (!channels[channel]) channels[channel] = [];
 channels[channel].push({ context: this, callback: fn });
 return this;
 };

 // Publish/broadcast an event to the rest of the application
 var publish = function(channel){
 if (!channels[channel]) return false;
 var args = Array.prototype.slice.call(arguments, 1);
 for (var i = 0, l = channels[channel].length; i < l; i++) {
 var subscription = channels[channel][i];
 subscription.callback.apply(subscription.context, args);
 }
 return this;
 };

 return {
 publish: publish,
 subscribe: subscribe,
 installTo: function(obj){
 obj.subscribe = subscribe;
 obj.publish = publish;
 }
 };

}());

Here is an example that uses the implementation from above. It's
 effectively centralized Publish/Subscribe where a mediated implementation
 of the Observer pattern is used:
(function(m){

 // Set a default value for 'person'
 var person = "Luke";

 // Subscribe to a topic/event called 'nameChange' with
 // a callback function which will log the original
 // person's name and (if everything works) the incoming
 // name

 m.subscribe('nameChange', function(arg){
 console.log(person); // Luke
 person = arg;
 console.log(person); // David
 });

 // Publish the 'nameChange' topic/event with the new data
 m.publish('nameChange', 'David');

})(mediator);

Advantages & Disadvantages

The benefits of the Mediator pattern include that broadcasted
 events can be handled by any number of modules at once. It also can be
 used for a number of other purposes such as permissions management,
 given a Mediator can control what messages in a system can be subscribed
 to and which can be broadcast.
Perhaps the biggest downside of using the Mediator pattern is that
 it can introduce a single point of failure. Placing a Mediator between
 modules can also cause a performance hit as they are always
 communicating indirectly.Because of the nature of loose coupling, it's
 difficult to establish how a system might react by only looking at the
 broadcasts. That said, it's useful to remind ourselves that decoupled
 systems have a number of other benefits - if our modules communicated
 with each other directly, changes to modules (e.g another module
 throwing an exception) could easily have a domino effect on the rest of
 your application. This problem is less of a concern with decoupled
 systems.
At the end of the day, tight coupling causes all kinds of
 headaches and this is just another alternative solution, but one which
 can work very well if implemented correctly.

Mediator Vs. Observer

Developers often wonder what the differences are between the
 Mediator pattern and the Observer pattern. Admittedly, there is a bit of
 overlap, but let's refer back to the GoF for an explanation:
"In the Observer pattern, there is no single object that
 encapsulates a constraint. Instead, the Observer and the Subject must
 cooperate to maintain the constraint. Communication patterns are
 determined by the way observers and subjects are interconnected: a
 single subject usually has many observers, and sometimes the observer of
 one subject is a subject of another observer."
The Mediator pattern centralizes rather than simply just
 distributing. It places the responsibility for maintaining a constraint
 squarely in the mediator.

Mediator Vs. Facade

We will be covering the Facade pattern shortly, but for reference
 purposes some developers may also wonder whether there are similarities
 between the Mediator and Facade patterns. They do both abstract the
 functionality of existing modules, but there are some subtle
 differences.
The Mediator centralizes communication between modules where it's
 explicitly referenced by these modules. In a sense this is
 multidirectional. The Facade however just defines a simpler interface to
 a module or system but doesn't add any additional functionality. Other
 modules in the system aren't directly aware of the concept of a facade
 and could be considered unidirectional.

The Prototype Pattern

The GoF refer to the prototype pattern as one which creates objects
 based on a template of an existing object through cloning.
We can think of the prototype pattern as being based on prototypal
 inheritance where we create objects which act as prototypes for other
 objects. The prototype object itself is effectively used as a blueprint
 for each object the constructor creates. If the prototype of the
 constructor function used contains a property called 'name' for example
 (as per the code sample lower down), then each object created by that same
 constructor will also have this same property.
Looking at the definitions for the prototype pattern in existing
 literature non-specific to JavaScript, you may find references to concepts outside the scope
 of the language such as classes. The reality is that prototypal
 inheritance avoids using classes altogether. There isn't a 'definition'
 object nor a core object in theory. We're simply creating copies of
 existing functional objects.
One of the benefits of using the prototype pattern is that we're
 working with the strengths JavaScript has to offer natively rather than
 attempting to imitate features of other languages. With other design
 patterns, this isn't always the case. Not only is the pattern an easy way
 to implement inheritance, but it can also come with a performance boost as
 well: when defining a function in an object, they're all created by
 reference (so all child objects point to the same function) instead of
 creating their own individual copies.
For those interested, real prototypal inheritance, as defined in the
 ECMAScript 5 standard, requires the use of Object.create (which we've previously looked at
 briefly). Object.create creates an
 object which has a specified prototype and which optionally contains
 specified properties (i.e Object.create(prototype,
 optionalDescriptorObjects)). We can also see this being
 demonstrated in the example below:
// No need for capitalization as it's not a constructor
var someCar = {
 drive: function() {},
 name: 'Mazda 3'
};

// Use Object.create to generate a new car
var anotherCar = Object.create(someCar);
console.log(anotherCar.name); // Now you'll hopefully see that one is a prototype of the other

Object.create allows you to
 easily implement advanced concepts such as differential inheritance where
 objects are able to directly inherit from other objects. With Object.create you're also able to initialise
 object properties using the second supplied argument. For example:
var vehicle = {
 getModel: function () {
 console.log('The model of this vehicle is..' + this.model);
 }
};

var car = Object.create(vehicle, {
 'id': {
 value: MY_GLOBAL.nextId(),
 enumerable: true // writable:false, configurable:false by default
 },
 'model': {
 value: 'Ford',
 enumerable: true
 }
});

Here the properties can be initialized on the second argument of
 Object.create using an object literal using the syntax similar to that
 used by the Object.defineProperties and
 Object.defineProperty methods. It
 allows you to set the property attributes such as enumerable, writable or
 configurable.
It is worth noting that prototypal relationships can cause trouble
 when enumerating properties of objects and (as Crockford recommends)
 wrapping the contents of the loop in a hasOwnProperty() check.
If you wish to implement the prototype pattern without directly
 using Object.create, you can simulate
 the pattern as per the above example as follows:
var vehiclePrototype = {
 init: function (carModel) {
 this.model = carModel;
 },
 getModel: function () {
 console.log('The model of this vehicle is..' + this.model);
 }
};

function vehicle(model) {
 function F() {};
 F.prototype = vehiclePrototype;

 var f = new F();

 f.init(model);
 return f;
}

var car = vehicle('Ford Escort');
car.getModel();

Note: This alternative does not
 allow the user to define read-only properties in the same manner (as the
 vehiclePrototype may be altered if not careful).
A final alternative implementation of the Prototype pattern is the
 following:
var beget = (function () {
 function F() {}

 return function (proto) {
 F.prototype = proto;
 return new F();
 };
})();

One could reference this method from the vehicle function. Note, however that vehicle here is emulating a constructor, since
 the prototype pattern does not include any notion of initialization beyond
 linking an object to a prototype.

The Command Pattern

The Command pattern aims to encapsulate method invocation, requests
 or operations into a single object and gives you the ability to both
 parameterize and pass method calls around that can be executed at your
 discretion. In addition, it enables you to decouple objects invoking the
 action from the objects which implement them, giving you a greater degree
 of overall flexibility in swapping out concrete 'classes'.
If you haven't come across concrete classes before, they are best
 explained in terms of class-based programming languages and are related to
 the idea of abstract classes. An abstract class defines an interface, but
 doesn't necessarily provide implementations for all of its member
 functions. It acts as a base class from which others are derived. A
 derived class which implements the missing functionality is called a
 concrete class (you may find these concepts familiar if you're read about
 the Decorator or Prototype patterns).
The main idea behind the command pattern is that it provides you a
 means to separate the responsibilities of issuing commands from anything
 executing commands, delegating this responsibility to different objects
 instead.
Implementation wise, simple command objects bind together both an
 action and the object wishing to invoke the action. They consistently
 include an execution operation (such as run() or execute()). All Command objects with the same
 interface can easily be swapped as needed and this is considered one of
 the larger benefits of the pattern.
To demonstrate the Command pattern we're going to create a simple
 car purchasing service.
(function(){

 var CarManager = {

 // request information
 requestInfo: function(model, id){
 return 'The information for ' + model +
 ' with ID ' + id + ' is foobar';
 },

 // purchase the car
 buyVehicle: function(model, id){
 return 'You have successfully purchased Item '
 + id + ', a ' + model;
 },

 // arrange a viewing
 arrangeViewing: function(model, id){
 return 'You have successfully booked a viewing of '
 + model + ' (' + id + ') ';
 }

 };

})();

Taking a look at the above code, it would be trivial to invoke our
 CarManager methods by directly
 accessing the object. We would all be forgiven for thinking there is
 nothing wrong with this - technically, it's completely valid JavaScript.
 There are however scenarios where this may be disadvantageous.
For example, imagine if the core API behind the CarManager changed. This would require all
 objects directly accessing these methods within our application to also be
 modified. This could be viewed as a layer of coupling which effectively
 goes against the OOP methodology of loosely coupling objects as much as
 possible. Instead, we could solve this problem by abstracting the API away
 further.
Let's now expand on our CarManager so that our application of the
 Command pattern results in the following: accept any named methods that
 can be performed on the CarManager
 object, passing along any data that might be used such as the Car model
 and ID.
Here is what we would like to be able to achieve:
CarManager.execute("buyVehicle", "Ford Escort", "453543");

As per this structure we should now add a definition for the
 "CarManager.execute" method as follows:
CarManager.execute = function (name) {
 return CarManager[name] && CarManager[name].apply(CarManager, [].slice.call(arguments, 1));
};

Our final sample calls would thus look as follows:
CarManager.execute("arrangeViewing", "Ferrari", "14523");
CarManager.execute("requestInfo", "Ford Mondeo", "54323");
CarManager.execute("requestInfo", "Ford Escort", "34232");
CarManager.execute("buyVehicle", "Ford Escort", "34232");

The Facade Pattern

When we put up a facade, we present an outward appearance to the
 world which may conceal a very different reality. This was the inspiration
 for the name behind the next pattern we're going to review - the facade
 pattern. The facade pattern provides a convenient higher-level interface
 to a larger body of code, hiding its true underlying complexity. Think of
 it as simplifying the API being presented to other developers, something
 which almost always improves usability.
Facades are a structural pattern which can often be seen in
 JavaScript libraries like jQuery where, although an implementation may
 support methods with a wide range of behaviors, only a 'facade' or limited
 abstraction of these methods is presented to the public for use.
This allows us to interact with the facade rather than the subsystem
 behind the scenes. Whenever you're using jQuery's $(el).css() or $(el).animate() methods, you're actually using a
 facade - the simpler public interface that avoids you having to manually
 call the many internal methods in jQuery core required to get some
 behavior working. This also avoids the need to manually interact with DOM
 Apis and maintain state variables.
The jQuery core methods should be considered intermediate
 abstractions. The more immediate burden to developers is the DOM API and
 facades are what make the jQuery library so easy to use.
To build on what we've learned, the facade pattern both simplifies
 the interface of a class and it also decouples the class from the code
 that utilizes it. This gives us the ability to indirectly interact with
 subsystems in a way that can sometimes be less prone to error than
 accessing the subsystem directly. A facade's advantages include ease of
 use and often a small size-footprint in implementing the pattern.
Let’s take a look at the pattern in action. This is an unoptimized
 code example, but here we're utilizing a facade to simplify an interface
 for listening to events cross-browser. We do this by creating a common
 method that can be used in one’s code which does the task of checking for
 the existence of features so that it can provide a safe and cross-browser
 compatible solution.
var addMyEvent = function(el,ev,fn){
 if(el.addEventListener){
 el.addEventListener(ev,fn, false);
 }else if(el.attachEvent){
 el.attachEvent('on'+ ev, fn);
 } else{
 el['on' + ev] = fn;
 }
};

In a similar manner, we're all familiar with jQuery's $(document).ready(..). Internally, this is
 actually being powered by a method called bindReady(), which is doing this:
bindReady: function() {
 ...
 if (document.addEventListener) {
 // Use the handy event callback
 document.addEventListener("DOMContentLoaded", DOMContentLoaded, false);

 // A fallback to window.onload, that will always work
 window.addEventListener("load", jQuery.ready, false);

 // If IE event model is used
 } else if (document.attachEvent) {

 document.attachEvent("onreadystatechange", DOMContentLoaded);

 // A fallback to window.onload, that will always work
 window.attachEvent("onload", jQuery.ready);
 ...

This is another example of a facade, where the rest of the world
 simply uses the limited interface exposed by $(document).ready(..) and the more complex
 implementation powering it is kept hidden from sight.
Facades don't just have to be used on their own, however. They can
 also be integrated with other patterns such as the module pattern. As you
 can see below, our instance of the module patterns contains a number of
 methods which have been privately defined. A facade is then used to supply
 a much simpler API to accessing these methods:
var module = (function() {
 var _private = {
 i:5,
 get : function() {
 console.log('current value:' + this.i);
 },
 set : function(val) {
 this.i = val;
 },
 run : function() {
 console.log('running');
 },
 jump: function(){
 console.log('jumping');
 }
 };
 return {
 facade : function(args) {
 _private.set(args.val);
 _private.get();
 if (args.run) {
 _private.run();
 }
 }
 }
}());

module.facade({run: true, val:10});
//outputs current value: 10, running

In this example, calling module.facade() will actually trigger a set of
 private behavior within the module, but again, the user isn't concerned
 with this. We've made it much easier for them to consume a feature without
 needing to worry about implementation-level details.

The Factory Pattern

Similar to other creational patterns, the Factory Pattern deals with
 the problem of creating objects (which we can think of as ‘factory
 products’) without the need to specify the exact class of object being
 created.
Specifically, the Factory Pattern suggests defining an interface for
 creating an object where you allow the subclasses to decide which class to
 instantiate. This pattern handles the problem by defining a completely
 separate method for the creation of objects and which sub-classes are able
 to override so they can specify the ‘type’ of factory product that will be
 created.
This is quite useful, in particular if the creation process involved
 is quite complex, e.g. if it strongly depends on the settings in
 configuration files.
You can often find factory methods in frameworks where the code for
 a library may need to create objects of particular types which may be
 subclassed by scripts using the frameworks.
In our example, let’s take the code used in the original Constructor
 pattern example and see what this would look like were we to optimize it
 using the Factory Pattern:
function VehicleFactory() {}
VehicleFactory.prototype.vehicleClass = Car;
VehicleFactory.prototype.getVehicle = function (options) {
 return new this.vehicleClass(options);
};

var carFactory = new VehicleFactory();
var car = carFactory.getVehicle({ color: "yellow", turbo: true });
console.log(car instanceof Car); // => true

// approach #1: Modify a VehicleFactory instance to use the Truck class
carFactory.vehicleClass = Truck;

var mover = carFactory.getVehicle({ enclosedCargo: true, length: 26 });
counsole.log(mover instanceof Truck); // => true

// approach #2: Subclass VehicleFactory to create a factory class that
// builds Trucks
function TruckFactory () {}
TruckFactory.prototype = new VehicleFactory();
TruckFactory.prototype.vehicleClass = Truck;

var truckFactory = new TruckFactory();
var bigfoot = truckFactory.getVehicle({ monster: true, cylinders: 12 });
console.log(bigfoot instanceof Truck); // => true

When To Use The Factory Pattern

The Factory pattern can be especially useful when applied to the
 following situations:
	When your object's setup requires a high level of
 complexity

	When you need to generate different instances depending on the
 environment

	When you're working with many small objects that share the
 same properties

	When composing classes with instances of other classes that
 need only satisfy an API contract (aka, duck typing) to work. This
 is useful for decoupling.

When Not To Use The Factory Pattern

It's generally a good practice to not use the factory pattern in
 every situation as it can easily add an unnecessarily additional aspect
 of complexity to your code. It can also make some tests more difficult
 to run.
It is also useful to be aware of the Abstract Factory pattern, which aims to
 encapsulate a group of individual factories with a common goal. It
 separates the details of implementation of a set of objects from their
 general usage.
An Abstract Factory should be used where a system must be
 independent from the way the objects it creates are generated or it
 needs to work with multiple types of objects.An example which is both
 simple and easier to understand is a vehicle factory, which defines ways
 to get or register vehicles types. The abstract factory can be named
 AbstractVehicleFactory. The abstract factory will allow the definition
 of types of vehicle like 'car' or 'truck' and concrete factories will
 implement only classes that fulfill the vehicle contract (e.g Vehicle.prototype.drive and Vehicle.prototype.breakDown).
 var AbstractVehicleFactory = (function () {
 var types = {};

 return {
 getVehicle: function (type, customizations) {
 var Vehicle = types[type];

 return (Vehicle) ? return new Vehicle(customizations) : null;
 },

 registerVehicle: function (type, Vehicle) {
 var proto = Vehicle.prototype;

 // only register classes that fulfill the vehicle contract
 if (proto.drive && proto.breakDown) {
 types[type] = Vehicle;
 }

 return AbstractVehicleFactory;
 }
 };
})();

//Usage

AbstractVehicleFactory.registerVehicle("car", Car);
AbstractVehicleFactory.registerVehicle("truck", Truck);

var car = AbstractVehicleFactory.getVehicle("car", { color: "yellow", turbo: true });
var truck = AbstractVehicleFactory.getVehicle("truck", { monster: true, cylinders: 12 });

The Mixin Pattern

In traditional object-oriented programming languages, mixins are classes which provide the
 functionality to be inherited by a subclass. Inheriting from mixins are a
 means of collecting functionality and classes may inherit functionality
 from multiple mixins through multiple inheritance.
In the following example, we have a Car defined without any methods.
 We also have a constructor called 'Mixin'. What we're going to do is
 augment the Car so it has access to the methods within the Mixin.This code
 demonstrates how with JavaScript you can augment a constructor to have a
 particular method without using the typical inheritance methods or
 duplicating code for each constructor function you have.
// Car
var Car = function(settings){
 this.model = settings.model || 'no model provided';
 this.colour = settings.colour || 'no colour provided';
};

// Mixin
var Mixin = function(){};
Mixin.prototype = {
 driveForward: function(){
 console.log('drive forward');
 },
 driveBackward: function(){
 console.log('drive backward');
 }
};

// Augment existing 'class' with a method from another
function augment(receivingClass, givingClass) {
 // only provide certain methods
 if (arguments[2]) {
 for (var i=2, len=arguments.length; i<len; i++) {
 receivingClass.prototype[arguments[i]] = givingClass.prototype[arguments[i]];
 }
 }
 // provide all methods
 else {
 for (var methodName in givingClass.prototype) {
 /* check to make sure the receiving class doesn't
 have a method of the same name as the one currently
 being processed */
 if (!receivingClass.prototype[methodName]) {
 receivingClass.prototype[methodName] = givingClass.prototype[methodName];
 }
 }
 }
}

// Augment the Car have the methods 'driveForward' and 'driveBackward'*/
augment(Car, Mixin,'driveForward','driveBackward');

// Create a new Car
var vehicle = new Car({model:'Ford Escort', colour:'blue'});

// Test to make sure we now have access to the methods
vehicle.driveForward();
vehicle.driveBackward();

It's worth noting that handling mixins that have constructor code is
 possible, but can be more complicated. Although the mixed in class
 prototype members are mirrored on the receiving class prototype, instances
 of the receiving class do not pass instanceof for the mixin class; JS does
 not support multiple inheritance.

The Decorator Pattern

In this section we're going to explore the decorator - a structural design pattern that
 promotes code reuse and is a flexible alternative to subclassing. This
 pattern is also useful for modifying existing systems where you may wish
 to add additional features to objects without the need to change the
 underlying code that uses them.
Traditionally, the decorator is defined as a design pattern that
 allows behavior to be added to an existing object dynamically. The idea is
 that the decoration itself isn't essential to the base functionality of an
 object otherwise it would be baked into the 'superclass' object
 itself.

Subclassing

For developers unfamiliar with subclassing, here is a beginner's
 primer on them before we dive further into decorators: subclassing is a
 term that refers to inheriting properties for a new object from a base or
 'superclass' object.
In traditional OOP, a class B is able to extend another class A.
 Here we consider A a superclass and B a subclass of A. As such, all
 instances of B inherit the methods from A. B is however still able to
 define its own methods, including those that override methods originally
 defined by A.
Should B need to invoke a method in A that has been overridden, we
 refer to this as method chaining. Should B need to invoke the constructor
 A() (the superclass), we call this constructor chaining.
In order to demonstrate subclassing, we first need a base object
 that can have new instances of itself created. Let's model this around the
 concept of a person.
var Person = function(firstName , lastName){
 this.firstName = firstName;
 this.lastName = lastName;
 this.gender = 'male'
};

Next, we'll want to specify a new class (object) that's a subclass
 of the existing Person object. Let's
 imagine we want to add distinct properties to distinguish a Person from a Superhero whilst inheriting the properties of
 the Person 'superclass'. As superheroes
 share many common traits with normal people (e.g. name, gender), this
 should hopefully illustrate how subclassing works adequately.
// a new instance of Person can then easily be created as follows:
var clark = new Person("Clark" , "Kent");

// Define a subclass constructor for for 'Superhero':
var Superhero = function(firstName, lastName , powers){

 // Invoke the superclass constructor on the new object
 // then use .call() to invoke the constructor as a method of
 // the object to be initialized.

 Person.call(this, firstName, lastName);

 // Finally, store their powers, a new array of traits not found in a normal 'Person'
 this.powers = powers;
}

SuperHero.prototype = Object.create(Person.prototype);
var superman = new Superhero("Clark" ,"Kent" , ['flight','heat-vision']);
console.log(superman); // includes superhero props as well as gender

The Superhero definition creates
 an object which descends from Person.
 Objects of this type have properties of the objects that are above it in
 the chain and if we had set default values in the Person object, Superhero is capable of overriding any inherited
 values with values specific to it's object.
So where do decorators come in?

Decorators

Decorators are used when it's necessary to delegate responsibilities
 to an object where it doesn't make sense to subclass it. A common reason
 for this is that the number of features required demand for a very large
 quantity of subclasses. Can you imagine having to define hundreds or
 thousands of subclasses for a project? It would likely become unmanageable
 fairly quickly.
To give you a visual example of where this is an issue, imagine
 needing to define new kinds of Superhero: SuperheroThatCanFly,
 SuperheroThatCanRunQuickly and SuperheroWithXRayVision.
Now, what if superhero had more than one of these properties?. We'd
 need to define a subclass called SuperheroThatCanFlyAndRunQuickly ,
 SuperheroThatCanFlyRunQuicklyAndHasXRayVision etc - effectively, one for
 each possible combination. As you can see, this isn't very manageable when
 you factor in different abilities.
The decorator pattern isn't heavily tied to how objects are created
 but instead focuses on the problem of extending their functionality.
 Rather than just using inheritance, where we're used to extending objects
 linearly, we work with a single base object and progressively add
 decorator objects which provide the additional capabilities. The idea is
 that rather than subclassing, we add (decorate) properties or methods to a
 base object so its a little more streamlined.
The extension of objects is something already built into JavaScript
 and as we know, objects can be extended rather easily with properties
 being included at any point. With this in mind, a very very simplistic
 decorator may be implemented as follows:
Example 1: Basic decoration of existing object constructors with
 new functionality

function vehicle(vehicleType){
 // properties and defaults
 this.vehicleType = vehicleType || 'car',
 this.model = 'default',
 this.license = '00000-000'
}

// Test instance for a basic vehicle
var testInstance = new vehicle('car');
console.log(testInstance);

// vehicle: car, model:default, license: 00000-000

// Lets create a new instance of vehicle, to be decorated*/
var truck = new vehicle('truck');

// New functionality we're decorating vehicle with
truck.setModel = function(modelName){
 this.model = modelName;
}

truck.setColor = function(color){
 this.color = color;
}

// Test the value setters and value assignment works correctly
truck.setModel('CAT');
truck.setColor('blue');
console.log(truck);
// vehicle:truck, model:CAT, color: blue

// Demonstrate 'vehicle' is still unaltered
var secondInstance = new vehicle('car');
console.log(secondInstance);

// as before, vehicle: car, model:default, license: 00000-000

This type of simplistic implementation is something you're likely
 familiar with, but it doesn't really demonstrate some of the other
 strengths of the pattern. For this, we're first going to go through my
 variation of the Coffee example from an excellent book called Head First
 Design Patterns by Freeman, Sierra and Bates, which is modelled around a
 Macbook purchase.
We're then going to look at psuedo-classical decorators.

Example 2: Simply decorate objects with multiple
 decorators

// What we're going to decorate
function MacBook() {
 this.cost = function () { return 997; };
 this.screenSize = function () { return 13.3; };
}

// Decorator 1
function Memory(macbook) {
 var v = macbook.cost();
 macbook.cost = function() {
 return v + 75;
 }
}
// Decorator 2
function Engraving(macbook){
 var v = macbook.cost();
 macbook.cost = function(){
 return v + 200;
 };
}

// Decorator 3
function Insurance(macbook){
 var v = macbook.cost();
 macbook.cost = function(){
 return v + 250;
 };
}
var mb = new MacBook();
Memory(mb);
Engraving(mb);
Insurance(mb);
console.log(mb.cost()); //1522
console.log(mb.screenSize()); //13.3

Here, the decorators are overriding the superclass .cost() method to return the current price of
 the Macbook plus with the cost of the
 upgrade being specified. It's considered a decoration as the original
 Macbook object's constructor methods
 which are not overridden (e.g. screenSize()) as well as any other properties
 which we may define as a part of the Macbook remain unchanged and intact.
As you can probably tell, there isn't really a defined 'interface'
 in the above example and we're shifting away the responsibility of
 ensuring an object meets an interface when moving from the creator to
 the receiver.

Pseudo-classical decorators

We're now going to examine the variation of the decorator presented
 in 'Pro JavaScript Design Patterns' (PJDP) by Dustin Diaz and Ross
 Harmes.
Unlike some of the examples from earlier, Diaz and Harmes stick more
 closely to how decorators are implemented in other programming languages
 (such as Java or C++) using the concept of an 'interface', which we'll
 define in more detail shortly.
Note: This particular variation
 of the decorator pattern is provided for reference purposes. If you find
 it overly complex for your application's needs, I recommend sticking to
 one the simplier implementations covered earlier, but I would still read
 the section. If you haven't yet grasped how decorators are different from
 subclassing, it may help!.
Interfaces

PJDP describes the decorator as a pattern that is used to
 transparently wrap objects inside other objects of the same interface.
 An interface is a way of defining the methods an object should have, however, it doesn't actually
 directly specify how those methods should be implemented.
They can also indicate what parameters the methods take, but this
 is considered optional.
So, why would you use an interface in JavaScript? The idea is that
 they're self-documenting and promote reusability. In theory, interfaces
 also make code more stable by ensuring changes to them must also be made
 to the classes implementing them.
Below is an example of an implementation of Interfaces in
 JavaScript using duck-typing - an approach that helps determine whether
 an object is an instance of constructor/object based on the methods it
 implements.
var TodoList = new Interface('Composite', ['add', 'remove']);
var TodoItem = new Interface('TodoItem', ['save']);
// TodoList class
var myTodoList = function(id, method, action) {
 // implements TodoList, TodoItem
...
};
...
function addTodo(todoInstance) {
 Interface.ensureImplements(todoInstance, TodoList, TodoItem);
 // This function will throw an error if a required method is not implemented,
 // halting execution of the function.
 //...
}

where Interface.ensureImplements provides strict checking. If you
 would like to explore interfaces further, I recommend looking at Chapter
 2 of Pro JavaScript design patterns. For the Interface class used above,
 see here.
The biggest problem with interfaces is that, as there isn't
 built-in support for them in JavaScript, there's a danger of us
 attempting to emulate the functionality of another language, however,
 we're going to continue demonstrating their use just to give you a
 complete view of how the decorator is implemented by other
 developers.

This variation of decorators and abstract decorators

To demonstrate the structure of this version of the decorator
 pattern, we're going to imagine we have a superclass that models a
 macbook once again and a store that allows you to 'decorate' your
 macbook with a number of enhancements for an additional fee.
Enhancements can include upgrades to 4GB or 8GB Ram, engraving,
 Parallels or a case. Now if we were to model this using an individual
 subclass for each combination of enhancement options, it might look
 something like this:
var Macbook = function(){
 //...
}
var MacbookWith4GBRam = function(){},
 MacbookWith8GBRam = function(){},
 MacbookWith4GBRamAndEngraving = function(){},
 MacbookWith8GBRamAndEngraving = function(){},
 MacbookWith8GBRamAndParallels = function(){},
 MacbookWith4GBRamAndParallels = function(){},
 MacbookWith8GBRamAndParallelsAndCase = function(){},
 MacbookWith4GBRamAndParallelsAndCase = function(){},
 MacbookWith8GBRamAndParallelsAndCaseAndInsurance = function(){},
 MacbookWith4GBRamAndParallelsAndCaseAndInsurance = function(){};

and so on.
This would be an impractical solution as a new subclass would be
 required for every possible combination of enhancements that are
 available. As we'd prefer to keep things simple without maintaining a
 large set of subclasses, let's look at how decorators may be used to
 solve this problem better.
Rather than requiring all of the combinations we saw earlier, we
 should simply have to create five new decorator classes. Methods that
 are called on these enhancement classes would be passed on to our
 Macbook class.
In our next example, decorators transparently wrap around their
 components and can interestingly be interchanged astray use the same
 interface.
Here's the interface we're going to define for the Macbook:
var Macbook = new Interface('Macbook', ['addEngraving', 'addParallels', 'add4GBRam', 'add8GBRam', 'addCase']);
A Macbook Pro might thus be represented as follows:
var MacbookPro = function(){
 // implements Macbook
}
MacbookPro.prototype = {
 addEngraving: function(){
 },
 addParallels: function(){
 },
 add4GBRam: function(){
 },
 add8GBRam:function(){
 },
 addCase: function(){
 },
 getPrice: function(){
 return 900.00; //base price.
 }
};

We're not going to worry about the actual implementation at this
 point as we'll shortly be passing on all method calls that are made on
 them.
To make it easier for us to add as many more options as needed
 later on, an abstract decorator class is defined with default methods
 required to implement the Macbook interface, which the rest of the
 options will subclass.
Abstract decorators ensure that we can decorate a base class
 independently with as many decorators as needed in different
 combinations (remember the example earlier?) without needing to derive a
 class for every possible combination.
//Macbook decorator abstract decorator class
var MacbookDecorator = function(macbook){
 Interface.ensureImplements(macbook, Macbook);
 this.macbook = macbook;
}
MacbookDecorator.prototype = {
 addEngraving: function(){
 return this.macbook.addEngraving();
 },
 addParallels: function(){
 return this.macbook.addParallels();
 },
 add4GBRam: function(){
 return this.macbook.add4GBRam();
 },
 add8GBRam:function(){
 return this.macbook.add8GBRam();
 },
 addCase: function(){
 return this.macbook.addCase();
 },
 getPrice: function(){
 return this.macbook.getPrice();
 }
};

What's happening in the above sample is that the Macbook decorator
 is taking an object to use as the component. It's using the Macbook
 interface we defined earlier and for each method is just calling the
 same method on the component. We can now create our option classes just
 by using the Macbook decorator - simply call the superclass constructor
 and any methods can be overridden as per necessary.
var CaseDecorator = function(macbook){
 /*call the superclass's constructor next*/
 this.superclass.constructor(macbook);
}

// Let's now extend the superclass
extend(CaseDecorator, MacbookDecorator);

CaseDecorator.prototype.addCase = function(){
 return this.macbook.addCase() + " Adding case to macbook ";
};

CaseDecorator.prototype.getPrice = function(){
 return this.macbook.getPrice() + 45.00;
};

As you can see, most of this is relatively easy to implement. What
 we're doing is overriding the addCase() and getPrice() methods that need
 to be decorated and we're achieving this by first executing the
 component's method and then adding to it.
As there's been quite a lot of information presented in this
 section so far, let's try to bring it all together in a single example
 that will hopefully highlight what we've learned.
// Instantiation of the macbook
var myMacbookPro = new MacbookPro();

// This will return 900.00
console.log(myMacbookPro.getPrice());

// Decorate the macbook
myMacbookPro = new CaseDecorator(myMacbookPro); /*note*/

// This will return 945.00
console.log(myMacbookPro.getPrice());

An important note from PJDP is that in the line denoted note, Harmes and Diaz claim that it's important
 not to create a separate variable to store the instance of your
 decorators, opting for the same variable instead. The downside to this
 is that we're unable to access the original macbook object in our
 example, however we technically shouldn't need to further.
As decorators are able to modify objects dynamically, they're a
 perfect pattern for changing existing systems. Occasionally, it's just
 simpler to create decorators around an object versus the trouble of
 maintaining individual subclasses. This makes maintaining applications
 of this type significantly more straight-forward.

Implementing decorators with jQuery

As with other patterns I''ve covered, there are also examples of the
 decorator pattern that can be implemented with jQuery. jQuery.extend()
 allows you to extend (or merge) two or more objects (and their properties)
 together into a single object either at run-time or dynamically at a later
 point.
In this scenario, a target object can be decorated with new
 functionality without necessarily breaking or overriding existing methods
 in the source/superclass object (although this can be done).
In the following example, we define three objects: defaults, options
 and settings. The aim of the task is to decorate the 'defaults' object
 with additional functionality found in 'options', which we'll make
 available through 'settings'. We must:
(a) Leave 'defaults' in an untouched state where we don't lose the
 ability to access the properties or functions found in it a later point
 (b) Gain the ability to use the decorated properties and functions found
 in 'options'
var decoratorApp = decoratorApp || {};
// define the objects we're going to use
decoratorApp = {
 defaults:{
 validate: false,
 limit: 5,
 name: "foo",
 welcome: function(){
 //console.log('welcome!');
 }
 },
 options:{
 validate: true,
 name: "bar",
 helloWorld: function(){
 //console.log('hello');
 }
 },
 settings:{},
 printObj: function(obj) {
 var arr = [];
 $.each(obj, function(key, val) {
 var next = key + ": ";
 next += $.isPlainObject(val) ? printObj(val) : val;
 arr.push(next);
 });
 return "{ " + arr.join(", ") + " }";
 }

}
/* merge defaults and options, without modifying defaults */
decoratorApp.settings = $.extend({}, decoratorApp.defaults,decoratorApp.options);
/* what we've done here is decorated defaults in a way that provides access to the properties and functionality it has to offer (as well as that of the decorator 'options'). defaults itself is left unchanged*/
$('#log').append("<div>settings -- " + decoratorApp.printObj(decoratorApp.settings) + "</div><div>options -- " + decoratorApp. printObj(decoratorApp.options) + "</div><div>defaults -- " +decoratorApp.printObj(decoratorApp.defaults) + "</div>");
/*
settings -- { validate: true, limit: 5, name: bar, welcome: function (){ console.log('welcome!'); }, helloWorld: function (){ console.log('hello!'); } }
options -- { validate: true, name: bar, helloWorld: function (){ console.log('hello!'); } }
defaults -- { validate: false, limit: 5, name: foo, welcome: function (){ console.log('welcome!'); } }
*/

Pros and cons of the pattern

Developers enjoy using this pattern as it can be used transparently
 and is also fairly flexible - as we've seen, objects can be wrapped or
 'decorated' with new behavior and then continue to be used without needing
 to worry about the base object being modified. In a broader context, this
 pattern also avoids us needing to rely on large numbers of subclasses to
 get the same benefits.
There are however drawbacks that you should be aware of when
 implementing the pattern. If poorly managed, it can significantly
 complicate your application's architecture as it introduces many small,
 but similar objects into your namespace. The concern here is that in
 addition to becoming hard to manage, other developers unfamiliar with the
 pattern may have a hard time grasping why it's being used.
Sufficient commenting or pattern research should assist with the
 latter, however as long as you keep a handle on how widespread you use the
 decorator in your application you should be fine on both counts.

Chapter 10. Flyweight

The Flyweight pattern is considered a useful classical solution for
 code that's repetitive, slow and inefficient - for example: situations where
 we might create a large number of similar objects.
It's of particular use in JavaScript where code that's complex in
 nature may easily use all of the available memory, causing a number of
 performance issues. Interestingly, it's been quite underused in recent
 years. Given how reliant we are on JavaScript for the applications of today,
 both performance and scalability are often paramount and this pattern (when
 applied correctly) can assist with improving both.
To give you some quick historical context, the pattern is named after
 the boxing weight class that includes fighters weighing less than 112lb -
 Poncho Villa being the most famous fighter in this division. It derives from
 this weight classification as it refers to the small amount of weight
 (memory) used.
Flyweights are an approach to taking several similar objects and
 placing that shared information into a single external object or structure.
 The general idea is that (in theory) this reduces the resources required to
 run an overall application. The flyweight is also a structural pattern,
 meaning that it aims to assist with both the structure of your objects and
 the relationships between them.
So, how do we apply it to JavaScript?
There are two ways in which the Flyweight pattern can be applied. The
 first is on the data-layer, where we deal with the concept of large
 quantities of similar objects stored in memory. The second is on the
 DOM-layer where the flyweight can be used as a central event-manager to
 avoid attaching event handlers to every child element in a parent container
 you wish to have some similar behavior.
As the data-layer is where the flyweight pattern is most used
 traditionally, we'll take a look at this first.
Flyweight and the data layer

For this application, there are a few more concepts around the
 classical flyweight pattern that we need to be aware of. In the Flyweight
 pattern there's a concept of two states - intrinsic and extrinsic.
 Intrinsic information may be required by internal methods in your objects
 which they absolutely can't function without. Extrinsic information can
 however be removed and stored externally.
Objects with the same intrinsic data can be replaced with a single
 shared object, created by a factory method, meaning we're able to reduce
 the overall quantity of objects down significantly. The benefit of this is
 that we're able to keep an eye on objects that have already been
 instantiated so that new copies are only ever created should the intrinsic
 state differ from the object we already have.
We use a manager to handle the extrinsic states. How this is
 implemented can vary, however as Dustin Diaz correctly points out in Pro
 JavaScript Design patterns, one approach to this to have the manager
 object contain a central database of the extrinsic states and the
 flyweight objects which they belong to.

Converting code to use the Flyweight pattern

Let's now demonstrate some of these concepts using the idea of a
 system to manage all of the books in a library. The important meta-data
 for each book could probably be broken down as follows:
	ID

	Title

	Author

	Genre

	Page count

	Publisher ID

	ISBN

We'll also require the following properties to keep track of which
 member has checked out a particular book, the date they've checked it out
 on as well as the expected date of return.
	checkoutDate

	checkoutMember

	dueReturnDate

	availability

Each book would thus be represented as follows, prior to any
 optimization:
var Book = function(id, title, author, genre, pageCount,publisherID, ISBN, checkoutDate, checkoutMember, dueReturnDate,availability){
 this.id = id;
 this.title = title;
 this.author = author;
 this.genre = genre;
 this.pageCount = pageCount;
 this.publisherID = publisherID;
 this.ISBN = ISBN;
 this.checkoutDate = checkoutDate;
 this.checkoutMember = checkoutMember;
 this.dueReturnDate = dueReturnDate;
 this.availability = availability;
};
Book.prototype = {
 getTitle:function(){
 return this.title;
 },
 getAuthor: function(){
 return this.author;
 },
 getISBN: function(){
 return this.ISBN;
 },
// other getters not shown for brevity
updateCheckoutStatus: function(bookID, newStatus, checkoutDate,checkoutMember, newReturnDate){
 this.id = bookID;
 this.availability = newStatus;
 this.checkoutDate = checkoutDate;
 this.checkoutMember = checkoutMember;
 this.dueReturnDate = newReturnDate;
},
extendCheckoutPeriod: function(bookID, newReturnDate){
 this.id = bookID;
 this.dueReturnDate = newReturnDate;
},
isPastDue: function(bookID){
 var currentDate = new Date();
 return currentDate.getTime() > Date.parse(this.dueReturnDate);
 }
};

This probably works fine initially for small collections of books,
 however as the library expands to include a larger inventory with multiple
 versions and copies of each book available, you'll find the management
 system running slower and slower over time. Using thousands of book
 objects may overwhelm the available memory, but we can optimize our system
 using the flyweight pattern to improve this.
We can now separate our data into intrinsic and extrinsic states as
 follows: data relevant to the book object (title, author etc) is intrinsic
 whilst the checkout data (checkoutMember, dueReturnDate etc) is considered
 extrinsic. Effectively this means that only one Book object is required
 for each combination of book properties. It's still a considerable
 quantity of objects, but significantly fewer than we had
 previously.
The following single instance of our book meta-data combinations
 will be shared among all of the copies of a book with a particular
 title.
// flyweight optimized version
var Book = function (title, author, genre, pageCount, publisherID, ISBN) {
 this.title = title;
 this.author = author;
 this.genre = genre;
 this.pageCount = pageCount;
 this.publisherID = publisherID;
 this.ISBN = ISBN;
 };

As you can see, the extrinsic states have been removed. Everything
 to do with library check-outs will be moved to a manager and as the
 object's data is now segmented, a factory can be used for
 instantiation.

A Basic Factory

Let's now define a very basic factory. What we're going to have it
 do is perform a check to see if a book with a particular title has been
 previously created inside the system. If it has, we'll return it. If not,
 a new book will be created and stored so that it can be accessed later.
 This makes sure that we only create a single copy of each unique intrinsic
 piece of data:
// Book Factory singleton
var BookFactory = (function () {
 var existingBooks = {};
 return {
 createBook: function (title, author, genre, pageCount, publisherID, ISBN) {
 // Find out if a particular book meta-data combination has been created before
 var existingBook = existingBooks[ISBN];
 if (existingBook) {
 return existingBook;
 } else {
 // if not, let's create a new instance of it and store it
 var book = new Book(title, author, genre, pageCount, publisherID, ISBN);
 existingBooks[ISBN] = book;
 return book;
 }
 }
 }
});

Managing the extrinsic states

Next, we need to store the states that were removed from the Book
 objects somewhere - luckily a manager (which we'll be defining as a
 singleton) can be used to encapsulate them. Combinations of a Book object
 and the library member that's checked them out will be called Book
 records. Our manager will be storing both and will also include checkout
 related logic we stripped out during our flyweight optimization of the
 Book class.
// BookRecordManager singleton
var BookRecordManager = (function () {
 var bookRecordDatabase = {};
 return {
 // add a new book into the library system
 addBookRecord: function (id, title, author, genre, pageCount, publisherID, ISBN, checkoutDate, checkoutMember, dueReturnDate, availability) {
 var book = bookFactory.createBook(title, author, genre, pageCount, publisherID, ISBN);
 bookRecordDatabase[id] = {
 checkoutMember: checkoutMember,
 checkoutDate: checkoutDate,
 dueReturnDate: dueReturnDate,
 availability: availability,
 book: book;

 };
 },
 updateCheckoutStatus: function (bookID, newStatus, checkoutDate, checkoutMember, newReturnDate) {
 var record = bookRecordDatabase[bookID];
 record.availability = newStatus;
 record.checkoutDate = checkoutDate;
 record.checkoutMember = checkoutMember;
 record.dueReturnDate = newReturnDate;
 },
 extendCheckoutPeriod: function (bookID, newReturnDate) {
 bookRecordDatabase[bookID].dueReturnDate = newReturnDate;
 },
 isPastDue: function (bookID) {
 var currentDate = new Date();
 return currentDate.getTime() > Date.parse(bookRecordDatabase[bookID].dueReturnDate);
 }
 };
});

The result of these changes is that all of the data that's been
 extracted from the Book 'class' is now being stored in an attribute of the
 BookManager singleton (BookDatabase) which is considerable more efficient
 than the large number of objects we were previously using. Methods related
 to book checkouts are also now based here as they deal with data that's
 extrinsic rather than intrinsic.
This process does add a little complexity to our final solution,
 however it's a small concern when compared to the performance issues that
 have been tackled.
Data wise, if we have 30 copies of the same book, we are now only
 storing it once. Also, every function takes up memory. With the flyweight
 pattern these functions exist in one place (on the manager) and not on
 every object, thus saving more memory.

The Flyweight pattern and the DOM

In JavaScript, functions are effectively object descriptors and all
 functions are also JavaScript objects internally. The goal of the pattern
 here is thus to make triggering objects have little to no responsibility
 for the actions they perform and to instead abstract this responsibility
 up to a global manager. One of the best metaphors for describing the
 pattern was written by Gary Chisholm and it goes a little like
 this:
Try to think of the flyweight in terms of a pond. A fish opens its
 mouth (the event), bubbles raise to the surface (the bubbling) a fly
 sitting on the top flies away when the bubble reaches the surface (the
 action). In this example you can easily transpose the fish opening its
 mouth to a button being clicked, the bubbles as the bubbling effect and
 the fly flying away to some function being run'.
As jQuery is accepted as one of the best options for
 DOM-manipulation and selection, we'll be using it for our DOM-related
 examples.
Example 1: Centralized event handling

For our first practical example, consider scenarios where you may
 have a number of similar elements or structures on a page that share
 similar behavior when a user-action is performed against them.
In JavaScript, there's a known bubbling effect in the language so
 that if an element such as a link or button is clicked, that event is
 bubbled up to the parent, informing them that something lower down the
 tree has been clicked. We can use this effect to our advantage.
Normally what you might do when constructing your own accordion
 component, menu or other list-based widget is bind a click event to each
 link element in the parent container. Instead of binding the click to
 multiple elements, we can easily attach a flyweight to the top of our
 container which can listen for events coming from below. These can then
 be handled using as simple or as complex logic needed.
The benefit here is that we're converting many independent objects
 into a few shared ones (potentially saving on memory), similar to what
 we were doing with our first JavaScript example.
As the types of components mentioned often have the same repeating
 markup for each section (e.g. each section of an accordion), there's a
 good chance the behavior of each element that may be clicked is going to
 be quite similar and relative to similar classes nearby. We'll use this
 information to construct a very basic accordion using the flyweight
 below.
A stateManager namespace is used here encapsulate our flyweight
 logic whilst jQuery is used to bind the initial click to a container
 div. In order to ensure that no other logic on the page is attaching
 similar handles to the container, an unbind event is first
 applied.
Now to establish exactly what child element in the container is
 clicked, we make use of a target check which provides a reference to the
 element that was clicked, regardless of its parent. We then use this
 information to handle the click event without actually needing to bind
 the event to specific children when our page loads.
HTML
<div id="container">
 <div class="toggle" href="#">More Info (Address)

 This is more information
 </div>
 <div class="toggle" href="#">Even More Info (Map)

 <iframe src="http://www.map-generator.net/extmap.php?name=London&address=london%2C%20england&width=500...gt;"</iframe>

 </div>
</div>

JavaScript
var stateManager = {
 fly: function () {
 var self = this;
 $('#container').unbind().bind("click", function (e) {
 var target = $(e.originalTarget || e.srcElement);
 if (target.is("div.toggle")) {
 self.handleClick(target);
 }
 });
 },

 handleClick: function (elem) {
 elem.find('span').toggle('slow');
 }
});

Example 2: Using the Flyweight for Performance Gains

In our second example, we'll reference some useful performance
 gains you can get from applying the flyweight pattern to jQuery.
James Padolsey previously wrote a post called '76 bytes for faster
 jQuery' where he reminds us of an important point: every time jQuery
 fires off a callback, regardless of type (filter, each, event handler),
 you're able to access the function's context (the DOM element related to
 it) via the this keyword.
Unfortunately, many of us have become used to the idea of wrapping
 this in $() or jQuery(), which means that a new instance of jQuery is
 constructed every time.
Rather than doing this:
$('div').on('click', function () {
 console.log('You clicked: ' + $(this).attr('id'));
});

// you should avoid using the DOM element to create a
// jQuery object (with the overhead that comes with it)
// and just use the DOM element itself like this:

$('div').on('click', function () {
 console.log('You clicked: ' + this.id);
});

Now with respect to redundant wrapping, where possible with
 jQuery's utility methods, it's better to use jQuery.N as opposed to
 jQuery.fn.N where N represents a utility such as each. Because not all
 of jQuery's methods have corresponding single-node functions, Padolsey
 devised the idea of jQuery.single.
The idea here is that a single jQuery object is created and used
 for each call to jQuery.single (effectively meaning only one jQuery
 object is ever created). The implementation for this can be found below
 and is a flyweight as we're consolidating multiple possible objects into
 a more central singular structure.
jQuery.single = (function(o){

 var collection = jQuery([1]);
 return function(element) {

 // Give collection the element:
 collection[0] = element;

 // Return the collection:
 return collection;

 };
 });

An example of this in action with chaining is:
$('div').on('click', function(){
 var html = jQuery.single(this).next().html();
 console.log(html);
 });

Note that although we may believe that simply caching our jQuery
 code may offer just as equivalent performance gains, Padolsey claims
 that $.single() is still worth using and can perform better. That's not
 to say don't apply any caching at all, just be mindful that this
 approach can assist. For further details about $.single, I recommend
 reading Padolsey's full post.

Chapter 11. MV* Patterns

In this section, we're going to review two very important
 architectural patterns - MVC (Model-View-Controller) and MVP
 (Model-View-Presenter). In the past both of these patterns have been heavily
 used for structuring desktop and server-side applications, but it's only
 been in recent years that come to being applied to JavaScript.
As the majority of JavaScript developers currently using these
 patterns opt to utilize libraries such as Backbone.js for implementing an
 MVC/MV*-like structure, we will compare how modern solutions such as it
 differ in their interpretation of MVC compared to classical takes on these
 patterns.
Let us first now cover the basics.
MVC

MVC is an architectural design pattern that encourages improved
 application organization through a separation of concerns. It enforces the
 isolation of business data (Models) from user interfaces (Views), with a
 third component (Controllers) (traditionally) managing logic, user-input
 and coordinating both the models and views. The pattern was originally
 designed by Trygve
 Reenskaug during his time working on Smalltalk-80 (1979) where it
 was initially called Model-View-Controller-Editor. MVC went on to be
 described in depth in “Design
 Patterns: Elements of Reusable Object-Oriented Software” (The
 "GoF" book) in 1994, which played a role in popularizing its use.
Smalltalk-80 MVC

It's important to understand what the original MVC pattern was
 aiming to solve as it's mutated quite heavily since the days of its
 origin. Back in the 70's, graphical user-interfaces were far and few
 between and a concept known as Separated
 Presentation began to be used as a means to make a clear
 division between domain objects which modeled concepts in the real world
 (e.g a photo, a person) and the presentation objects which were rendered
 to the user's screen.
The Smalltalk-80 implementation of MVC took this concept further
 and had an objective of separating out the application logic from the
 user interface. The idea was that decoupling these parts of the
 application would also allow the reuse of models for other interfaces in
 the application. There are some interesting points worth noting about
 Smalltalk-80's MVC architecture:
	A Domain element was known as a Model and were ignorant of the
 user-interface (Views and Controllers)

	Presentation was taken care of by the View and the Controller,
 but there wasn't just a single view and controller. A
 View-Controller pair was required for each element being displayed
 on the screen and so there was no true separation between
 them

	The Controller's role in this pair was handling user input
 (such as key-presses and click events), doing something sensible
 with them.

	The Observer pattern was relied upon for updating the View
 whenever the Model changed

Developers are sometimes surprised when they learn that the
 Observer pattern (nowadays commonly implemented as a Publish/Subscribe
 system) was included as a part of MVC's architecture many decades ago.
 In Smalltalk-80's MVC, the View and Controller both observe the Model.
 As mentioned in the bullet point above, anytime the Model changes, the
 Views react. A simple example of this is an application backed by stock
 market data - in order for the application to be useful, any change to
 the data in our Models should result in the View being refreshed
 instantly.
Martin Fowler has done an excellent job of writing about the
 origins
 of MVC over the years and if you are interested in some further
 historical information about Smalltalk-80's MVC, I recommend reading his
 work.

MVC For JavaScript Developers

We've reviewed the 70's, but let us now return to the here and now.
 In modern times, the MVC pattern has been applied to a diverse range of
 programming languages including of most relevance to us: JavaScript.
 JavaScript now has a number of frameworks boasting support for MVC (or
 variations on it, which we refer to as the MV* family), allowing
 developers to easily add structure to their applications without great
 effort. You've likely come across at least one of these such frameworks,
 but they include the likes of Backbone, Ember.js and JavaScriptMVC. Given
 the importance of avoiding "spaghetti" code, a term which describes code
 that is very difficult to read or maintain due to its lack of structure,
 it's imperative that the modern JavaScript developer understand what this
 pattern provides. This allows us to effectively appreciate what these
 frameworks enable us to do differently.
We know that MVC is composed of three core components:
Models

Models manage the data for an application. They are concerned with
 neither the user-interface nor presentation layers but instead represent
 unique forms of data that an application may require. When a model
 changes (e.g when it is updated), it will typically notify its observers
 (e.g views, a concept we will cover shortly) that a change has occurred
 so that they may react accordingly.
To understand models further, let us imagine we have a JavaScript
 photo gallery application. In a photo gallery, the concept of a photo
 would merit its own model as it represents a unique kind of
 domain-specific data. Such a model may contain related attributes such
 as a caption, image source and additional meta-data. A specific photo
 would be stored in an instance of a model and a model may also be
 reusable. Below we can see an example of a very simplistic model
 implemented using Backbone.
var Photo = Backbone.Model.extend({

 // Default attributes for the photo
 defaults: {
 src: "placeholder.jpg",
 caption: "A default image",
 viewed: false
 },

 // Ensure that each photo created has an `src`.
 initialize: function() {
 this.set({"src": this.defaults.src});
 }

});

The built-in capabilities of models vary across frameworks,
 however it is quite common for them to support validation of attributes,
 where attributes represent the properties of the model, such as a model
 identifier. When using models in real-world applications we generally
 also desire model persistence. Persistence allows us to edit and update
 models with the knowledge that its most recent state will be saved in
 either: memory, in a user's localStorage data-store or synchronized with
 a database.
In addition, a model may also have multiple views observing it. If
 say, our photo model contained meta-data such as its location (longitude
 and latitude), friends that were present in the a photo (a list of
 identifiers) and a list of tags, a developer may decide to provide a
 single view to display each of these three facets.
It is not uncommon for modern MVC/MV* frameworks to provide a
 means to group models together (e.g. in Backbone, these groups are
 referred to as "collections"). Managing models in groups allows us to
 write application logic based on notifications from the group should any
 model it contains be changed. This avoids the need to manually observe
 individual model instances.
A sample grouping of models into a simplified Backbone collection
 can be seen below.
var PhotoGallery = Backbone.Collection.extend({

 // Reference to this collection's model.
 model: Photo,

 // Filter down the list of all photos
 // that have been viewed
 viewed: function() {
 return this.filter(function(photo){
 return photo.get('viewed');
 });
 },

 // Filter down the list to only photos that
 // have not yet been viewed
 unviewed: function() {
 return this.without.apply(this, this.viewed());
 }

});

Should you read any of the older texts on MVC, you may come across
 a description of models as also managing application 'state'. In
 JavaScript applications "state" has a different meaning, typically
 referring to the current "state" i.e view or sub-view (with specific
 data) on a users screen at a fixed point. State is a topic which is
 regularly discussed when looking at Single-page applications, where the
 concept of state needs to be simulated.
So to summarize, models are primarily concerned with business
 data.

Views

Views are a visual representation of models that present a
 filtered view of their current state. A view typically observes a model
 and is notified when the model changes, allowing the view to update
 itself accordingly. Design pattern literature commonly refers to views
 as 'dumb' given that their knowledge of models and controllers in an
 application is limited.
Users are able to interact with views and this includes the
 ability to read and edit (i.e get or set the attribute values in)
 models. As the view is the presentation layer, we generally present the
 ability to edit and update in a user-friendly fashion. For example, in
 the former photo gallery application we discussed earlier, model editing
 could be facilitated through an "edit" view where a user who has
 selected a specific photo could edit its meta-data.
The actual task of updating the model falls to controllers (which
 we'll be covering shortly).
Let's explore views a little further using a vanilla JavaScript
 sample implementation. Below we can see a function that creates a single
 Photo view, consuming both a model instance and a controller
 instance.
We define a render() utility
 within our view which is responsible for rendering the contents of the
 photoModel using a JavaScript
 templating engine (Underscore templating) and updating the contents of
 our view, referenced by photoEl.
The photoModel then adds our
 render() callback as one of it's
 subscribers so that through the Observer pattern we can trigger the view
 to update when the model changes.
You may wonder where user-interaction comes into play here. When
 users click on any elements within the view, it's not the view's
 responsibility to know what to do next. It relies on a controller to
 make this decision for it. In our sample implementation, this is
 achieved by adding an event listener to photoEl which will delegate handling the click
 behavior back to the controller, passing the model information along
 with it in case it's needed.
The benefit of this architecture is that each component plays its
 own separate role in making the application function as needed.
var buildPhotoView = function(photoModel, photoController){

 var base = document.createElement('div'),
 photoEl = document.createElement('div');

 base.appendChild(photoEl);

 var render= function(){
 // We use a templating library such as Underscore
 // templating which generates the HTML for our
 // photo entry
 photoEl.innerHTML = _.template('photoTemplate',
 {src: photoModel.getSrc()});
 }

 photoModel.addSubscriber(render);

 photoEl.addEventListener('click', function(){
 photoController.handleEvent('click', photoModel);
 });

 var show = function(){
 photoEl.style.display = '';
 }

 var hide = function(){
 photoEl.style.display = 'none';
 }

 return{
 showView: show,
 hideView: hide
 }

}

Templating
In the context of JavaScript frameworks that support MVC/MV*, it
 is worth briefly discussing JavaScript templating and its relationship
 to views as we briefly touched upon it in the last section.
It has long been considered (and proven) a performance bad
 practice to manually create large blocks of HTML markup in-memory
 through string concatenation. Developers doing so have fallen prey to
 inperformantly iterating through their data, wrapping it in nested divs
 and using outdated techniques such as document.write to inject the 'template' into
 the DOM. As this typically means keeping scripted markup inline with
 your standard markup, it can quickly become both difficult to read and
 more importantly, maintain such disasters, especially when building
 non-trivially sized applications.
JavaScript templating solutions (such as Handlebars.js and
 Mustache) are often used to define templates for views as markup (either
 stored externally or within script tags with a custom type - e.g
 text/template) containing template variables. Variables may be
 deliminated using a variable syntax (e.g {{name}}) and frameworks are
 typically smart enough to accept data in a JSON form (of which model
 instances can be converted to) such that we only need be concerned with
 maintaining clean models and clean templates. Most of the grunt work to
 do with population is taken care of by the framework itself. This has a
 large number of benefits, particularly when opting to store templates
 externally as this can give way to templates being dynamically loaded on
 an as-needed basis when it comes to building larger applications.
Below we can see two examples of HTML templates. One implemented
 using the popular Handlebars.js framework and another using Underscore's
 templates.
Handlebars.js:
<li class="photo">
 <h2>{{caption}}</h2>

 <div class="meta-data">
 {{metadata}}
 </div>

Underscore.js
 Microtemplates:
<li class="photo">
 <h2><%= caption %></h2>
 <img class="source" src="<%= src %>"/>
 <div class="meta-data">
 <%= metadata %>
 </div>

It is also worth noting that in classical web development,
 navigating between independent views required the use of a page refresh.
 In Single-page JavaScript applications however, once data is fetched
 from a server via Ajax, it can simply be dynamically rendered in a new
 view within the same page without any such refresh being necessary. The
 role of navigation thus falls to a "router", which assists in managing
 application state (e.g allowing users to bookmark a particular view they
 have navigated to). As routers are however neither a part of MVC nor
 present in every MVC-like framework, I will not be going into them in
 greater detail in this section.
To summarize, views are a visual representation of our application
 data.

Controllers

Controllers are an intermediary between models and views which are
 classically responsible for two tasks: they both update the view when
 the model changes and update the model when the user manipulates the
 view.
In our photo gallery application, a controller would be
 responsible for handling changes the user made to the edit view for a
 particular photo, updating a specific photo model when a user has
 finished editing.
In terms of where most JavaScript MVC frameworks detract from what
 is conventionally considered "MVC" however, it is with controllers. The
 reasons for this vary, but in my honest opinion it is that framework
 authors initially look at the server-side interpretation of MVC, realize
 that it doesn't translate 1:1 on the client-side and re-interpret the C
 in MVC to mean something they feel makes more sense. The issue with this
 however is that it is subjective, increases the complexity in both
 understanding the classical MVC pattern and of course the role of
 controllers in modern frameworks.
As an example, let's briefly review the architecture of the
 popular architectural framework Backbone.js. Backbone contains models
 and views (somewhat similar to what we reviewed earlier), however it
 doesn't actually have true controllers. Its views and routers act a
 little similar to a controller, but neither are actually controllers on
 their own.
In this respect, contrary to what might be mentioned in the
 official documentation or in blog posts, Backbone is neither a truly
 MVC/MVP nor MVVM framework. It's in fact better to consider it a member
 of the MV* family which approaches architecture in its own way. There is
 of course nothing wrong with this, but it is important to distinguish
 between classical MVC and MV* should you be relying on advice from
 classical literature on the former to help with the latter.

Controllers in another library (Spine.js) vs Backbone.js

Spine.js
We now know that controllers are traditionally responsible for
 updating the view when the model changes (and similarly the model when
 the user updates the view). As the framework we'll be discussing in this
 book (Backbone) doesn't have it's own
 explicit controllers, it can be useful for us to review the controller
 from another MVC framework to appreciate the difference in
 implementations. For this, let's take a look at a sample controller from
 Spine.js:
In this example, we're going to have a controller called `PhotosController which will be in charge of
 individual photos in the application. It will ensure that when the view
 updates (e.g a user editd the photo meta-data) the corresonding model
 does too.
Note: We won't be delving heavily into Spine.js at all, but will
 just take a ten-foot view of what its controllers can do:
// Controllers in Spine are created by inheriting from Spine.Controller

var PhotosController = Spine.Controller.sub({
 init: function(){
 this.item.bind("update", this.proxy(this.render));
 this.item.bind("destroy", this.proxy(this.remove));
 },

 render: function(){
 // Handle templating
 this.replace($("#photoTemplate").tmpl(this.item));
 return this;
 },

 remove: function(){
 this.el.remove();
 this.release();
 }
});

In Spine, controllers are considered the glue for an application,
 adding and responding to DOM events, rendering templates and ensuring
 that views and models are kept in sync (which makes sense in the context
 of what we know to be a controller).
What we're doing in the above example is setting up listeners in
 the update and destroy events using render() and remove(). When a photo entry gets updated , we
 re-render the view to reflect the changes to the meta-data. Similarly,
 if the photo gets deleted from the gallery, we remove it from the view.
 In case you were wondering about the tmpl() function in the code snippet: in the
 render() function, we're using this
 to render a JavaScript template called #photoTemplate which simply
 returns a HTML string used to replace the controller's current
 element.
What this provides us with is a very lightweight, simple way to
 manage changes between the model and the view.
Backbone.js
Later on in this section we're going to revisit the differences
 between Backbone and traditional MVC, but for now let's focus on
 controllers.
In Backbone, one shares the responsibility of a controller with
 both the Backbone.View and Backbone.Router. Some time ago Backbone did
 once come with it's own Backbone.Controller, but as the naming for
 this component didn't make sense for the context in which it was being
 used, it was later renamed to Router.
Routers handle a little more of the controller responsibility as
 it's possible to bind the events there for models and have your view
 respond to DOM events and rendering. As Tim Branyen (another
 Bocoup-based Backbone contributor) has also previously pointed out, it's
 possible to get away with not needing Backbone.Router at all for this, so a way to
 think about it using the Router paradigm is probably:
var PhotoRouter = Backbone.Router.extend({
 routes: { "photos/:id": "route" },

 route: function(id) {
 var item = photoCollection.get(id);
 var view = new PhotoView({ model: item });

 something.html(view.render().el);
 }
}):

To summarize, the takeaway from this section is that controllers
 manage the logic and coordination between models and views in an
 application.

What does MVC give us?

This separation of concerns in MVC facilitates simpler
 modularization of an application's functionality and enables:
	Easier overall maintenance. When updates need to be made to the
 application it is very clear whether the changes are data-centric,
 meaning changes to models and possibly controllers, or merely visual,
 meaning changes to views.

	Decoupling models and views means that it is significantly more
 straight-forward to write unit tests for business logic

	Duplication of low-level model and controller code (i.e what you
 may have been using instead) is eliminated across the
 application

	Depending on the size of the application and separation of
 roles, this modularity allows developers responsible for core logic
 and developers working on the user-interfaces to work
 simultaneously

Delving deeper

Right now, you likely have a basic understanding of what the MVC
 pattern provides, but for the curious, we can explore it a little
 further.
The GoF (Gang of Four) do not refer to MVC as a design pattern,
 but rather consider it a "set of classes to build a user interface". In
 their view, it's actually a variation of three other classical design
 patterns: the Observer (Pub/Sub), Strategy and Composite patterns.
 Depending on how MVC has been implemented in a framework, it may also
 use the Factory and Decorator patterns.
As we've discussed, models represent application data whilst views
 are what the user is presented on screen. As such, MVC relies on Pub/Sub
 for some of its core communication (something that surprisingly isn't
 covered in many articles about the MVC pattern). When a model is changed
 it notifies the rest of the application it has been updated. The
 controller then updates the view accordingly. The observer nature of
 this relationship is what facilitates multiple views being attached to
 the same model.
For developers interested in knowing more about the decoupled
 nature of MVC (once again, depending on the implementation), one of the
 goals of the pattern is to help define one-to-many relationships between
 a topic and its observers. When a topic changes, its observers are
 updated. Views and controllers have a slightly different relationship.
 Controllers facilitate views to respond to different user input and are
 an example of the Strategy pattern.

Summary

Having reviewed the classical MVC pattern, we should now
 understand how it allows us to cleanly separate concerns in an
 application. We should also now appreciate how JavaScript MVC frameworks
 may differ in their interpretation of the MVC pattern, which although
 quite open to variation, still shares some of the fundamental concepts
 the original pattern has to offer.
When reviewing a new JavaScript MVC/MV* framework, remember - it
 can be useful to step back and review how it's opted to approach
 architecture (specifically, how it supports implementing models, views,
 controllers or other alternatives) as this can better help you grok how
 the framework expects to be used.

MVP

Model-view-presenter (MVP) is a derivative of the MVC design pattern
 which focuses on improving presentation logic. It originated at a company
 named Taligent
 in the early 1990s while they were working on a model for a C++
 CommonPoint environment. Whilst both MVC and MVP target the separation of
 concerns across multiple components, there are some fundamental
 differences between them.
For the purposes of this summary we will focus on the version of MVP
 most suitable for web-based architectures.
Models, Views & Presenters

The P in MVP stands for presenter. It's a component which contains
 the user-interface business logic for the view. Unlike MVC, invocations
 from the view are delegated to the presenter, which are decoupled from
 the view and instead talk to it through an interface. This allows for
 all kinds of useful things such as being able to mock views in unit
 tests.
The most common implementation of MVP is one which uses a Passive
 View (a view which is for all intents and purposes "dumb"), containing
 little to no logic. MVP models are almost identical to MVC models and
 handle application data. The presenter acts as a mediator which talks to
 both the view and model, however both of these are isolated from each
 other. They effectively bind models to views, a responsibility which was
 previously held by controllers in MVC. Presenters are at the heart of
 the MVP pattern and as you can guess, incorporate the presentation logic
 behind views.
Solicited by a view, presenters perform any work to do with user
 requests and pass data back to them. In this respect, they retrieve
 data, manipulate it and determine how the data should be displayed in
 the view. In some implementations, the presenter also interacts with a
 service layer to persist data (models). Models may trigger events but
 it's the presenters role to subscribe to them so that it can update the
 view. In this passive architecture, we have no concept of direct data
 binding. Views expose setters which presenters can use to set
 data.
The benefit of this change from MVC is that it increases the
 testability of your application and provides a more clean separation
 between the view and the model. This isn't however without its costs as
 the lack of data binding support in the pattern can often mean having to
 take care of this task separately.
Although a common implementation of a Passive
 View is for the view to implement an interface, there are
 variations on it, including the use of events which can decouple the
 View from the Presenter a little more. As we don't have the interface
 construct in JavaScript, we're using more a protocol than an explicit
 interface here. It's technically still an API and it's probably fair for
 us to refer to it as an interface from that perspective.
There is also a Supervising
 Controller variation of MVP, which is closer to the MVC and
 MVVM
 patterns as it provides data-binding from the Model directly from the
 View. Key-value observing (KVO) plugins (such as Derick Bailey's
 Backbone.ModelBinding plugin) tend to bring Backbone out of the Passive
 View and more into the Supervising Controller or MVVM variations.

MVP or MVC?

MVP is generally used most often in enterprise-level applications
 where it's necessary to reuse as much presentation logic as possible.
 Applications with very complex views and a great deal of user
 interaction may find that MVC doesn't quite fit the bill here as solving
 this problem may mean heavily relying on multiple controllers. In MVP,
 all of this complex logic can be encapsulated in a presenter, which can
 simplify maintenance greatly.
As MVP views are defined through an interface and the interface is
 technically the only point of contact between the system and the view
 (other than a presenter), this pattern also allows developers to write
 presentation logic without needing to wait for designers to produce
 layouts and graphics for the application.
Depending on the implementation, MVP may be more easy to
 automatically unit test than MVC. The reason often cited for this is
 that the presenter can be used as a complete mock of the user-interface
 and so it can be unit tested independent of other components. In my
 experience this really depends on the languages you are implementing MVP
 in (there's quite a difference between opting for MVP for a JavaScript
 project over one for say, ASP.net).
At the end of the day, the underlying concerns you may have with
 MVC will likely hold true for MVP given that the differences between
 them are mainly semantic. As long as you are cleanly separating concerns
 into models, views and controllers (or presenters) you should be
 achieving most of the same benefits regardless of the pattern you opt
 for.

MVC, MVP and Backbone.js

There are very few, if any architectural JavaScript frameworks
 that claim to implement the MVC or MVC patterns in their classical form
 as many JavaScript developers don't view MVC and MVP as being mutually
 exclusive (we are actually more likely to see MVP strictly implemented
 when looking at web frameworks such as ASP.net or GWT). This is because
 it's possible to have additional presenter/view logic in your
 application and yet still consider it a flavor of MVC.
Backbone contributor Irene
 Ros (of Boston-based Bocoup) subscribes to this way of thinking
 as when she separates views out into their own distinct components, she
 needs something to actually assemble them for her. This could either be
 a controller route (such as a Backbone.Router, covered later in the book) or
 a callback in response to data being fetched.
That said, some developers do however feel that Backbone.js better
 fits the description of MVP than it does MVC . Their view is
 that:
	The presenter in MVP better describes the Backbone.View (the layer between View
 templates and the data bound to it) than a controller does

	The model fits Backbone.Model (it isn't greatly different
 to the models in MVC at all)

	The views best represent templates (e.g Handlebars/Mustache
 markup templates)

A response to this could be that the view can also just be a View
 (as per MVC) because Backbone is flexible enough to let it be used for
 multiple purposes. The V in MVC and the P in MVP can both be
 accomplished by Backbone.View because
 they're able to achieve two purposes: both rendering atomic components
 and assembling those components rendered by other views.
We've also seen that in Backbone the responsibility of a
 controller is shared with both the Backbone.View and Backbone.Router and
 in the following example we can actually see that aspects of that are
 certainly true.
Our Backbone PhotoView uses the
 Observer pattern to 'subscribe' to changes to a View's model in the line
 this.model.bind('change',...). It
 also handles templating in the render() method, but unlike some other
 implementations, user interaction is also handled in the View (see
 events).
var PhotoView = Backbone.View.extend({

 //... is a list tag.
 tagName: "li",

 // Pass the contents of the photo template through a templating
 // function, cache it for a single photo
 template: _.template($('#photo-template').html()),

 // The DOM events specific to an item.
 events: {
 "click img" : "toggleViewed"
 },

 // The PhotoView listens for changes to
 // its model, re-rendering. Since there's
 // a one-to-one correspondence between a
 // **Photo** and a **PhotoView** in this
 // app, we set a direct reference on the model for convenience.

 initialize: function() {
 _.bindAll(this, 'render');
 this.model.bind('change', this.render);
 this.model.bind('destroy', this.remove);
 },

 // Re-render the photo entry
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 },

 // Toggle the `"viewed"` state of the model.
 toggleViewed: function() {
 this.model.viewed();
 }

});

Another (quite different) opinion is that Backbone more closely
 resembles Smalltalk-80
 MVC, which we went through earlier.
As regular Backbone user Derick Bailey has previously
 put it, it's ultimately best not to force Backbone to fit any specific
 design patterns. Design patterns should be considered flexible guides to
 how applications may be structured and in this respect, Backbone fits
 neither MVC nor MVP. Instead, it borrows some of the best concepts from
 multiple architectural patterns and creates a flexible framework that
 just works well.
It is however worth understanding where and
 why these concepts originated, so I hope that my explanations of MVC and
 MVP have been of help. Call it the Backbone
 way, MV* or whatever helps reference its flavor of
 application architecture. Most structural JavaScript frameworks will
 adopt their own take on classical patterns, either intentionally or by
 accident, but the important thing is that they help us develop
 applications which are organized, clean and can be easily
 maintained.

MVVM

MVVM (Model View ViewModel) is an architectural pattern based on MVC
 and MVP, which attempts to more clearly separate the development of
 user-interfaces (UI) from that of the business logic and behavior in an
 application. To this end, many implementations of this pattern make use of
 declarative data bindings to allow a separation of work on Views from
 other layers.
This facilitates UI and development work occurring almost
 simultaneously within the same codebase. UI developers write bindings to
 the ViewModel within their document markup (HTML), where the Model and
 ViewModel are maintained by developers working on the logic for the
 application.
History

MVVM (by name) was originally defined by Microsoft for use with
 Windows Presentation Foundation (WPF)
 and Silverlight, having
 been officially announced in 2005 by John Grossman in a
 blog post about Avalon (the codename for WPF). It also found some
 popularity in the Adobe Flex community as an alternative to simply using
 MVC.
Prior to Microsoft adopting the MVVM name, there was however a
 movement in the community to go from MVP to MVPM: Model View PresentationModel.
 Martin Fowler wrote an article
 on PresentationModels back in 2004 for those interested in reading more
 about it. The idea of a PresentationModel
 had been around much longer than this article, however it was considered
 the big break in the idea and greatly helped popularize it.
There was quite a lot of uproar in the "alt.net" circles after
 Microsoft announced MVVM as an alternative to MVPM. Many claimed the
 company's dominance in the GUI world was giving them the opportunity to
 take over the community as a whole, renaming existing concepts as they
 pleased for marketing purposes. A progressive crowd recognized that
 whilst MVVM and MVPM were effectively the same idea, they came in
 slightly different packages.
In recent years, MVVM has been implemented in JavaScript in the
 form of structural frameworks such as KnockoutJS, Kendo MVVM and
 Knockback.js, with
 an overall positive response from the community.
Let’s now review the three components that compose MVVM.

Model

As with other members of the MV* family, the Model in MVVM
 represents domain-specific data or information that our application will
 be working with. A typical example of domain-specific data might be a
 user account (e.g name, avatar, e-mail) or a music track (e.g title,
 year, album).
Models hold information, but typically don’t handle behavior. They
 don’t format information or influence how data appears in the browser as
 this isn’t their responsibility. Instead, formatting of data is handled
 by the View, whilst behavior is considered business logic that should be
 encapsulated in another layer that interacts with the Model - the
 ViewModel.
The only exception to this rule tends to be validation and it’s
 considered acceptable for Models to validate data being used to define
 or update existing models (e.g does an e-mail address being input meet
 the requirements of a particular Regular expression?).
In KnockoutJS, Models fall under the above definition, but often
 make Ajax calls to a server-side service to both read and write Model
 data.
If we were constructing a simple Todo application, a KnockoutJS
 Model representing a single Todo item could look as follows:
var Todo = function (content, done) {
 this.content = ko.observable(content);
 this.done = ko.observable(done);
 this.editing = ko.observable(false);
};

Note: You may notice in the above snippet that we are calling a
 method observables() on the
 KnockoutJS namespace ko. In
 KnockoutJS, observables are special JavaScript objects that can notify
 subscribers about changes and automatically detect dependencies. This
 allows us to synchronize Models and ViewModels when the value of a Model
 attribute is modified.

View

As with MVC, the View is the only part of the application of users
 actually interact with. They are an interactive UI that represent the
 state of a ViewModel. In this sense, MVVM View is considered active
 rather than passive, but what does this mean?.
A passive View has no real knowledge of the models in our
 application and is manipulated by a controller. MVVM’s active View
 contains the data-bindings, events and behaviors which require an
 understanding of the Model and ViewModel. Although these behaviors can
 be mapped to properties, the View is still responsible for handling
 events to the ViewModel.
It’s important to remember the View isn’t responsible here for
 handling state - it keeps this in sync with the ViewModel.
A KnockoutJS View is simply a HTML document with declarative
 bindings to link it to the ViewModel. KnockoutJS Views display
 information from the ViewModel, pass commands to it (e.g a user clicking
 on an element) and update as the state of the ViewModel changes.
 Templates generating markup using data from the ViewModel can however
 also be used for this purpose.
To give a brief initial example, we can look to the JavaScript
 MVVM framework KnockoutJS for how it allows the definition of a
 ViewModel and it’s related bindings in markup:
ViewModel:
var aViewModel = {
 contactName: ko.observable('John');
};

View:
<input id="source" data-bind="value: contactName, valueUpdate: 'keyup'" /></p>

<div data-bind="visible: contactName().length > 10">
 You have a really long name!
</div>

Our input text-box (source) obtains it's initial value from
 contactName, automatically updating
 this value whenever contactName changes. As the data binding is two-way,
 typing into the text-box will update contactName accordingly so the values are
 always in sync.
Although implementation specific to KnockoutJS, the <div> containing the 'You have a really
 long name! text also contains simple validation (once again in the form
 of data bindings). If the input exceeds 10 characters, it will display,
 otherwise it will remain hidden.
Moving on to a more advanced example, we can return to our Todo
 application. A trimmed down KnockoutJS View for this, including all the
 necessary data-bindings may look as follows.
<div id="todoapp">
 <header>
 <h1>Todos</h1>
 <input id="new-todo" type="text" data-bind="value: current, valueUpdate: 'afterkeydown', enterKey: add"
 placeholder="What needs to be done?"/>
 </header>
 <section id="main" data-bind="block: todos().length">

 <input id="toggle-all" type="checkbox" data-bind="checked: allCompleted">
 <label for="toggle-all">Mark all as complete</label>

 <ul id="todo-list" data-bind="foreach: todos">

 <!-- item -->
 <li data-bind="css: { done: done, editing: editing }">
 <div class="view" data-bind="event: { dblclick: $root.editItem }">
 <input class="toggle" type="checkbox" data-bind="checked: done">
 <label data-bind="text: content"></label>

 </div>
 <input class="edit" type="text"
 data-bind="value: content, valueUpdate: 'afterkeydown', enterKey: $root.stopEditing, selectAndFocus: editing, event: { blur: $root.stopEditing }"/>

 </section>
</div>

Note that the basic layout of the mark-up is relatively
 straight-forward, containing an input textbox (new-todo) for adding new items, togglers for
 marking items as complete and a list (todo-list) with a template for a Todo item in
 the form of an li.
The data bindings in the above markup can be broken down as
 follows:
	The input textbox new-todo
 has a data-binding for the current property, which is where the value
 of the current item being added is stored. Our ViewModel (shown
 shortly) observes the current
 property and also has a binding against the add event. When the enter key is pressed,
 the add event is triggered and
 our ViewModel can then trim the value of current and add it to the Todo list as
 needed

	The input checkbox toggle-all can mark all of the current
 items as completed if clicked. If checked, it triggers the allCompleted event, which can be seen in
 our ViewModel

	The item li has the class
 done. When a task is marked as
 done, the CSS class editing is
 marked accordingly. If double-clicking on the item, the $root.editItem callback will be
 executed

	The checkbox with the class toggle shows the state of the done property

	A label contains the text value of the Todo item (content)

	There is also a remove button that will call the $root.remove callback when clicked.

	An input textbox used for editing mode also holds the value of
 the Todo item content. The
 enterKey event will set the
 editing property to true or
 false

ViewModel

The ViewModel can be considered a specialized Controller that acts
 as a data converter. It changes Model information into View information,
 passing commands from the View to the Model.
For example, let us imagine that we have a model containing a date
 attribute in unix format (e.g 1333832407). Rather than our models being
 aware of a user's view of the date (e.g 04/07/2012 @ 5:00pm), where it
 would be necessary to convert the address to it's display format, our
 model simply holds the raw format of the data. Our View contains the
 formatted date and our ViewModel acts as a middle-man between the
 two.
In this sense, the ViewModel might be looked upon as more of a
 Model than a View but it does handle most of the View's display
 logic.The ViewModel may also expose methods for helping to maintain the
 View's state, update the model based on the action's on a View and
 trigger events on the View.
In summary, the ViewModel sits behind our UI layer. It exposes
 data needed by a View (from a Model) and can be viewed as the source our
 Views go to for both data and actions.
KnockoutJS interprets the ViewModel as the representation of data
 and operations that can be performed on a UI. This isn't the UI itself
 nor the data model that persists, but rather a layer that can also hold
 the yet to be saved data a user is working with. Knockout's ViewModels
 are implemented JavaScript objects with no knowledge of HTML markup.
 This abstract approach to their implementation allows them to stay
 simple, meaning more complex behavior can be more easily managed on-top
 as needed.
A partial KnockoutJS ViewModel for our Todo application could thus
 look as follows:
// our main ViewModel
 var ViewModel = function (todos) {
 var self = this;

 // map array of passed in todos to an observableArray of Todo objects
 self.todos = ko.observableArray(ko.utils.arrayMap(todos, function (todo) {
 return new Todo(todo.content, todo.done);
 }));

 // store the new todo value being entered
 self.current = ko.observable();

 // add a new todo, when enter key is pressed
 self.add = function (data, event) {
 var newTodo, current = self.current().trim();
 if (current) {
 newTodo = new Todo(current);
 self.todos.push(newTodo);
 self.current("");
 }
 };

 // remove a single todo
 self.remove = function (todo) {
 self.todos.remove(todo);
 };

 // remove all completed todos
 self.removeCompleted = function () {
 self.todos.remove(function (todo) {
 return todo.done();
 });
 };

 // writeable computed observable to handle marking all complete/incomplete
 self.allCompleted = ko.computed({
 //always return true/false based on the done flag of all todos
 read:function () {
 return !self.remainingCount();
 },
 //set all todos to the written value (true/false)
 write:function (newValue) {
 ko.utils.arrayForEach(self.todos(), function (todo) {
 //set even if value is the same, as subscribers are not notified in that case
 todo.done(newValue);
 });
 }
 });

 // edit an item
 self.editItem = function(item) {
 item.editing(true);
 };
 ..

Above we are basically providing the methods needed to add, edit
 or remove items as well as the logic to mark all remaining items as
 having been completed Note: The only real difference worth noting from
 previous examples in our ViewModel are observable arrays. In KnockoutJS,
 if we wish to detect and respond to changes on a single object, we would
 use observables. If however we wish
 to detect and respond to changes of a collection of things, we can use
 an observableArray instead. A simpler
 example of how to use observables arrays may look as follows:
// Define an initially an empty array
var myObservableArray = ko.observableArray();

// Add a value to the array and notify our observers

myObservableArray.push(‘A new todo item’);

Note: The complete Knockout.js Todo application we reviewed above
 can be grabbed from TodoMVC if
 interested.

Recap: The View and the ViewModel

Views and ViewModels communicate using data-bindings and events.
 As we saw in our initial ViewModel example, the ViewModel doesn’t just
 expose Model attributes but also access to other methods and features
 such as validation.
Our Views handle their own user-interface events, mapping them to
 the ViewModel as necessary. Models and attributes on the ViewModel are
 synchronized and updated via two-way data-binding.
Triggers (data-triggers) also allow us to further react to changes
 in the state of our Model attributes.

Recap: The ViewModel and the Model

Whilst it may appear the ViewModel is completely responsible for
 the Model in MVVM, there are some subtleties with this relationship
 worth noting. The ViewModel can expose a Model or Model attributes for
 the purposes of data-binding and can also contain interfaces for
 fetching and manipulating properties exposed in the view.

Pros and Cons

You now hopefully have a better appreciation for what MVVM is and
 how it works. Let’s now review the advantages and disadvantages of
 employing the pattern:
Advantages

	MVVM Facilitates easier parallel development of a UI and the
 building blocks that power it

	Abstracts the View and thus reduces the quantity of business
 logic (or glue) required in the code behind it

	The ViewModel can be easier to unit test than event-driven
 code

	The ViewModel (being more Model than View) can be tested
 without concerns of UI automation and interaction

Disadvantages

	For simpler UIs, MVVM can be overkill

	Whilst data-bindings can be declarative and nice to work with,
 they can be harder to debug than imperative code where we simply set
 breakpoints

	Data-bindings in non-trivial applications can create a lot of
 book-keeping. You also don’t want to end up in a situation where
 bindings are heavier than the objects being bound to

	In larger applications, it can be more difficult to design the
 ViewModel up front to get the necessary amount of
 generalization

MVVM With Looser Data-Bindings

It’s not uncommon for JavaScript developers from an MVC or MVP
 background to review MVVM and complain about it’s true separation of
 concerns. Namely, the quantity of inline data-bindings maintained in the
 HTML markup of a View.
I must admit that when I first reviewed implementations of MVVM (e.g
 KnockoutJS, Knockback), I was surprised that any developer would want to
 return to the days of old where we mixed logic (JavaScript) with our
 markup and found it quickly unmaintainable. The reality however is that
 MVVM does this for a number of good reasons (which we’ve covered),
 including facilitating designers to more easily bind to logic from their
 markup.
For the purists among us, you’ll be happy to know that we can now
 also greatly reduce how reliant we are on data-bindings thanks to a
 feature known as custom binding providers, introduced in KnockoutJS 1.3
 and available in all versions since.
KnockoutJS by default has a data-binding provider which searches for
 any elements with data-bind attributes
 on them such as in the below example.
<input id="new-todo" type="text" data-bind="value: current, valueUpdate: 'afterkeydown', enterKey: add" placeholder="What needs to be done?"/>

When the provider locates an element with this attribute, it parses
 it and turns it into a binding object using the current data context. This
 is the way KnockoutJS has always worked, allowing you to declaratively add
 bindings to elements which KnockoutJS binds to the data at that
 layer.
Once you start building Views that are no longer trivial, you may
 end up with a large number of elements and attributes whose bindings in
 markup can become difficult to manage. With custom binding providers
 however, this is no longer a problem.
A binding provider is primarily interested in two things:
	When given a DOM node, does it contain any data-bindings?

	If the node passed this first question, what does the binding
 object look like in the current data context?.

Binding providers implement two functions:
	nodeHasBindings: this takes
 in a DOM node which doesn’t necessarily have to be an element

	getBindings: returns an
 object representing the bindings as applied to the current data
 context

A skeleton binding provider might thus look as follows:
var ourBindingProvider = {
 nodeHasBindings: function(node) {
 // returns true/false
 },

 getBindings: function(node, bindingContext) {
 // returns a binding object
 }
};

Before we get to fleshing out this provider, let’s briefly discuss
 logic in data-bind attributes.
If when using Knockout’s MVVM you find yourself dissatisfied with
 the idea of application logic being overly tied into your View, you can
 change this. We could implement something a little like CSS classes to
 assign bindings by name to elements. Ryan Niemeyer (of knockmeout.net) has
 previously suggested using data-class
 for this to avoid confusing presentation classes with data classes, so
 let’s get our nodeHasBindings function
 supporting this:
// does an element have any bindings?
function nodeHasBindings(node) {
 return node.getAttribute ? node.getAttribute("data-class") : false;
};

Next, we need a sensible getBindings() function. As we’re sticking with
 the idea of CSS classes, why not also consider supporting space-separated
 classes to allow us to share binding specs between different
 elements?.
Let’s first review what our bindings will look like. We create an
 object to hold them where our property names need to match the keys we
 wish to use in our data-classes.
Note: There isn’t a great deal of work required to convert a
 KnockoutJS application from using traditional data-bindings over to
 unobstrusive bindings with custom binding providers. We simply pull our
 all of our data-bind attributes, replace them with data-class attributes
 and place our bindings in a binding object as per below:
var viewModel = new ViewModel(todos || []);
var bindings = {

 newTodo: {
 value: viewModel.current,
 valueUpdate: 'afterkeydown',
 enterKey: viewModel.add
 },
 taskTooltip : { visible: viewModel.showTooltip },
 checkAllContainer : {visible: viewModel.todos().length },
 checkAll: {checked: viewModel.allCompleted },

 todos: {foreach: viewModel.todos },
 todoListItem: function() { return { css: { editing: this.editing } }; },
 todoListItemWrapper: function() { return { css: { done: this.done } }; },
 todoCheckBox: function() {return { checked: this.done }; },
 todoContent: function() { return { text: this.content, event: { dblclick: this.edit } };},
 todoDestroy: function() {return { click: viewModel.remove };},

 todoEdit: function() { return {
 value: this.content,
 valueUpdate: 'afterkeydown',
 enterKey: this.stopEditing,
 event: { blur: this.stopEditing } }; },

 todoCount: {visible: viewModel.remainingCount},
 remainingCount: { text: viewModel.remainingCount },
 remainingCountWord: function() { return { text: viewModel.getLabel(viewModel.remainingCount) };},

 todoClear: {visible: viewModel.completedCount},
 todoClearAll: {click: viewModel.removeCompleted},
 completedCount: { text: viewModel.completedCount },
 completedCountWord: function() { return { text: viewModel.getLabel(viewModel.completedCount) }; },

 todoInstructions: {visible: viewModel.todos().length}
 };

There are however two lines missing from the above snippet - we
 still need our getBindings function,
 which will loop through each of the keys in our data-class attributes and
 build up the resulting object from each of them. If we detect that the
 binding object is a function, we call it with our current data using the
 context this. Our complete custom
 binding provider would look as follows:
 // We can now create a bindingProvider that uses
 // something different than data-bind attributes
 ko.customBindingProvider = function(bindingObject) {
 this.bindingObject = bindingObject;

 //determine if an element has any bindings
 this.nodeHasBindings = function(node) {
 return node.getAttribute ? node.getAttribute("data-class") : false;
 };
 };

 // return the bindings given a node and the bindingContext
 this.getBindings = function(node, bindingContext) {
 var result = {};
 var classes = node.getAttribute("data-class");
 if (classes) {
 classes = classes.split(' ');
 //evaluate each class, build a single object to return
 for (var i = 0, j = classes.length; i < j; i++) {
 var bindingAccessor = this.bindingObject[classes[i]];
 if (bindingAccessor) {
 var binding = typeof bindingAccessor == "function" ? bindingAccessor.call(bindingContext.$data) : bindingAccessor;
 ko.utils.extend(result, binding);
 }
 }
 }

 return result;
 };
};

Thus, the final few lines of our bindings object can be defined as
 follows:
 // set ko's current bindingProvider equal to our new binding provider
 ko.bindingProvider.instance = new ko.customBindingProvider(bindings);

 // bind a new instance of our ViewModel to the page
 ko.applyBindings(viewModel);
})();

What we’re doing here is effectively defining constructor for our
 binding handler which accepts an object (bindings) which we use to lookup
 our bindings. We could then re-write the markup for our application View
 using data-classes as follows:
<div id="create-todo">
 <input id="new-todo" data-class="newTodo" placeholder="What needs to be done?" />
 Press Enter to save this task
 </div>
 <div id="todos">
 <div data-class="checkAllContainer" >
 <input id="check-all" class="check" type="checkbox" data-class="checkAll" />
 <label for="check-all">Mark all as complete</label>
 </div>
 <ul id="todo-list" data-class="todos" >
 <li data-class="todoListItem" >
 <div class="todo" data-class="todoListItemWrapper" >
 <div class="display">
 <input class="check" type="checkbox" data-class="todoCheckBox" />
 <div class="todo-content" data-class="todoContent" style="cursor: pointer;"></div>

 </div>
 <div class="edit">
 <input class="todo-input" data-class="todoEdit"/>
 </div>
 </div>

 </div>

Neil Kerkin has put together a complete TodoMVC demo app using the
 above, which can be accessed and played around with here.
Whilst it may look like quite a lot of work in the explanation
 above, now that you have a generic getBindings method written, it’s a lot more
 trivial to simply re-use it and use data-classes rather than strict
 data-bindings for writing your KnockoutJS applications instead. The net
 result is hopefully cleaner markup with your data bindings being shifted
 from the View to a bindings object instead.

MVC Vs. MVP Vs. MVVM

Both MVP and MVVM are derivatives of MVC. The key difference between
 it and its derivatives is the dependency each layer has on other layers as
 well as how tightly bound they are to each other.
In MVC, the View sits on top of our architecture with the controller
 laying below this. Models sit below the controller and so our Views know
 about our controllers and controllers know about Models. Here, our Views
 have direct access to Models. Exposing the complete Model to the View
 however may have security and performance costs, depending on the
 complexity of our application. MVVM attempts to avoid these issues.
In MVP, the role of the controller is replaced with a Presenter.
 Presenters sit at the same level as views, listening to events from both
 the View and model and mediating the actions between them. Unlike MVVM,
 there isn’t a mechanism for binding Views to ViewModels, so we instead
 rely on each View implementing an interface allowing the Presenter to
 interact with the View.
MVVM consequently allows us to create View-specific subsets of a
 Model which can contain state and logic information, avoiding the need to
 expose the entire Model to a View. Unlike MVP’s Presenter, a ViewModel is
 not required to reference a View. The View can bind to properties on the
 ViewModel which in turn expose data contained in Models to the View. As
 we’ve mentioned, the abstraction of the View means there is less logic
 required in the code behind it.
One of the downsides to this however is that a level of
 interpretation is needed between the ViewModel and the View and this can
 have performance costs. The complexity of this interpretation can also
 vary - it can be as simple as copying data or as complex as manipulating
 them to a form we would like the View to see. MVC doesn’t have this
 problem as the whole Model is readily available and such manipulation can
 be avoided.

Backbone.js Vs. KnockoutJS

Understanding the subtle differences between MVC, MVP and MVVM are
 important but developers ultimately will ask whether they should consider
 using KnockoutJS over Backbone based in what we’ve learned. The following
 notes may be of help here:
	Both libraries are designed with different goals in mind and its
 often not as simple as just choosing MVC or MVVM

	If data-binding and two-way communication are are your main
 concerns, KnockoutJS is definitely the way to go.Practically any
 attribute or value stored in DOM nodes can be mapped to JavaScript
 objects with this approach.

	Backbone excels with its ease of integration with RESTful
 services, whilst KnockoutJS Models are simply JavaScript objects and
 code needed for updating the Model must be written by the
 developer.

	KnockoutJS has a focus on automating UI bindings, which requires
 significantly more verbose custom code if attempting to do this with
 Backbone. This isn't a problem with Backbone itself par se as it
 purposefully attempts to stay out of the UI. Knockback does however
 attempt to assist with this problem.

	With KnockoutJS, we can bind our own functions to ViewModel
 observables, which are executed anytime the observable changes. This
 allows us the same level of flexibility as can be found in
 Backbone

	Backbone has a solid routing solution built-in, whilst
 KnockoutJS offers no routing options out of the box. One can however
 easily fill this behavior in if needed using Ben Alman’s BBQ
 plugin or a standalone routing system like Miller Medeiros’s
 excellent Crossroads.

To conclude, I personally find KnockoutJS more suitable for smaller
 applications whilst Backbone’s feature set really shines when building
 anything non-trivial. That said, many developers have used both frameworks
 to write applications of varying complexity and I recommend trying out
 both at a smaller scale before making a decision on which might work best
 for your project.
If you wish to read more about MVVM or
 Knockout, further recommended reading can be found
 below:
	The
 Advantages Of MVVM

	SO:
 What are the problems with MVVM?

	MVVM
 Explained

	How
 does MVVM compare to MVC?

	Custom
 bindings in KnockoutJS

	Exploring
 Knockout with TodoMVC

Namespacing Patterns

In this section, I'll be discussing both intermediate and advanced
 conventions for namespacing in JavaScript. We're going to begin with the
 latter, however if you're new to namespacing with the language and would
 like to learn more about some of the fundamentals, please feel free to
 skip to the section titled 'namespacing fundamentals' to
 continue reading.

What is namespacing?

In many programming languages, namespacing is a technique employed
 to avoid collisions with other objects
 or variables in the global namespace. They're also extremely useful for
 helping organize blocks of functionality in your application into easily
 manageable groups that can be uniquely identified.
In JavaScript, namespacing at an enterprise level is critical as
 it's important to safeguard your code from breaking in the event of
 another script on the page using the same variable or method names as you are. With
 the number of third-party tags
 regularly injected into pages these days, this can be a common problem we
 all need to tackle at some point in our careers. As a well-behaved
 'citizen' of the global namespace, it's also imperative that you do your
 best to similarly not prevent other developer's scripts executing due to
 the same issues.
Whilst JavaScript doesn't really have built-in support for
 namespaces like other languages, it does have objects and closures which
 can be used to achieve a similar effect.

Advanced namespacing patterns

In this section, I'll be exploring some advanced patterns and
 utility techniques that have helped me when working on larger projects
 requiring a re-think of how application namespacing is approached. I
 should state that I'm not advocating any of these as the way to do things, but rather just ways that
 I've found work in practice.
Automating nested namespacing

As you're probably aware, a nested namespace provides an organized
 hierarchy of structures in an application and an example of such a
 namespace could be the following:
 application.utilities.drawing.canvas.2d. In
 JavaScript the equivalent of this definition using the object literal
 pattern would be:
var application = {
 utilities:{
 drawing:{
 canvas:{
 2d:{
 //...
 }
 }
 }
 }
};

Wow, that could be done better.
One of the obvious challenges with this pattern is that each
 additional depth you wish to create requires yet another object to be
 defined as a child of some parent in your top-level namespace. This can
 become particularly laborious when multiple depths are required as your
 application increases in complexity.
How can this problem be better solved? In JavaScript
 Patterns, Stoyan
 Stefanov presents a very-clever approach for automatically
 defining nested namespaces under an existing global variable using a
 convenience method that takes a single string argument for a nest,
 parses this and automatically populates your base namespace with the
 objects required.
The method he suggests using is the following, which I've updated
 it to be a generic function for easier re-use with multiple
 namespaces:
// top-level namespace being assigned an object literal
var myApp = myApp || {};

// a convenience function for parsing string namespaces and
// automatically generating nested namespaces
function extend(ns, ns_string) {
 var parts = ns_string.split('.'),
 parent = ns,
 pl, i;

 pl = parts.length;
 for (i = 0; i < pl; i++) {
 // create a property if it doesnt exist
 if (typeof parent[parts[i]] == 'undefined') {
 parent[parts[i]] = {};
 }

 parent = parent[parts[i]];
 }

 return parent;
}

// sample usage:
// extend myApp with a deeply nested namespace
var mod = extend(myApp, 'myApp.modules.module2');
// the correct object with nested depths is output
console.log(mod);
// minor test to check the instance of mod can also
// be used outside of the myApp namesapce as a clone
// that includes the extensions
console.log(mod == myApp.modules.module2); //true
// further demonstration of easier nested namespace
// assignment using extend
extend(myApp, 'moduleA.moduleB.moduleC.moduleD');
extend(myApp, 'longer.version.looks.like.this');
console.log(myApp);

[image: Web inspector output]

Figure 11-1. Web inspector output

Note how where one would previously have had to explicitly declare
 the various nests for their namespace as objects, this can now be easily
 achieved using a single, cleaner line of code. This works exceedingly
 well when defining purely namespaces alone, but can seem a little less
 flexible when you want to define both functions and properties at the
 same time as declaring your namespaces. Regardless, it is still
 incredibly powerful and I regularly use a similar approach in some of my
 projects.

Dependency declaration pattern

In this section we're going to take a look at a minor augmentation
 to the nested namespacing pattern you may be used to seeing in some
 applications. We all know that local references to objects can decrease
 overall lookup times, but let's apply this to namespacing to see how it
 might look in practice:
// common approach to accessing nested namespaces
myApp.utilities.math.fibonacci(25);
myApp.utilities.math.sin(56);
myApp.utilities.drawing.plot(98,50,60);

// with local/cached references
var utils = myApp.utilities,
maths = utils.math,
drawing = utils.drawing;

// easier to access the namespace
maths.fibonacci(25);
maths.sin(56);
drawing.plot(98, 50,60);

// note that the above is particularly performant when
// compared to hundreds or thousands of calls to nested
// namespaces vs. a local reference to the namespace

Working with a local variable here is almost always faster than
 working with a top-level global (e.g.myApp). It's also both more
 convenient and more performant than accessing nested
 properties/sub-namespaces on every subsequent line and can improve
 readability in more complex applications.
Stoyan recommends declaring localized namespaces required by a
 function or module at the top of your function scope (using the
 single-variable pattern) and calls this a dependancy declaration
 pattern. One of the benefits this offers is a decrease in locating
 dependencies and resolving them, should you have an extendable
 architecture that dynamically loads modules into your namespace when
 required.
In my opinion this pattern works best when working at a modular
 level, localizing a namespace to be used by a group of methods.
 Localizing namespaces on a per-function level, especially where there is
 significant overlap between namespace dependencies would be something I
 would recommend avoiding where possible. Instead, define it further up
 and just have them all access the same reference.

Deep object extension

An alternative approach to automatic namespacing is deep object
 extension. Namespaces defined using object literal notation may be
 easily extended (or merged) with other objects (or namespaces) such that
 the properties and functions of both namespaces can be accessible under
 the same namespace post-merge.
This is something that's been made fairly easy to accomplish with
 modern JavaScript frameworks (e.g. see jQuery's $.extend), however,
 if you're looking to extend object (namespaces) using vanilla JS, the
 following routine may be of assistance.
// extend.js
// written by andrew dupont, optimized by addy osmani
function extend(destination, source) {
 var toString = Object.prototype.toString,
 objTest = toString.call({});
 for (var property in source) {
 if (source[property] && objTest == toString.call(source[property])) {
 destination[property] = destination[property] || {};
 extend(destination[property], source[property]);
 } else {
 destination[property] = source[property];
 }
 }
 return destination;
};

console.group("objExtend namespacing tests");

// define a top-level namespace for usage
var myNS = myNS || {};

// 1. extend namespace with a 'utils' object
extend(myNS, {
 utils:{
 }
});

console.log('test 1', myNS);
//myNS.utils now exists

// 2. extend with multiple depths (namespace.hello.world.wave)
extend(myNS, {
 hello:{
 world:{
 wave:{
 test: function(){
 //...
 }
 }
 }
 }
});

// test direct assignment works as expected
myNS.hello.test1 = 'this is a test';
myNS.hello.world.test2 = 'this is another test';
console.log('test 2', myNS);

// 3. what if myNS already contains the namespace being added
// (e.g. 'library')? we want to ensure no namespaces are being
// overwritten during extension

myNS.library = {
 foo:function(){}
};

extend(myNS, {
 library:{
 bar:function(){
 //...
 }
 }
});

// confirmed that extend is operating safely (as expected)
// myNS now also contains library.foo, library.bar
console.log('test 3', myNS);

// 4. what if we wanted easier access to a specific namespace without having
// to type the whole namespace out each time?.

var shorterAccess1 = myNS.hello.world;
shorterAccess1.test3 = "hello again";
console.log('test 4', myNS);
//success, myApp.hello.world.test3 is now 'hello again'

console.groupEnd();

Note: The above implementation
 is not cross-browser compatible for all objects and should be considered
 a proof-of-concept only. You may find the Underscore.js extend method a simpler, more cross-browser
 implementation to start with http://documentcloud.github.com/underscore/docs/underscore.html#section-67.
 Alternatively, a version of the jQuery $.extend() method extracted from
 core can be found here: https://gist.github.com/1123784.
If you do however happen to be using jQuery in your application,
 you can achieve the exact same object namespace extensibility with
 $.extend as follows:
// top-level namespace
var myApp = myApp || {};

// directly assign a nested namespace
myApp.library = {
 foo:function(){ /*..*/}
};

// deep extend/merge this namespace with another
// to make things interesting, let's say it's a namespace
// with the same name but with a different function
// signature: $.extend(deep, target, object1, object2)
$.extend(true, myApp, {
 library:{
 bar:function(){
 //...
 }
 }
});

console.log('test', myApp);
// myApp now contains both library.foo() and library.bar() methods
// nothing has been overwritten which is what we're hoping for.

For the sake of thoroughness, please see here for jQuery $.extend
 equivalents to the rest of the namespacing experiments found in this
 section.

Namespacing Fundamentals

Namespaces can be found in almost any serious JavaScript
 application. Unless you're working with a code-snippet, it's imperative
 that you do your best to ensure that you're implementing namespacing
 correctly as it's not just simple to pick-up, it'll also avoid third party
 code clobbering your own. The patterns we'll be examining in this section
 are:
	Single global variables

	Object literal notation

	Nested namespacing

	Immediately-invoked Function Expressions

	Namespace injection

1.Single global variables

One popular pattern for namespacing in JavaScript is opting for a
 single global variable as your primary object of reference. A skeleton
 implementation of this where we return an object with functions and
 properties can be found below:
var myApplication = (function(){
 function(){
 //...
 },
 return{
 //...
 }
})();

Although this works for certain situations, the biggest challenge
 with the single global variable pattern is ensuring that no one else has
 used the same global variable name as you have in the page.

2. Prefix namespacing

One solution to the above problem, as mentioned by Peter
 Michaux, is to use prefix namespacing. It's a simple concept at
 heart, but the idea is you select a unique prefix namespace you wish to
 use (in this example, "myApplication_") and then define any methods,
 variables or other objects after the prefix as follows:
var myApplication_propertyA = {};
var myApplication_propertyB = {};
function myApplication_myMethod(){ /*..*/ }

This is effective from the perspective of trying to lower the
 chances of a particular variable existing in the global scope, but
 remember that a uniquely named object can have the same effect. This
 aside, the biggest issue with the pattern is that it can result in a
 large number of global objects once your application starts to grow.
 There is also quite a heavy reliance on your prefix not being used by
 any other developers in the global namespace, so be careful if opting to
 use this.
For more on Peter's views about the single global variable
 pattern, read his excellent post on them here.

3. Object literal notation

Object literal notation (which we also cover in the module pattern
 section of the book) can be thought of as an object containing a
 collection of key:value pairs with a colon separating each pair of keys
 and values where keys can also represent new namespaces.
var myApplication = {
 getInfo:function(){ /**/ },

 // we can also populate object literal to support
 // further object namespaces containing anything really:
 models : {},
 views : {
 pages : {}
 },
 collections : {}
};

One can also opt for adding properties directly to the
 namespace:
myApplication.foo = function(){
 return "bar";
}
myApplication.utils = {
 toString:function(){
 //...
 },
 export: function(){
 //...
 }
}

Object literals have the advantage of not polluting the global
 namespace but assist in organizing code and parameters logically.
 They're beneficial if you wish to create easily-readable structures that
 can be expanded to support deep nesting. Unlike simple global variables,
 object literals often also take into account tests for the existence of
 a variable by the same name so the chances of collision occurring are
 significantly reduced.
The code at the very top of the next sample demonstrates the
 different ways in which you can check to see if a variable (object
 namespace) already exists before defining it. You'll commonly see
 developers using Option 1, however Options 3 and 5 may be considered
 more thorough and Option 4 is considered a good best-practice.
// This doesn't check for existence of 'myApplication' in
// the global namespace. Bad practice as you can easily
// clobber an existing variable/namespace with the same name
var myApplication = {};

// The following options *do* check for variable/namespace existence.
// If already defined, we use that instance, otherwise we assign a new
// object literal to myApplication.
//
// Option 1: var myApplication = myApplication || {};
// Option 2 if(!MyApplication) MyApplication = {};
// Option 3: var myApplication = myApplication = myApplication || {}
// Option 4: myApplication || (myApplication = {});
// Option 5: var myApplication = myApplication === undefined ? {} : myApplication;
//

There is of course a huge amount of variance in how and where
 object literals are used for organizing and structuring code. For
 smaller applications wishing to expose a nested API for a particular
 self-enclosed module, you may just find yourself using the Revealing
 Module Pattern, which we covered earlier in the book:
var namespace = (function () {

 // defined within the local scope
 var privateMethod1 = function () { /* ... */ }
 var privateMethod2 = function () { /* ... */ }
 var privateProperty1 = 'foobar';

 return {
 // the object literal returned here can have as many
 // nested depths as you wish, however as mentioned,
 // this way of doing things works best for smaller,
 // limited-scope applications in my personal opinion
 publicMethod1: privateMethod1,

 // nested namespace with public properties
 properties:{
 publicProperty1: privateProperty1
 },

 // another tested namespace
 utils:{
 publicMethod2: privateMethod2
 }
 ...
 }
})();

The benefit of object literals is that they offer us a very
 elegant key/value syntax to work with; one where we're able to easily
 encapsulate any distinct logic or functionality for our application in a
 way that clearly separates it from others and provides a solid
 foundation for extending your code.
A possible downside however is that object literals have the
 potential to grow into long syntactic constructs. Opting to take
 advantage of the nested namespace pattern (which also uses the same
 pattern as its base)
This pattern has a number of other useful applications too. In
 addition to namespacing, it's often of benefit to decouple the default
 configuration for your application into a single area that can be easily
 modified without the need to search through your entire codebase just to
 alter them - object literals work great for this purpose. Here's an
 example of a hypothetical object literal for configuration:
var myConfig = {
 language: 'english',
 defaults: {
 enableGeolocation: true,
 enableSharing: false,
 maxPhotos: 20
 },
 theme: {
 skin: 'a',
 toolbars: {
 index: 'ui-navigation-toolbar',
 pages: 'ui-custom-toolbar'
 }
 }
}

Note that there are really only minor syntactical differences
 between the object literal pattern and a standard JSON data set. If for
 any reason you wish to use JSON for storing your configurations instead
 (e.g. for simpler storage when sending to the back-end), feel free to.
 For more on the object literal pattern, I recommend reading Rebecca
 Murphey's excellent article
 on the topic.

4. Nested namespacing

An extension of the object literal pattern is nested namespacing.
 It's another common pattern used that offers a lower risk of collision
 due to the fact that even if a namespace already exists, it's unlikely
 the same nested children do.
Does this look familiar?
YAHOO.util.Dom.getElementsByClassName('test');

Older versions of Yahoo!'s YUI library use the nested object
 namespacing pattern regularly. At AOL we also used this pattern in many
 of our larger applications. A sample implementation of nested
 namespacing may look like this:
var myApp = myApp || {};

// perform a similar existence check when defining nested
// children
myApp.routers = myApp.routers || {};
myApp.model = myApp.model || {};
myApp.model.special = myApp.model.special || {};

// nested namespaces can be as complex as required:
// myApp.utilities.charting.html5.plotGraph(/*..*/);
// myApp.modules.financePlanner.getSummary();
// myApp.services.social.facebook.realtimeStream.getLatest();

Note: The above differs from how YUI3
 approaches namespacing as modules there use a sandboxed API host object
 with far less and far shallower namespacing.
You can also opt to declare new nested namespaces/properties as
 indexed properties as follows:
myApp["routers"] = myApp["routers"] || {};
myApp["models"] = myApp["models"] || {};
myApp["controllers"] = myApp["controllers"] || {};

Both options are readable, organized and offer a relatively safe
 way of namespacing your application in a similar fashion to what you may
 be used to in other languages. The only real caveat however is that it
 requires your browser's JavaScript engine first locating the myApp
 object and then digging down until it gets to the function you actually
 wish to use.
This can mean an increased amount of work to perform lookups,
 however developers such as Juriy
 Zaytsev have previously tested and found the performance
 differences between single object namespacing vs the 'nested' approach
 to be quite negligible.

5. Immediately-invoked Function Expressions (IIFE)s

An IIFE
 is effectively an unnamed function which is immediately invoked after
 it's been defined. In JavaScript, because both variables and functions
 explicitly defined within such a context may only be accessed inside of
 it, function invocation provides an easy means to achieving
 privacy.
This is one of the many reasons why IIFEs are a popular approach
 to encapsulating application logic to protect it from the global
 namespace. You've probably come across this pattern before under the
 name of a self-executing (or self-invoked) anonymous function, however I
 personally prefer Ben Alman's naming convention for this particular
 pattern as I believe it to be both more descriptive and more
 accurate.
The simplest version of an IIFE could be the following:
// an (anonymous) immediately-invoked function expression
(function(){ /*...*/})();
// a named immediately-invoked function expression
(function foobar(){ /*..*/}());
// this is technically a self-executing function which is quite different
function foobar(){ foobar(); }

whilst a slightly more expanded version of the first example might
 look like:
var namespace = namespace || {};

// here a namespace object is passed as a function
// parameter, where we assign public methods and
// properties to it
(function(o){
 o.foo = "foo";
 o.bar = function(){
 return "bar";
 };
})(namespace);

console.log(namespace);

Whilst readable, this example could be significantly expanded on
 to address common development concerns such as defined levels of privacy
 (public/private functions and variables) as well as convenient namespace
 extension. Let's go through some more code:
// namespace (our namespace name) and undefined are passed here
// to ensure 1. namespace can be modified locally and isn't
// overwritten outside of our function context
// 2. the value of undefined is guaranteed as being truly
// undefined. This is to avoid issues with undefined being
// mutable pre-ES5.

;(function (namespace, undefined) {
 // private properties
 var foo = "foo",
 bar = "bar";

 // public methods and properties
 namespace.foobar = "foobar";
 namespace.sayHello = function () {
 speak("hello world");
 };

 // private method
 function speak(msg) {
 console.log("You said: " + msg);
 };

 // check to evaluate whether 'namespace' exists in the
 // global namespace - if not, assign window.namespace an
 // object literal
}(window.namespace = window.namespace || {});

// we can then test our properties and methods as follows

// public
console.log(namespace.foobar); // foobar
namescpace.sayHello(); // hello world

// assigning new properties
namespace.foobar2 = "foobar";
console.log(namespace.foobar2);

Extensibility is of course key to any scalable namespacing pattern
 and IIFEs can be used to achieve this quite easily. In the below
 example, our 'namespace' is once again passed as an argument to our
 anonymous function and is then extended (or decorated) with further
 functionality:
// let's extend the namespace with new functionality
(function(namespace, undefined){
 // public method
 namespace.sayGoodbye = function(){
 console.log(namespace.foo);
 console.log(namespace.bar);
 speak('goodbye');
 }
}(window.namespace = window.namespace || {});

namespace.sayGoodbye(); //goodbye
That's it for IIFEs for the time-being. If you would like to find
 out more about this pattern, I recommend reading both Ben's IIFE
 post and Elijah Manor's post on namespace
 patterns from C#.

6. Namespace injection

Namespace injection is another variation on the IIFE where we
 'inject' the methods and properties for a specific namespace from within
 a function wrapper using this as a namespace proxy.
 The benefit this pattern offers is easy application of functional
 behaviour to multiple objects or namespaces and can come in useful when
 applying a set of base methods to be built on later (e.g. getters and
 setters).
The disadvantages of this pattern are that there may be easier or
 more optimal approaches to achieving this goal (e.g. deep object
 extension / merging) which I cover earlier in the section.
Below we can see an example of this pattern in action, where we
 use it to populate the behaviour for two namespaces: one initially
 defined (utils) and another which we dynamically create as a part of the
 functionality assignment for utils (a new namespace called
 tools).
var myApp = myApp || {};
myApp.utils = {};

(function() {
 var val = 5;

 this.getValue = function() {
 return val;
 };

 this.setValue = function(newVal) {
 val = newVal;
 }

 // also introduce a new sub-namespace
 this.tools = {};

}).apply(myApp.utils);

// inject new behaviour into the tools namespace
// which we defined via the utilities module

(function(){
 this.diagnose = function(){
 return 'diagnosis';
 }
}).apply(myApp.utils.tools);

// note, this same approach to extension could be applied
// to a regular IIFE, by just passing in the context as
// an argument and modifying the context rather than just
// 'this'

// testing
console.log(myApp); //the now populated namespace
console.log(myApp.utils.getValue()); // test get
myApp.utils.setValue(25); // test set
console.log(myApp.utils.getValue());
console.log(myApp.utils.tools.diagnose());

Angus Croll has also previously
 suggested the idea of using the call API to provide a natural separation
 between contexts and arguments. This pattern can feel a lot more like a
 module creator, but as modules still offer an encapsulation solution,
 I'll briefly cover it for the sake of thoroughness:
// define a namespace we can use later
var ns = ns || {}, ns2 = ns2 || {};

// the module/namespace creator
var creator = function(val){
 var val = val || 0;

 this.next = function(){
 return val++
 };

 this.reset = function(){
 val = 0;
 }
}

creator.call(ns);
// ns.next, ns.reset now exist
creator.call(ns2, 5000);
// ns2 contains the same methods
// but has an overridden value for val
// of 5000

As mentioned, this type of pattern is useful for assigning a
 similar base set of functionality to multiple modules or namespaces, but
 I'd really only suggest using it where explicitly declaring your
 functionality within an object/closure for direct access doesn't make
 sense.
Reviewing the namespace patterns above, the option that I would
 personally use for most larger applications is nested object namespacing
 with the object literal pattern.
IIFEs and single global variables may work fine for applications
 in the small to medium range, however, larger codebases requiring both
 namespaces and deep sub-namespaces require a succinct solution that
 promotes readability and scales. I feel this pattern achieves all of
 these objectives well.
I would also recommend trying out some of the suggested advanced
 utility methods for namespace extension as they really can save you time
 in the long-run.

Chapter 12. Design Patterns in jQuery Core

Now that we've taken a look at vanilla-JavaScript implementations of
 popular design patterns, let's switch gears and find out what of these
 design patterns might look like when implemented using jQuery. jQuery (as
 you may know) is currently the most popular JavaScript library and provides
 a layer of 'sugar' on top of regular JavaScript with a syntax that can be
 easier to understand at a glance.
Before we dive into this section, it's important to remember that many
 vanilla-JavaScript design patterns can be intermixed with jQuery when used
 correctly because jQuery is still essentially JavaScript itself.
jQuery is an interesting topic to discuss in the realm of patterns
 because the library actually uses a number of design patterns itself. What
 impresses me is just how cleanly all of the patterns it uses have been
 implemented so that they exist in harmony.
Let's take a look at what some of these patterns are and how they are
 used.
Module Pattern

We have already explored the module pattern previously, but in case
 you've skipped ahead: the Module
 Pattern allows us to encapsulate logic for a unit of code such
 that we can have both private and public methods and variables. This can
 be applied to writing jQuery plugins too, where a private API holds any
 code we don't wish to expose and a public API contains anything a user
 will be allowed to interact with. See below for an example:
!function(exports, $, undefined){

 var Plugin = function(){

 // Our private API
 var priv = {},

 // Our public API
 Plugin = {},

 // Plugin defaults
 defaults = {};

 // Private options and methods
 priv.options = {};
 priv.method1 = function(){};
 priv.method2 = function(){};

 // Public methods
 Plugin.method1 = function(){...};
 Plugin.method2 = function(){...};

 // Public initialization
 Plugin.init = function(options) {
 $.extend(priv.options, defaults, options);
 priv.method1();
 return Plugin;
 }

 // Return the Public API (Plugin) we want
 // to expose
 return Plugin;
 }

 exports.Plugin = Plugin;

}(this, jQuery);

This can then be used as follows:
var myPlugin = new Plugin;
myPlugin.init(/* custom options */);
myPlugin.method1();

Lazy Initialization

Lazy Initializationis a design
 pattern which allows us to delay expensive processes (e.g. the creation of
 objects) until the first instance they are needed. An example of this is
 the .ready() function in jQuery that
 only executes a function once the DOM is ready.
$(document).ready(function(){
 // The ajax request won't attempt to execute until
 // the DOM is ready

 var jqxhr = $.ajax({
 url: 'http://domain.com/api/',
 data: 'display=latest&order=ascending'
 })
 .done(function(data)){
 $('.status').html('content loaded');
 console.log('Data output:' + data);
 });
});

Whilst it isn't directly used in jQuery core, some developers will
 be familiar with the concept of LazyLoading via plugins such as this.
 LazyLoading is effectively the same as Lazy initialization and is a
 technique whereby additional data on a page is loaded when needed (e.g.
 when a user has scrolled to the end of the page). In recent years this
 pattern has become quite prominent and can be currently be found in both
 the Twitter and Facebook UIs.

The Composite Pattern

The Composite Pattern describes a
 group of objects that can be treated in the same way a single instance of
 an object may be. Implementing this pattern allows you to treat both
 individual objects and compositions in a uniform manner. In jQuery, when
 we're accessing or performing actions on a single DOM element or a
 collection of elements, we can treat both sets in a uniform manner. This
 is demonstrated by the code sample below:
// Single elements
$('#singleItem').addClass('active');
$('#container').addClass('active');

// Collections of elements
$('div').addClass('active');
$('.item').addClass('active');
$('input').addClass('active');

The Adapter Pattern

The Adapter Pattern is a pattern
 which translates an interfacefor a class into an
 interface compatible with a specific system. Adapters basically allow
 classes to function together which normally couldn't due to their
 incompatible interfaces. The adapter translates calls to its interface
 into calls to the original interface and the code required to achieve this
 is usually quite minimal.
One example of a adapter you may have used is jQuery's $(el).css() method. Not only does it help
 normalize the interfaces to how styles can be applied between a number of
 browsers, there are plenty of good examples of this, including
 opacity.
//
// Cross browser opacity:
// opacity: 0.9; Chrome 4+, FF2+, Saf3.1+, Opera 9+, IE9, iOS 3.2+, Android 2.1+
// filter: alpha(opacity=90); IE6-IE8
//

$('.container').css({ opacity: .5 });

The Facade Pattern

As we saw in earlier sections, the Facade
 Pattern is where an object provides a simpler interface to a
 larger (possibly more complex) body of code. Facades can be frequently
 found across the jQuery library and make methods both easier to use and
 understand, but also more readable. The following are facades for jQuery's
 $.ajax():
$.get(url, data, callback, dataType);
$.post(url, data, callback, dataType);
$.getJSON(url, data, callback);
$.getScript(url, callback);

These are translated behind the scenes to:
// $.get()
$.ajax({
 url: url,
 data: data,
 dataType: dataType
}).done(callback);

// $.post
$.ajax({
 type: 'POST',
 url: url,
 data: data,
 dataType: dataType
}).done(callback);

// $.getJSON()
$.ajax({
 url: url,
 dataType: 'json',
 data: data,
}).done(callback);

// $.getScript()
$.ajax({
 url: url,
 dataType: "script",
}).done(callback);

What's even more interesting is that the above facades are actually
 facades in their own right. You see, $.ajax offers a much simpler interface to a
 complex body of code that handles cross-browser XHR (XMLHttpRequest) as
 well as deferreds.
 While I could link you to the jQuery source, here's a cross-browser
 XHR implementation just so you can get an idea of how much easier
 this pattern makes our lives.

The Observer Pattern

Another pattern we've look at previously is the Observer
 (Publish/Subscribe) pattern, where a subject (the publisher), keeps a list
 of its dependents (subscribers), and notifies them automatically anytime
 something interesting happens.
jQuery actually comes with built-in support for a
 publish/subscribe-like system, which it calls custom events. In earlier
 versions of the library, access to these custom events was possible using
 .bind() (subscribe), .trigger() (publish) and .unbind() (unsubscribe), but in recent versions
 this can be done using .on(), .trigger() and .off().
Below we can see an example of this being used in practice:
// Equivalent to subscribe(topicName, callback)
$(document).on('topicName', function(){
 //..perform some behaviour
});

// Equivalent to publish(topicName)
$(document).trigger('topicName');

// Equivalent to unsubscribe(topicName)
$(document).off('topicName');

For those that prefer to use the conventional naming scheme for the
 Observer pattern, Ben
 Alman created a simple wrapper around the above methods which
 gives you access to $.publish(),
 $.subscribe, and $.unsubscribe methods. I've previously linked to
 them earlier in the book, but you can see the wrapper in full
 below.
(function($) {

 var o = $({});

 $.subscribe = function() {
 o.on.apply(o, arguments);
 };

 $.unsubscribe = function() {
 o.off.apply(o, arguments);
 };

 $.publish = function() {
 o.trigger.apply(o, arguments);
 };

}(jQuery));

Finally, in recent versions of jQuery, a multi-purpose callbacks
 object ($.Callbacks) was made available
 to enable users to write new solutions based on callback lists. One such
 solution to write using this feature is another Publish/Subscribe system.
 An implementation of this is the following:
var topics = {};

jQuery.Topic = function(id) {
 var callbacks,
 topic = id && topics[id];
 if (!topic) {
 callbacks = jQuery.Callbacks();
 topic = {
 publish: callbacks.fire,
 subscribe: callbacks.add,
 unsubscribe: callbacks.remove
 };
 if (id) {
 topics[id] = topic;
 }
 }
 return topic;
};

which can then be used as follows:
// Subscribers
$.Topic('mailArrived').subscribe(fn1);
$.Topic('mailArrived').subscribe(fn2);
$.Topic('mailSent').subscribe(fn1);

// Publisher
$.Topic('mailArrived').publish('hello world!');
$.Topic('mailSent').publish('woo! mail!');

// Here, 'hello world!' gets pushed to fn1 and fn2
// when the 'mailArrived' notification is published
// with 'woo! mail!' also being pushed to fn1 when
// the 'mailSent' notification is published.

//
// output:
// hello world!
// fn2 says: hello world!
// woo! mail!
//

The Iterator Pattern

The Iterator Patternis a design
 pattern where iterators (objects that allow us to traverse through all the
 elements of a collection) access the elements of an aggregate object
 sequentially without needing to expose its underlying form.
Iterators encapsulate the internal structure of how that particular
 iteration occurs - in the case of jQuery's $(el).each() iterator, you are actually able to
 use the underlying code behind $.each()
 to iterate through a collection, without needing to see or understand the
 code working behind the scenes that's providing this capability. This is a
 pattern similar to the facade, except it deals explicitly with
 iteration.
 $.each(['john','dave','rick','julian'], function(index, value) {
 console.log(index + ': ' + value);
});

$('li').each(function(index) {
 console.log(index + ': ' + $(this).text());
});

The Strategy Pattern

The Strategy Pattern is a pattern
 where a script may select a particular algorithm at runtime. The purpose
 of this pattern is that it's able to provide a way to clearly define
 families of algorithms, encapsulate each as an object and make them easily
 interchangeable. You could say that the biggest benefit this pattern
 offers is that it allows algorithms to vary independent of the clients
 that utilize them.
An example of this is where jQuery's toggle() allows you to bind two or more handlers
 to the matched elements, to be executed on alternate clicks. The strategy
 pattern allows for alternative algorithms to be used independent of the
 client internal to the function.
$('button').toggle(function(){
 console.log('path 1');
},
function(){
 console.log('path 2');
});

The Proxy Pattern

The Proxy Pattern - a proxy is
 basically a class that functions as an interface to something else: a
 file, a resource, an object in memory, something else that is difficult to
 duplicate, etc. jQuery's .proxy()
 method takes as input a function and returns a new one that will always
 have a particular context - it ensures that the value of this in a function is the value you desire. This
 is parallel to the idea of providing an interface as per the proxy
 pattern.
One example of where this is useful is when you're making use of a
 timer inside a click handler. Say we
 have the following handler:
$('button').on('click', function(){
 // Within this function, 'this' refers to the element that was clicked
 $(this).addClass('active');
});

However, say we wished to add in a delay before the active class was added. One thought that comes
 to mind is using setTimeout to achieve
 this, but there's a slight problem here: whatever function is passed to
 setTimeout will have a different value
 for this inside that function (it will
 refer to window instead).
$('button').on('click', function(){
 setTimeout(function(){
 // 'this' doesn't refer to our element!
 $(this).addClass('active');
 });
});

To solve this problem, we can use $.proxy(). By calling it with the function and
 value we would like assigned to this it
 will actually return a function that retains the value we desire. Here's
 how this would look:
$('button').on('click', function(){
 setTimeout($.proxy(function() {
 // 'this' now refers to our element as we wanted
 $(this).addClass('active');
 }, this), 500);
 // the last 'this' we're passing tells $.proxy() that our DOM element
 // is the value we want 'this' to refer to.
});

The Builder Pattern

The Builder Pattern's general
 idea is that it abstracts the steps involved in creating objects so that
 different implementations of these steps have the ability to construct
 different representations of objects. Below are examples of how jQuery
 utilizes this pattern to allow you to dynamically create new
 elements.
$('<div class= "foo">bar</div>');

$('<p id="test">foo bar</p>').appendTo('body');

var newParagraph = $('<p />').text("Hello world");

$('<input />').attr({'type':'text', 'id':'sample'})
 .appendTo('#container');

The Prototype Pattern

As we've seen, the Prototype
 Pattern is used when objects are created based on a template of
 an existing object through cloning. Essentially this pattern is used to
 avoid creating a new object in a more conventional manner where this
 process may be expensive or overly complex.
In terms of the jQuery library, your first thought when cloning is
 mentioned might be the .clone() method.
 Unfortunately this only clones DOM elements but if we want to clone
 JavaScript objects, this can be done using the $.extend() method as follows:
var myOldObject = {};

// Create a shallow copy
var myNewObject = jQuery.extend({}, myOldObject);

// Create a deep copy
var myOtherNewObject = jQuery.extend(true, {}, myOldObject);

This pattern has been used many times in jQuery core (as well as in
 jQuery plugins) quite successfully. For those wondering what deep cloning
 might look like in JavaScript without the use of a library, Rick Waldron has an implementation
 you can use below (and tests available here).
function clone(obj) {
 var val, length, i,
 temp = [];

 if (Array.isArray(obj)) {
 for (i = 0, length = obj.length; i < length; i++) {
 // Store reference to this array item's value
 val = obj[i];

 // If array item is an object (including arrays), derive new value by cloning
 if (typeof val === "object") {
 val = clone(val);
 }
 temp[i] = val;
 }
 return temp;
 }

 // Create a new object whose prototype is a new, empty object,
 // Using the second properties object argument to copy the source properties
 return Object.create({}, (function(src) {
 // Initialize a cache for non-inherited properties
 var props = {};

 Object.getOwnPropertyNames(src).forEach(function(name) {
 // Store short reference to property descriptor
 var descriptor = Object.getOwnPropertyDescriptor(src, name);

 // Recurse on properties whose value is an object or array
 if (typeof src[name] === "object") {
 descriptor.value = clone(src[name]);
 }
 props[name] = descriptor;
 });
 return props;
 }(obj)));
}

Chapter 13. Modern Modular JavaScript Design Patterns

The Importance Of Decoupling Your Application

In the world of modern JavaScript, when we say an application is
 modular, we often mean it's composed of
 a set of highly decoupled, distinct pieces of functionality stored in
 modules. As you probably know, loose
 coupling facilitates easier maintainability of apps by removing
 dependencies where possible. When this is implemented
 efficiently, it's quite easy to see how changes to one part of a system
 may affect another.
Unlike some more traditional programming languages however, the
 current iteration of JavaScript (ECMA-262)
 doesn't provide developers with the means to import such modules of code
 in a clean, organized manner. It's one of the concerns with specifications
 that haven't required great thought until more recent years where the need
 for more organized JavaScript applications became apparent.
Instead, developers at present are left to fall back on variations
 of the module
 or object
 literal patterns, which we covered earlier in the book. With many
 of these, module scripts are strung together in the DOM with namespaces
 being described by a single global object where it's still possible to
 incur naming collisions in your architecture. There's also no clean way to
 handle dependency management without some manual effort or third party
 tools.
Whilst native solutions to these problems will be arriving in ES
 Harmony (the next version of JavaScript), the good news is that
 writing modular JavaScript has never been easier and you can start doing
 it today.
In this section, we're going to look at three formats for writing
 modular JavaScript: AMD, CommonJS and proposals for the next version of
 JavaScript, Harmony.

A Note On Script Loaders

It's difficult to discuss AMD and CommonJS modules without talking
 about the elephant in the room - script
 loaders. At the time of writing, script loading is a means to a
 goal, that goal being modular JavaScript that can be used in applications
 today - for this, use of a compatible script loader is unfortunately
 necessary. In order to get the most out of this section, I recommend
 gaining a basic understanding of how
 popular script loading tools work so the explanations of module formats
 make sense in context.
There are a number of great loaders for handling module loading in
 the AMD and CommonJS formats, but my personal preferences are RequireJS and curl.js. Complete
 tutorials on these tools are outside the scope of this book, but I can
 recommend reading John Hann's article about curl.js
 and James Burke's RequireJS API
 documentation for more.
From a production perspective, the use of optimization tools (like
 the RequireJS optimizer) to concatenate scripts is recommended for
 deployment when working with such modules. Interestingly, with the Almond AMD shim, RequireJS
 doesn't need to be rolled in the deployed site and what you might consider
 a script loader can be easily shifted outside of development.
That said, James Burke would probably say that being able to
 dynamically load scripts after page load still has its use cases and
 RequireJS can assist with this too. With these notes in mind, let's get
 started.

AMD

A Format For Writing Modular JavaScript In The Browser

The overall goal for the AMD (Asynchronous Module Definition)
 format is to provide a solution for modular JavaScript that developers
 can use today. It was born out of Dojo's real world experience using
 XHR+eval and proponents of this format wanted to avoid any future
 solutions suffering from the weaknesses of those in the past.
The AMD module format itself is a proposal for defining modules
 where both the module and dependencies can be asynchronously
 loaded. It has a number of distinct advantages including being both
 asynchronous and highly flexible by nature which removes the tight
 coupling one might commonly find between code and module identity. Many
 developers enjoy using it and one could consider it a reliable stepping
 stone towards the module
 system proposed for ES Harmony.
AMD began as a draft specification for a module format on the
 CommonJS list but as it wasn't able to reach full consensus, further
 development of the format moved to the amdjs group.
Today it's embraced by projects including Dojo (1.7), MooTools
 (2.0), Firebug (1.8) and even jQuery (1.7). Although the term
 CommonJS AMD format has been seen in the wild on
 occasion, it's best to refer to it as just AMD or Async Module support
 as not all participants on the CommonJS list wished to pursue it.
Note: There was a time when the
 proposal was referred to as Modules Transport/C, however as the spec
 wasn't geared for transporting existing CommonJS modules, but rather,
 for defining modules it made more sense to opt for the AMD naming
 convention.

Getting Started With Modules

The two key concepts you need to be aware of here are the idea of
 a define method for facilitating
 module definition and a require
 method for handling dependency loading. define is
 used to define named or unnamed modules based on the proposal using the
 following signature:
define(
 module_id /*optional*/,
 [dependencies] /*optional*/,
 definition function /*function for instantiating the module or object*/
);

As you can tell by the inline comments, the module_id is an optional argument which is
 typically only required when non-AMD concatenation tools are being used
 (there may be some other edge cases where it's useful too). When this
 argument is left out, we call the module anonymous.
When working with anonymous modules, the idea of a module's
 identity is DRY, making it trivial to avoid duplication of filenames and
 code. Because the code is more portable, it can be easily moved to other
 locations (or around the file-system) without needing to alter the code
 itself or change its ID. The module_id is equivalent to folder paths in
 simple packages and when not used in packages. Developers can also run
 the same code on multiple environments just by using an AMD optimizer
 that works with a CommonJS environment such as r.js.
Back to the define signature, the dependencies argument represents
 an array of dependencies which are required by the module you are
 defining and the third argument ('definition function' or 'factory
 function') is a function that's executed to instantiate your module. A
 barebone module could be defined as follows:
Understanding AMD: define()

// A module_id (myModule) is used here for demonstration purposes only

define('myModule',
 ['foo', 'bar'],
 // module definition function
 // dependencies (foo and bar) are mapped to function parameters
 function (foo, bar) {
 // return a value that defines the module export
 // (i.e the functionality we want to expose for consumption)

 // create your module here
 var myModule = {
 doStuff:function(){
 console.log('Yay! Stuff');
 }
 }

 return myModule;
});

// An alternative example could be..
define('myModule',
 ['math', 'graph'],
 function (math, graph) {

 // Note that this is a slightly different pattern
 // With AMD, it's possible to define modules in a few
 // different ways due to it's flexibility with
 // certain aspects of the syntax
 return {
 plot: function(x, y){
 return graph.drawPie(math.randomGrid(x,y));
 }
 }
 };
});

require on the other hand is typically used
 to load code in a top-level JavaScript file or within a module should
 you wish to dynamically fetch dependencies. An example of its usage
 is:

Understanding AMD: require()

// Consider 'foo' and 'bar' are two external modules
// In this example, the 'exports' from the two modules loaded are passed as
// function arguments to the callback (foo and bar)
// so that they can similarly be accessed

require(['foo', 'bar'], function (foo, bar) {
 // rest of your code here
 foo.doSomething();
});

Dynamically-loaded Dependencies

define(function (require) {
 var isReady = false, foobar;

 // note the inline require within our module definition
 require(['foo', 'bar'], function (foo, bar) {
 isReady = true;
 foobar = foo() + bar();
 });

 // we can still return a module
 return {
 isReady: isReady,
 foobar: foobar
 };
});

Understanding AMD: plugins

The following is an example of defining an AMD-compatible
 plugin:
// With AMD, it's possible to load in assets of almost any kind
// including text-files and HTML. This enables us to have template
// dependencies which can be used to skin components either on
// page-load or dynamically.

define(['./templates', 'text!./template.md','css!./template.css'],
 function(templates, template){
 console.log(templates);
 // do some fun template stuff here.
 }
});

Note: Although css! is
 included for loading CSS dependencies in the above example, it's
 important to remember that this approach has some caveats such as it
 not being fully possible to establish when the CSS is fully loaded.
 Depending on how you approach your build, it may also result in CSS
 being included as a dependency in the optimized file, so use CSS as a
 loaded dependency in such cases with caution.

Loading AMD Modules Using RequireJS

require(['app/myModule'],
 function(myModule){
 // start the main module which in-turn
 // loads other modules
 var module = new myModule();
 module.doStuff();
});

This example could simply be looked at as requirejs(['app/myModule'], function(){})
 which indicates the loader's top level globals are being used. This is
 how to kick off top-level loading of modules with different AMD
 loaders however with a define()
 function, if it's passed a local require all require([]) examples apply to both types of
 loader (curl.js and RequireJS).

Loading AMD Modules Using curl.js

curl(['app/myModule.js'],
 function(myModule){
 // start the main module which in-turn
 // loads other modules
 var module = new myModule();
 module.doStuff();
});

Modules With Deferred Dependencies

// This could be compatible with jQuery's Deferred implementation,
// futures.js (slightly different syntax) or any one of a number
// of other implementations
define(['lib/Deferred'], function(Deferred){
 var defer = new Deferred();
 require(['lib/templates/?index.html','lib/data/?stats'],
 function(template, data){
 defer.resolve({ template: template, data:data });
 }
);
 return defer.promise();
});

Why Is AMD A Better Choice For Writing Modular
 JavaScript?

	Provides a clear proposal for how to approach defining
 flexible modules.

	Significantly cleaner than the present global namespace and
 <script> tag solutions
 many of us rely on. There's a clean way to declare stand-alone
 modules and dependencies they may have.

	Module definitions are encapsulated, helping us to avoid
 pollution of the global namespace.

	Works better than some alternative solutions (e.g. CommonJS,
 which we'll be looking at shortly). Doesn't have issues with
 cross-domain, local or debugging and doesn't have a reliance on
 server-side tools to be used. Most AMD loaders support loading
 modules in the browser without a build process.

	Provides a 'transport' approach for including multiple
 modules in a single file. Other approaches like CommonJS have yet
 to agree on a transport format.

	It's possible to lazy load scripts if this is needed.

Note: Many of the above could
 be said about YUI's module loading strategy as well.
Related Reading
The RequireJS
 Guide To AMD
What's
 the fastest way to load AMD modules?
AMD
 vs. CommonJS, what's the better format?
AMD
 Is Better For The Web Than CommonJS Modules
The Future Is
 Modules Not Frameworks
AMD
 No Longer A CommonJS Specification
On
 Inventing JavaScript Module Formats And Script Loaders
The
 AMD Mailing List

AMD Modules With Dojo

Defining AMD-compatible modules using Dojo is fairly
 straight-forward. As per above, define any module dependencies in an
 array as the first argument and provide a callback (factory) which will
 execute the module once the dependencies have been loaded. e.g:
define(["dijit/Tooltip"], function(Tooltip){
 //Our dijit tooltip is now available for local use
 new Tooltip(...);
});

Note the anonymous nature of the module which can now be both
 consumed by a Dojo asynchronous loader, RequireJS or the standard dojo.require()
 module loader that you may be used to using.
For those wondering about module referencing, there are some
 interesting gotchas that are useful to know here. Although the
 AMD-advocated way of referencing modules declares them in the dependency
 list with a set of matching arguments, this isn't supported by the Dojo
 1.6 build system - it really only works for AMD-compliant loaders.
 e.g:
define(["dojo/cookie", "dijit/Tooltip"], function(cookie, Tooltip){
 var cookieValue = cookie("cookieName");
 new Tooltip(...);
});

This has many advances over nested namespacing as modules no
 longer need to directly reference complete namespaces every time - all
 we require is the 'dojo/cookie' path in dependencies, which once aliased
 to an argument, can be referenced by that variable. This removes the
 need to repeatedly type out 'dojo.' in your applications.
Note: Although Dojo 1.6 doesn't
 officially support user-based AMD modules (nor asynchronous loading),
 it's possible to get this working with Dojo using a number of different
 script loaders. At present, all Dojo core and Dijit modules have been
 transformed to the AMD syntax and improved overall AMD support will
 likely land between 1.7 and 2.0.
The final gotcha to be aware of is that if you wish to continue
 using the Dojo build system or wish to migrate older modules to this
 newer AMD-style, the following more verbose version enables easier
 migration. Notice that dojo and dijit and referenced as dependencies
 too:
define(["dojo", "dijit", "dojo/cookie", "dijit/Tooltip"], function(dojo, dijit){
 var cookieValue = dojo.cookie("cookieName");
 new dijit.Tooltip(...);
});

AMD Module Design Patterns (Dojo)

As we've seen in previous sections, design patterns can be highly
 effective in improving how we approach structuring solutions to common
 development problems. John
 Hann has given some excellent presentations about AMD module
 design patterns covering the Singleton, Decorator, Mediator and others
 and I highly recommend checking out his slides
 if you get a chance.
A selection of AMD design patterns can be found below.
Decorator pattern:
// mylib/UpdatableObservable: a decorator for dojo/store/Observable
define(['dojo', 'dojo/store/Observable'], function (dojo, Observable) {
 return function UpdatableObservable (store) {

 var observable = dojo.isFunction(store.notify) ? store :
 new Observable(store);

 observable.updated = function(object) {
 dojo.when(object, function (itemOrArray) {
 dojo.forEach([].concat(itemOrArray), this.notify, this);
 };
 };

 return observable; // makes `new` optional
 };
});

// decorator consumer
// a consumer for mylib/UpdatableObservable

define(['mylib/UpdatableObservable'], function (makeUpdatable) {
 var observable, updatable, someItem;
 // ... here be code to get or create `observable`

 // ... make the observable store updatable
 updatable = makeUpdatable(observable); // `new` is optional!

 // ... later, when a cometd message arrives with new data item
 updatable.updated(updatedItem);
});

Adapter pattern
// 'mylib/Array' adapts `each` function to mimic jQuery's:
define(['dojo/_base/lang', 'dojo/_base/array'], function (lang, array) {
 return lang.delegate(array, {
 each: function (arr, lambda) {
 array.forEach(arr, function (item, i) {
 lambda.call(item, i, item); // like jQuery's each
 })
 }
 });
});

// adapter consumer
// 'myapp/my-module':
define(['mylib/Array'], function (array) {
 array.each(['uno', 'dos', 'tres'], function (i, esp) {
 // here, `this` == item
 });
});

AMD Modules With jQuery

The Basics

Unlike Dojo, jQuery really only comes with one file, however
 given the plugin-based nature of the library, we can demonstrate how
 straight-forward it is to define an AMD module that uses it
 below.
define(['js/jquery.js','js/jquery.color.js','js/underscore.js'],
 function($, colorPlugin, _){
 // Here we've passed in jQuery, the color plugin and Underscore
 // None of these will be accessible in the global scope, but we
 // can easily reference them below.

 // Pseudo-randomize an array of colors, selecting the first
 // item in the shuffled array
 var shuffleColor = _.first(_.shuffle(['#666','#333','#111']));

 // Animate the background-color of any elements with the class
 // 'item' on the page using the shuffled color
 $('.item').animate({'backgroundColor': shuffleColor });

 return {};
 // What we return can be used by other modules
 });

There is however something missing from this example and it's
 the concept of registration.

Registering jQuery As An Async-compatible Module

One of the key features that landed in jQuery 1.7 was support
 for registering jQuery as an asynchronous module. There are a number
 of compatible script loaders (including RequireJS and curl) which are
 capable of loading modules using an asynchronous module format and
 this means fewer hacks are required to get things working.
If a developer wants to use AMD and does not want their jQuery
 version leaking into the global space, they should call noConflict in their top level module that
 uses jQuery. In addition, since multiple versions of jQuery can be on
 a page there are special considerations that an AMD loader must
 account for, and so jQuery only registers with AMD loaders that have
 recognized these concerns, which are indicated by the loader
 specifying define.amd.jQuery.
 RequireJS and curl are two loaders that do so
The named AMD provides a safety blanket of being both robust and
 safe for most use-cases.
// Account for the existence of more than one global
// instances of jQuery in the document, cater for testing
// .noConflict()

var jQuery = this.jQuery || "jQuery",
$ = this.$ || "$",
originaljQuery = jQuery,
original$ = $;

define(['jquery'] , function ($) {
 $('.items').css('background','green');
 return function () {};
});

Smarter jQuery Plugins

I've recently discussed some ideas and examples of how jQuery
 plugins could be written using Universal Module Definition (UMD) patterns here.
 UMDs define modules that can work on both the client and server, as
 well as with all popular script loaders available at the moment.
 Whilst this is still a new area with a lot of concepts still being
 finalized, feel free to look at the code samples in the section title
 AMD && CommonJS below and let me know if
 you feel there's anything we could do better.

What Script Loaders & Frameworks Support AMD?

In-browser:
	RequireJS http://requirejs.org

	curl.js http://github.com/unscriptable/curl

	bdLoad http://bdframework.com/bdLoad

	Yabble http://github.com/jbrantly/yabble

	PINF http://github.com/pinf/loader-js

	(and more)

Server-side:
	RequireJS http://requirejs.org

	PINF http://github.com/pinf/loader-js

AMD Conclusions

The above are very trivial examples of just how useful AMD modules
 can truly be, but they hopefully provide a foundation for understanding
 how they work.
You may be interested to know that many visible large applications
 and companies currently use AMD modules as a part of their architecture.
 These include IBM and the BBC iPlayer, which highlight
 just how seriously this format is being considered by developers at an
 enterprise-level.
For more reasons why many developers are opting to use AMD modules
 in their applications, you may be interested in this
 post by James Burke.

CommonJS

A Module Format Optimized For The Server

CommonJS are a
 volunteer working group which aim to design, prototype and standardize
 JavaScript APIs. To date they've attempted to ratify standards for both
 modules
 and packages. The
 CommonJS module proposal specifies a simple API for declaring modules
 server-side and unlike AMD attempts to cover a broader set of concerns
 such as io, filesystem, promises and more.

Getting Started

From a structure perspective, a CommonJS module is a reusable
 piece of JavaScript which exports specific objects made available to any
 dependent code - there are typically no function wrappers around such
 modules (so you won't see define used
 here for example).
At a high-level they basically contain two primary parts: a free
 variable named exports which contains
 the objects a module wishes to make available to other modules and a
 require function that modules can use
 to import the exports of other modules.
Understanding CommonJS: require() and exports

// package/lib is a dependency we require
var lib = require('package/lib');

// some behaviour for our module
function foo(){
 lib.log('hello world!');
}

// export (expose) foo to other modules
exports.foo = foo;

Basic consumption of exports

// define more behaviour we would like to expose
function foobar(){
 this.foo = function(){
 console.log('Hello foo');
 }

 this.bar = function(){
 console.log('Hello bar');
 }
}

// expose foobar to other modules
exports.foobar = foobar;

// an application consuming 'foobar'

// access the module relative to the path
// where both usage and module files exist
// in the same directory

var foobar = require('./foobar').foobar,
 test = new foobar();

test.bar(); // 'Hello bar'

AMD-equivalent Of The First CommonJS Example

define(function(require){
 var lib = require('package/lib');

 // some behaviour for our module
 function foo(){
 lib.log('hello world!');
 }

 // export (expose) foo for other modules
 return {
 foobar: foo
 };
});

This can be done as AMD supports a simplified CommonJS
 wrapping feature.

Consuming Multiple Dependencies

app.js:
var modA = require('./foo');
var modB = require('./bar');

exports.app = function(){
 console.log('Im an application!');
}

exports.foo = function(){
 return modA.helloWorld();
}

bar.js:
exports.name = 'bar';

foo.js:
require('./bar');
exports.helloWorld = function(){
 return 'Hello World!!''
}

What Loaders & Frameworks Support CommonJS?

In-browser:
	curl.js http://github.com/unscriptable/curl

	SproutCore 1.1 http://sproutcore.com

	PINF http://github.com/pinf/loader-js

	(and more)

Server-side:
	Nodehttp://nodejs.org

	Narwhal https://github.com/tlrobinson/narwhal

	Perseverehttp://www.persvr.org/

	Wakandahttp://www.wakandasoft.com/

Is CommonJS Suitable For The Browser?

There are developers that feel CommonJS is better suited to
 server-side development which is one reason there's currently a level
 of disagreement over which format
 should and will be used as the de facto standard in the pre-Harmony
 age moving forward. Some of the arguments against CommonJS include a
 note that many CommonJS APIs address server-oriented features which
 one would simply not be able to implement at a browser-level in
 JavaScript - for example, io,
 system and js could be
 considered unimplementable by the nature of their
 functionality.
That said, it's useful to know how to structure CommonJS modules
 regardless so that we can better appreciate how they fit in when
 defining modules which may be used everywhere. Modules which have
 applications on both the client and server include validation,
 conversion and templating engines. The way some developers are
 approaching choosing which format to use is opting for CommonJS when a
 module can be used in a server-side environment and using AMD if this
 is not the case.
As AMD modules are capable of using plugins and can define more
 granular things like constructors and functions this makes sense.
 CommonJS modules are only able to define objects which can be tedious
 to work with if you're trying to obtain constructors out of
 them.
Although it's beyond the scope of this section, you may have
 also noticed that there were different types of 'require' methods
 mentioned when discussing AMD and CommonJS.
The concern with a similar naming convention is of course
 confusion and the community are currently split on the merits of a
 global require function. John Hann's suggestion here is that rather
 than calling it 'require', which would probably fail to achieve the
 goal of informing users about the different between a global and inner
 require, it may make more sense to rename the global loader method
 something else (e.g. the name of the library). It's for this reason
 that a loader like curl.js uses curl() as opposed to require.
Related Reading
Demystifying
 CommonJS Modules
JavaScript
 Growing Up
The
 RequireJS Notes On CommonJS
Taking
 Baby Steps With Node.js And CommonJS - Creating Custom
 Modules
Asynchronous
 CommonJS Modules for the Browser
The
 CommonJS Mailing List

AMD && CommonJS Competing, But Equally Valid
 Standards

Whilst this section has placed more emphasis on using AMD over
 CommonJS, the reality is that both formats are valid and have a
 use.
AMD adopts a browser-first approach to development, opting for
 asynchronous behavior and simplified backwards compatibility but it
 doesn't have any concept of File I/O. It supports objects, functions,
 constructors, strings, JSON and many other types of modules, running
 natively in the browser. It's incredibly flexible.
CommonJS on the other hand takes a server-first approach, assuming
 synchronous behavior, no global baggage as John Hann
 would refer to it as and it attempts to cater for the future (on the
 server). What we mean by this is that because CommonJS supports unwrapped
 modules, it can feel a little more close to the ES.next/Harmony
 specifications, freeing you of the define() wrapper that AMD enforces. CommonJS
 modules however only support objects as modules.
Although the idea of yet another module format may be daunting, you
 may be interested in some samples of work on hybrid AMD/CommonJS and
 Universal AMD/CommonJS modules.
Basic AMD Hybrid Format (John Hann)

define(function (require, exports, module){

 var shuffler = require('lib/shuffle');

 exports.randomize = function(input){
 return shuffler.shuffle(input);
 }
});

Note: this is basically the 'simplified CommonJS wrapper' that is
 supported in the AMD spec.

AMD/CommonJS Universal Module Definition (Variation 2, UMDjs)

/**
 * exports object based version, if you need to make a
 * circular dependency or need compatibility with
 * commonjs-like environments that are not Node.
 */
(function (define) {
 //The 'id' is optional, but recommended if this is
 //a popular web library that is used mostly in
 //non-AMD/Node environments. However, if want
 //to make an anonymous module, remove the 'id'
 //below, and remove the id use in the define shim.
 define('id', function (require, exports) {
 //If have dependencies, get them here
 var a = require('a');

 //Attach properties to exports.
 exports.name = value;
 });
}(typeof define === 'function' && define.amd ? define : function (id, factory) {
 if (typeof exports !== 'undefined') {
 //commonjs
 factory(require, exports);
 } else {
 //Create a global function. Only works if
 //the code does not have dependencies, or
 //dependencies fit the call pattern below.
 factory(function(value) {
 return window[value];
 }, (window[id] = {}));
 }
}));

Extensible UMD Plugins With (Variation by myself and Thomas
 Davis).

core.js

// Module/Plugin core
// Note: the wrapper code you see around the module is what enables
// us to support multiple module formats and specifications by
// mapping the arguments defined to what a specific format expects
// to be present. Our actual module functionality is defined lower
// down, where a named module and exports are demonstrated.

;(function (name, definition){
 var theModule = definition(),
 // this is considered "safe":
 hasDefine = typeof define === 'function' && define.amd,
 // hasDefine = typeof define === 'function',
 hasExports = typeof module !== 'undefined' && module.exports;

 if (hasDefine){ // AMD Module
 define(theModule);
 } else if (hasExports) { // Node.js Module
 module.exports = theModule;
 } else { // Assign to common namespaces or simply the global object (window)
 (this.jQuery || this.ender || this.$ || this)[name] = theModule;
 }
})('core', function () {
 var module = this;
 module.plugins = [];
 module.highlightColor = "yellow";
 module.errorColor = "red";

 // define the core module here and return the public API

 // this is the highlight method used by the core highlightAll()
 // method and all of the plugins highlighting elements different
 // colors
 module.highlight = function(el,strColor){
 // this module uses jQuery, however plain old JavaScript
 // or say, Dojo could be just as easily used.
 if(this.jQuery){
 jQuery(el).css('background', strColor);
 }
 }
 return {
 highlightAll:function(){
 module.highlight('div', module.highlightColor);
 }
 };

});

myExtension.js

;(function (name, definition) {
 var theModule = definition(),
 hasDefine = typeof define === 'function',
 hasExports = typeof module !== 'undefined' && module.exports;

 if (hasDefine) { // AMD Module
 define(theModule);
 } else if (hasExports) { // Node.js Module
 module.exports = theModule;
 } else { // Assign to common namespaces or simply the global object (window)

 // account for for flat-file/global module extensions
 var obj = null;
 var namespaces = name.split(".");
 var scope = (this.jQuery || this.ender || this.$ || this);
 for (var i = 0; i < namespaces.length; i++) {
 var packageName = namespaces[i];
 if (obj && i == namespaces.length - 1) {
 obj[packageName] = theModule;
 } else if (typeof scope[packageName] === "undefined") {
 scope[packageName] = {};
 }
 obj = scope[packageName];
 }

 }
})('core.plugin', function () {

 // define your module here and return the public API
 // this code could be easily adapted with the core to
 // allow for methods that overwrite/extend core functionality
 // to expand the highlight method to do more if you wished.
 return {
 setGreen: function (el) {
 highlight(el, 'green');
 },
 setRed: function (el) {
 highlight(el, errorColor);
 }
 };

});

app.js

$(function(){

 // the plugin 'core' is exposed under a core namespace in
 // this example which we first cache
 var core = $.core;

 // use then use some of the built-in core functionality to
 // highlight all divs in the page yellow
 core.highlightAll();

 // access the plugins (extensions) loaded into the 'plugin'
 // namespace of our core module:

 // Set the first div in the page to have a green background.
 core.plugin.setGreen("div:first");
 // Here we're making use of the core's 'highlight' method
 // under the hood from a plugin loaded in after it

 // Set the last div to the 'errorColor' property defined in
 // our core module/plugin. If you review the code further down
 // you'll see how easy it is to consume properties and methods
 // between the core and other plugins
 core.plugin.setRed('div:last');
});

ES Harmony

Modules Of The Future

TC39,
 the standards body charged with defining the syntax and semantics of
 ECMAScript and its future iterations is composed of a number of very
 intelligent developers. Some of these developers (such as Alex Russell) have been
 keeping a close eye on the evolution of JavaScript usage for large-scale
 development over the past few years and are acutely aware of the need
 for better language features for writing more modular JS.
For this reason, there are currently proposals for a number of
 exciting additions to the language including flexible modules
 that can work on both the client and server, a module
 loader and more.
 In this section, I'll be showing you some code samples of the syntax for
 modules in ES.next so you can get a taste of what's to come.
Note: Although Harmony is still
 in the proposal phases, you can already try out (partial) features of
 ES.next that address native support for writing modular JavaScript
 thanks to Google's Traceur
 compiler. To get up and running with Traceur in under a minute, read
 this getting
 started guide. There's also a JSConf presentation
 about it that's worth looking at if you're interested in learning more
 about the project.

Modules With Imports And Exports

If you've read through the sections on AMD and CommonJS modules
 you may be familiar with the concept of module dependencies (imports)
 and module exports (or, the public API/variables we allow other modules
 to consume). In ES.next, these concepts have been proposed in a slightly
 more succinct manner with dependencies being specified using an import keyword. export isn't greatly different to what we
 might expect and I think many developers will look at the code below and
 instantly 'get' it.
	import declarations bind a
 module's exports as local variables and may be renamed to avoid name
 collisions/conflicts.

	export declarations declare
 that a local-binding of a module is externally visible such that
 other modules may read the exports but can't modify them.
 Interestingly, modules may export child modules however can't export
 modules that have been defined elsewhere. You may also rename
 exports so their external name differs from their local
 names.

module staff{
 // specify (public) exports that can be consumed by
 // other modules
 export var baker = {
 bake: function(item){
 console.log('Woo! I just baked ' + item);
 }
 }
}

module skills{
 export var specialty = "baking";
 export var experience = "5 years";
}

module cakeFactory{

 // specify dependencies
 import baker from staff;

 // import everything with wildcards
 import * from skills;

 export var oven = {
 makeCupcake: function(toppings){
 baker.bake('cupcake', toppings);
 },
 makeMuffin: function(mSize){
 baker.bake('muffin', size);
 }
 }
}

Modules Loaded From Remote Sources

The module proposals also cater for modules which are remotely
 based (e.g. a third-party API wrapper) making it simplistic to load
 modules in from external locations. Here's an example of us pulling in
 the module we defined above and utilizing it:
module cakeFactory from 'http://addyosmani.com/factory/cakes.js';
cakeFactory.oven.makeCupcake('sprinkles');
cakeFactory.oven.makeMuffin('large');

Module Loader API

The module loader proposed describes a dynamic API for loading
 modules in highly controlled contexts. Signatures supported on the
 loader include load(url, moduleInstance,
 error) for loading modules, createModule(object, globalModuleReferences)
 and others.
 Here's another example of us dynamically loading in the module we
 initially defined. Note that unlike the last example where we pulled in
 a module from a remote source, the module loader API is better suited to
 dynamic contexts.
Loader.load('http://addyosmani.com/factory/cakes.js',
 function(cakeFactory){
 cakeFactory.oven.makeCupcake('chocolate');
 });

CommonJS-like Modules For The Server

For developers who are server-oriented, the module system proposed
 for ES.next isn't just constrained to looking at modules in the browser.
 Below for examples, you can see a CommonJS-like module proposed for use
 on the server:
// io/File.js
export function open(path) { ... };
export function close(hnd) { ... };

// compiler/LexicalHandler.js
module file from 'io/File';

import { open, close } from file;
export function scan(in) {
 try {
 var h = open(in) ...
 }
 finally { close(h) }
}

module lexer from 'compiler/LexicalHandler';
module stdlib from '@std';

//... scan(cmdline[0]) ...

Classes With Constructors, Getters & Setters

The notion of a class has always been a contentious issue with
 purists and we've so far got along with either falling back on
 JavaScript's prototypal
 nature or through using frameworks or abstractions that offer the
 ability to use class definitions in a form that
 desugars to the same prototypal behavior.
In Harmony, classes come as part of the language along with
 constructors and (finally) some sense of true privacy. In the following
 examples, I've included some inline comments to help you understand how
 classes are structured, but you may also notice the lack of the word
 'function' in here. This isn't a typo error: TC39 have been making a
 conscious effort to decrease our abuse of the function keyword for everything and the hope
 is that this will help simplify how we write code.
class Cake{

 // We can define the body of a class' constructor
 // function by using the keyword 'constructor' followed
 // by an argument list of public and private declarations.
 constructor(name, toppings, price, cakeSize){
 public name = name;
 public cakeSize = cakeSize;
 public toppings = toppings;
 private price = price;

 }

 // As a part of ES.next's efforts to decrease the unnecessary
 // use of 'function' for everything, you'll notice that it's
 // dropped for cases such as the following. Here an identifier
 // followed by an argument list and a body defines a new method

 addTopping(topping){
 public(this).toppings.push(topping);
 }

 // Getters can be defined by declaring get before
 // an identifier/method name and a curly body.
 get allToppings(){
 return public(this).toppings;
 }

 get qualifiesForDiscount(){
 return private(this).price > 5;
 }

 // Similar to getters, setters can be defined by using
 // the 'set' keyword before an identifier
 set cakeSize(cSize){
 if(cSize < 0){
 throw new Error('Cake must be a valid size -
 either small, medium or large');
 }
 public(this).cakeSize = cSize;
 }

}

ES Harmony Conclusions
As you can see, ES.next is coming with some exciting new
 additions. Although Traceur can be used to an extent to try our such
 features in the present, remember that it may not be the best idea to
 plan out your system to use Harmony (just yet). There are risks here
 such as specifications changing and a potential failure at the
 cross-browser level (IE9 for example will take a while to die) so your
 best bets until we have both spec finalization and coverage are AMD (for
 in-browser modules) and CommonJS (for those on the server).
Related Reading
A
 First Look At The Upcoming JavaScript Modules
David
 Herman On JavaScript/ES.Next (Video)
ES Harmony
 Module Proposals
ES
 Harmony Module Semantics/Structure Rationale
ES Harmony
 Class Proposals

Conclusions And Further Reading A Review

In this section we reviewed several of the options available for
 writing modular JavaScript using modern module formats. These formats have
 a number of advantages over using the (classical) module pattern alone
 including: avoiding a need for developers to create global variables for
 each module they create, better support for static and dynamic dependency
 management, improved compatibility with script loaders, better (optional)
 compatibility for modules on the server and more.
In short, I recommend trying out what's been suggested today as
 these formats offer a lot of power and flexibility that can help when
 building applications based on many reusable blocks of
 functionality.

Chapter 14. Bonus: jQuery Plugin Design Patterns

While well-known JavaScript design patterns can be extremely useful,
 another side of development could benefit from its own set of design
 patterns are jQuery plugins. The official jQuery plugin authoring
 guide offers a great starting point for getting into writing plugins
 and widgets, but let’s take it further.
Plugin development has evolved over the past few years. We no longer
 have just one way to write plugins, but many. In reality, certain patterns
 might work better for a particular problem or component than others.
Some developers may wish to use the jQuery UI widget factory; it’s great
 for complex, flexible UI components. Some may not. Some might like to
 structure their plugins more like modules (similar to the module pattern) or
 use a more formal module format such as AMD (asynchronous module
 definition). Some might want their plugins to harness the power of
 prototypal inheritance. Some might want to use custom events or pub/sub to
 communicate from plugins to the rest of their app. And so on.
I began to think about plugin patterns after noticing a number of
 efforts to create a one-size-fits-all jQuery plugin boilerplate. While such
 a boilerplate is a great idea in theory, the reality is that we rarely write
 plugins in one fixed way, using a single pattern all the time.
Let’s assume that you’ve tried your hand at writing your own jQuery
 plugins at some point and you’re comfortable putting together something that
 works. It’s functional. It does what it needs to do, but perhaps you feel it
 could be structured better. Maybe it could be more flexible or could solve
 more issues. If this sounds familiar and you aren’t sure of the differences
 between many of the different jQuery plugin patterns, then you might find
 what I have to say helpful.
My advice won’t provide solutions to every possible pattern, but it
 will cover popular patterns that developers use in the wild.
Note: This section is targeted at
 intermediate to advanced developers. If you don’t feel you’re ready for this
 just yet, I’m happy to recommend the official jQuery Plugins/Authoring
 guide, Ben Alman’s plugin style
 guide and Remy Sharp’s “Signs
 of a Poorly Written jQuery Plugin.”
Patterns

jQuery plugins have very few defined rules, which one of the reasons
 for the incredible diversity in how they’re implemented. At the most basic
 level, you can write a plugin simply by adding a new function property to
 jQuery’s $.fn object, as
 follows:
$.fn.myPluginName = function() {
 // your plugin logic
};

This is great for compactness, but the following would be a better
 foundation to build on:
(function($){
 $.fn.myPluginName = function() {
 // your plugin logic
 };
})(jQuery);

Here, we’ve wrapped our plugin logic in an anonymous function. To
 ensure that our use of the $ sign as a
 shorthand creates no conflicts between jQuery and other JavaScript
 libraries, we simply pass it to this closure, which maps it to the dollar
 sign, thus ensuring that it can’t be affected by anything outside of its
 scope of execution.
An alternative way to write this pattern would be to use $.extend, which enables you to define multiple
 functions at once and which sometimes make more sense semantically:
(function($){
 $.extend($.fn, {
 myplugin: function(){
 // your plugin logic
 }
 });
})(jQuery);

We could do a lot more to improve on all of this; and the first
 complete pattern we’ll be looking at today, the lightweight pattern,
 covers some best-practices that we can use for basic everyday plugin
 development and that takes into account common gotchas to look out
 for.
Note

While most of the patterns below will be explained, I recommend
 reading through the comments in the code, because they will offer more
 insight into why certain practices are best.
I should also mention that none of this would be possible without
 the previous work, input and advice of other members of the jQuery
 community. I’ve listed them inline with each pattern so that you can
 read up on their individual work if interested.

A Lightweight Start

Let’s begin our look at patterns with something basic that follows
 best-practices (including those in the jQuery plugin-authoring guide).
 This pattern is ideal for developers who are either new to plugin
 development or who just want to achieve something simple (such as a
 utility plugin). This lightweight start uses the following:
	Common best-practices, such as a semi-colon before the
 function’s invocation; window, document,
 undefined passed in as arguments; and adherence to the
 jQuery core style guidelines.

	A basic defaults object.

	A simple plugin constructor for logic related to the initial
 creation and the assignment of the element to work with.

	Extending the options with defaults.

	A lightweight wrapper around the constructor, which helps to
 avoid issues such as multiple instantiations.

/*!
 * jQuery lightweight plugin boilerplate
 * Original author: @ajpiano
 * Further changes, comments: @addyosmani
 * Licensed under the MIT license
 */

// the semi-colon before the function invocation is a safety
// net against concatenated scripts and/or other plugins
// that are not closed properly.
;(function ($, window, document, undefined) {

 // undefined is used here as the undefined global
 // variable in ECMAScript 3 and is mutable (i.e. it can
 // be changed by someone else). undefined isn't really
 // being passed in so we can ensure that its value is
 // truly undefined. In ES5, undefined can no longer be
 // modified.

 // window and document are passed through as local
 // variables rather than as globals, because this (slightly)
 // quickens the resolution process and can be more
 // efficiently minified (especially when both are
 // regularly referenced in your plugin).

 // Create the defaults once
 var pluginName = 'defaultPluginName',
 defaults = {
 propertyName: "value"
 };

 // The actual plugin constructor
 function Plugin(element, options) {
 this.element = element;

 // jQuery has an extend method that merges the
 // contents of two or more objects, storing the
 // result in the first object. The first object
 // is generally empty because we don't want to alter
 // the default options for future instances of the plugin
 this.options = $.extend({}, defaults, options) ;

 this._defaults = defaults;
 this._name = pluginName;

 this.init();
 }

 Plugin.prototype.init = function () {
 // Place initialization logic here
 // You already have access to the DOM element and
 // the options via the instance, e.g. this.element
 // and this.options
 };

 // A really lightweight plugin wrapper around the constructor,
 // preventing against multiple instantiations
 $.fn[pluginName] = function (options) {
 return this.each(function () {
 if (!$.data(this, 'plugin_' + pluginName)) {
 $.data(this, 'plugin_' + pluginName,
 new Plugin(this, options));
 }
 });
 }

})(jQuery, window, document);

Usage:
$('#elem').defaultPluginName({
 propertyName: 'a custom value'
});

Further Reading

	Plugins/Authoring,
 jQuery

	“Signs
 of a Poorly Written jQuery Plugin,” Remy Sharp

	“How to
 Create Your Own jQuery Plugin,” Elijah Manor

	“Style in
 jQuery Plugins and Why It Matters,” Ben Almon

	“Create
 Your First jQuery Plugin, Part 2,” Andrew Wirick

“Complete” Widget Factory

While the authoring guide is a great introduction to plugin
 development, it doesn't offer a great number of conveniences for obscuring
 away from common plumbing tasks that we have to deal with on a regular
 basis.
The jQuery UI Widget Factory is a solution to this problem that
 helps you build complex, stateful plugins based on object-oriented
 principles. It also eases communication with your plugin’s instance,
 obfuscating a number of the repetitive tasks that you would have to code
 when working with basic plugins.
In case you haven't come across these before, stateful plugins keep
 track of their current state, also allowing you to change properties of
 the plugin after it has been initialized.
One of the great things about the Widget Factory is that the
 majority of the jQuery UI library actually uses it as a base for its
 components. This means that if you’re looking for further guidance on
 structure beyond this template, you won’t have to look beyond the jQuery
 UI repository.
Back to patterns. This jQuery UI boilerplate does the
 following:
	Covers almost all supported default methods, including
 triggering events.

	Includes comments for all of the methods used, so that you’re
 never unsure of where logic should fit in your plugin.

/*!
 * jQuery UI Widget-factory plugin boilerplate (for 1.8/9+)
 * Author: @addyosmani
 * Further changes: @peolanha
 * Licensed under the MIT license
 */

;(function ($, window, document, undefined) {

 // define your widget under a namespace of your choice
 // with additional parameters e.g.
 // $.widget("namespace.widgetname", (optional) - an
 // existing widget prototype to inherit from, an object
 // literal to become the widget's prototype);

 $.widget("namespace.widgetname" , {

 //Options to be used as defaults
 options: {
 someValue: null
 },

 //Setup widget (e.g. element creation, apply theming
 // , bind events etc.)
 _create: function () {

 // _create will automatically run the first time
 // this widget is called. Put the initial widget
 // setup code here, then you can access the element
 // on which the widget was called via this.element.
 // The options defined above can be accessed
 // via this.options this.element.addStuff();
 },

 // Destroy an instantiated plugin and clean up
 // modifications the widget has made to the DOM
 destroy: function () {

 // this.element.removeStuff();
 // For UI 1.8, destroy must be invoked from the
 // base widget
 $.Widget.prototype.destroy.call(this);
 // For UI 1.9, define _destroy instead and don't
 // worry about
 // calling the base widget
 },

 methodB: function (event) {
 //_trigger dispatches callbacks the plugin user
 // can subscribe to
 // signature: _trigger("callbackName" , [eventObject],
 // [uiObject])
 // e.g. this._trigger("hover", e /*where e.type ==
 // "mouseenter"*/, { hovered: $(e.target)});
 this._trigger('methodA', event, {
 key: value
 });
 },

 methodA: function (event) {
 this._trigger('dataChanged', event, {
 key: value
 });
 },

 // Respond to any changes the user makes to the
 // option method
 _setOption: function (key, value) {
 switch (key) {
 case "someValue":
 //this.options.someValue = doSomethingWith(value);
 break;
 default:
 //this.options[key] = value;
 break;
 }

 // For UI 1.8, _setOption must be manually invoked
 // from the base widget
 $.Widget.prototype._setOption.apply(this, arguments);
 // For UI 1.9 the _super method can be used instead
 // this._super("_setOption", key, value);
 }
 });

})(jQuery, window, document);

Usage:
var collection = $('#elem').widgetName({
 foo: false
});

collection.widgetName('methodB');

Further Reading

	The
 jQuery UI Widget Factory

	“Introduction
 to Stateful Plugins and the Widget Factory,” Doug
 Neiner

	“Widget
 Factory” (explained), Scott Gonzalez

	“Understanding
 jQuery UI Widgets: A Tutorial,” Hacking at 0300

Namespacing And Nested Namespacing

Namespacing your code is a way to avoid collisions with other
 objects and variables in the global namespace. They’re important because
 you want to safeguard your plugin from breaking in the event that another
 script on the page uses the same variable or plugin names as yours. As a
 good citizen of the global namespace, you must also do your best not to
 prevent other developer's scripts from executing because of the same
 issues.
JavaScript doesn't really have built-in support for namespaces as
 other languages do, but it does have objects that can be used to achieve a
 similar effect. Employing a top-level object as the name of your
 namespace, you can easily check for the existence of another object on the
 page with the same name. If such an object does not exist, then we define
 it; if it does exist, then we simply extend it with our plugin.
Objects (or, rather, object literals) can be used to create nested
 namespaces, such as namespace.subnamespace.pluginName and so on. But
 to keep things simple, the namespacing boilerplate below should give you
 everything you need to get started with these concepts.
/*!
 * jQuery namespaced 'Starter' plugin boilerplate
 * Author: @dougneiner
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

;(function ($) {
 if (!$.myNamespace) {
 $.myNamespace = {};
 };

 $.myNamespace.myPluginName = function (el, myFunctionParam, options) {
 // To avoid scope issues, use 'base' instead of 'this'
 // to reference this class from internal events and functions.
 var base = this;

 // Access to jQuery and DOM versions of element
 base.$el = $(el);
 base.el = el;

 // Add a reverse reference to the DOM object
 base.$el.data("myNamespace.myPluginName" , base);

 base.init = function () {
 base.myFunctionParam = myFunctionParam;

 base.options = $.extend({},
 $.myNamespace.myPluginName.defaultOptions, options);

 // Put your initialization code here
 };

 // Sample Function, Uncomment to use
 // base.functionName = function(paramaters){
 //
 // };
 // Run initializer
 base.init();
 };

 $.myNamespace.myPluginName.defaultOptions = {
 myDefaultValue: ""
 };

 $.fn.mynamespace_myPluginName = function
 (myFunctionParam, options) {
 return this.each(function () {
 (new $.myNamespace.myPluginName(this,
 myFunctionParam, options));
 });
 };

})(jQuery);

Usage:
$('#elem').mynamespace_myPluginName({
 myDefaultValue: "foobar"
});

Further Reading

	“Namespacing
 in JavaScript,” Angus Croll

	“Use Your
 $.fn jQuery Namespace,” Ryan Florence

	“JavaScript
 Namespacing,” Peter Michaux

	“Modules
 and namespaces in JavaScript,” Axel Rauschmayer

Custom Events For Pub/Sub (With The Widget factory)

You may have used the Observer (Pub/Sub) pattern in the past to
 develop asynchronous JavaScript web applications. The basic idea here is
 that elements will publish event notifications when something interesting
 occurs in your application. Other elements then subscribe to or listen for
 these events and respond accordingly. This results in the logic for your
 application being significantly more decoupled (which is always
 good).
In jQuery, we have this idea that custom events provide a built-in
 means to implement a publish and subscribe system that’s quite similar to
 the Observer pattern. So, bind('eventType') is functionally equivalent to
 performing subscribe('eventType'), and
 trigger('eventType') is roughly
 equivalent to publish('eventType').
Some developers might consider the jQuery event system as having too
 much overhead to be used as a publish and subscribe system, but it’s been
 architected to be both reliable and robust for most use cases. In the
 following jQuery UI widget factory template, we’ll implement a basic
 custom event-based pub/sub pattern that allows our plugin to subscribe to
 event notifications from the rest of our application, which publishes
 them.
/*!
 * jQuery custom-events plugin boilerplate
 * Author: DevPatch
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

// In this pattern, we use jQuery's custom events to add
// pub/sub (publish/subscribe) capabilities to widgets.
// Each widget would publish certain events and subscribe
// to others. This approach effectively helps to decouple
// the widgets and enables them to function independently.

;(function ($, window, document, undefined) {
 $.widget("ao.eventStatus", {
 options: {

 },

 _create : function() {
 var self = this;

 //self.element.addClass("my-widget");

 //subscribe to 'myEventStart'
 self.element.bind("myEventStart", function(e) {
 console.log("event start");
 });

 //subscribe to 'myEventEnd'
 self.element.bind("myEventEnd", function(e) {
 console.log("event end");
 });

 //unsubscribe to 'myEventStart'
 //self.element.unbind("myEventStart", function(e){
 ///console.log("unsubscribed to this event");
 //});
 },

 destroy: function(){
 $.Widget.prototype.destroy.apply(this, arguments);
 },
 });
})(jQuery, window , document);

// Publishing event notifications
// $(".my-widget").trigger("myEventStart");
// $(".my-widget").trigger("myEventEnd");

Usage:
var el = $('#elem');
el.eventStatus();
el.eventStatus().trigger('myEventStart');

Further Reading

	“Communication
 Between jQuery UI Widgets,” Benjamin Sternthal

Prototypal Inheritance With The DOM-To-Object Bridge
 Pattern

In JavaScript, we don’t have the traditional notion of classes that
 you would find in other classical programming languages, but we do have
 prototypal inheritance. With prototypal inheritance, an object inherits
 from another object. And we can apply this concept to jQuery plugin
 development.
Alex Sexton and Scott Gonzalez have looked at this
 topic in detail. In sum, they found that for organized modular
 development, clearly separating the object that defines the logic for a
 plugin from the plugin-generation process itself can be beneficial. The
 benefit is that testing your plugin’s code becomes easier, and you can
 also adjust the way things work behind the scenes without altering the way
 that any object APIs you’ve implemented are used.
In Sexton’s previous post on this topic, he implements a bridge that
 enables you to attach your general logic to a particular plugin, which
 we’ve implemented in the template below. Another advantage of this pattern
 is that you don’t have to constantly repeat the same plugin initialization
 code, thus ensuring that the concepts behind DRY development are
 maintained. Some developers might also find this pattern easier to read
 than others.
/*!
 * jQuery prototypal inheritance plugin boilerplate
 * Author: Alex Sexton, Scott Gonzalez
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

// myObject - an object representing a concept that you want
// to model (e.g. a car)
var myObject = {
 init: function(options, elem) {
 // Mix in the passed-in options with the default options
 this.options = $.extend({}, this.options, options);

 // Save the element reference, both as a jQuery
 // reference and a normal reference
 this.elem = elem;
 this.$elem = $(elem);

 // Build the DOM's initial structure
 this._build();

 // return this so that we can chain and use the bridge with less code.
 return this;
 },
 options: {
 name: "No name"
 },
 _build: function(){
 //this.$elem.html('<h1>'+this.options.name+'</h1>');
 },
 myMethod: function(msg){
 // You have direct access to the associated and cached
 // jQuery element
 // this.$elem.append('<p>'+msg+'</p>');
 }
};

// Object.create support test, and fallback for browsers without it
if (typeof Object.create !== 'function') {
 Object.create = function (o) {
 function F() {}
 F.prototype = o;
 return new F();
 };
}

// Create a plugin based on a defined object
$.plugin = function(name, object) {
 $.fn[name] = function(options) {
 return this.each(function() {
 if (! $.data(this, name)) {
 $.data(this, name, Object.create(object).init(
 options, this));
 }
 });
 };
};

Usage:
$.plugin('myobj', myObject);

$('#elem').myobj({name: "John"});

var collection = $('#elem').data('myobj');
collection.myMethod('I am a method');

Further Reading

	“Using Inheritance
 Patterns To Organize Large jQuery Applications,” Alex
 Sexton

	“How
 to Manage Large Applications With jQuery or Whatever”
 (further discussion), Alex Sexton

	“Practical
 Example of the Need for Prototypal Inheritance,” Neeraj
 Singh

	“Prototypal
 Inheritance in JavaScript,” Douglas Crockford

jQuery UI Widget Factory Bridge

If you liked the idea of generating plugins based on objects in the
 last design pattern, then you might be interested in a method found in the
 jQuery UI Widget Factory called $.widget.bridge. This bridge basically serves as
 a middle layer between a JavaScript object that is created using $.widget and jQuery’s API, providing a more
 built-in solution to achieving object-based plugin definition.
 Effectively, we’re able to create stateful plugins using a custom
 constructor.
Moreover, $.widget.bridge
 provides access to a number of other capabilities, including the
 following:
	Both public and private methods are handled as one would expect
 in classical OOP (i.e. public methods are exposed, while calls to
 private methods are not possible);

	Automatic protection against multiple initializations;

	Automatic generation of instances of a passed object, and
 storage of them within the selection’s internal $.data cache;

	Options can be altered post-initialization.

For further information on how to use this pattern, look at the
 comments in the boilerplate below:
/*!
 * jQuery UI Widget factory "bridge" plugin boilerplate
 * Author: @erichynds
 * Further changes, additional comments: @addyosmani
 * Licensed under the MIT license
 */

// a "widgetName" object constructor
// required: this must accept two arguments,
// options: an object of configuration options
// element: the DOM element the instance was created on
var widgetName = function(options, element){
 this.name = "myWidgetName";
 this.options = options;
 this.element = element;
 this._init();
}

// the "widgetName" prototype
widgetName.prototype = {

 // _create will automatically run the first time this
 // widget is called
 _create: function(){
 // creation code
 },

 // required: initialization logic for the plugin goes into _init
 // This fires when your instance is first created and when
 // attempting to initialize the widget again (by the bridge)
 // after it has already been initialized.
 _init: function(){
 // init code
 },

 // required: objects to be used with the bridge must contain an
 // 'option'. Post-initialization, the logic for changing options
 // goes here.
 option: function(key, value){

 // optional: get/change options post initialization
 // ignore if you don't require them.

 // signature: $('#foo').bar({ cool:false });
 if($.isPlainObject(key)){
 this.options = $.extend(true, this.options, key);

 // signature: $('#foo').option('cool'); - getter
 } else if (key && typeof value === "undefined"){
 return this.options[key];

 // signature: $('#foo').bar('option', 'baz', false);
 } else {
 this.options[key] = value;
 }

 // required: option must return the current instance.
 // When re-initializing an instance on elements, option
 // is called first and is then chained to the _init method.
 return this;
 },

 // notice no underscore is used for public methods
 publicFunction: function(){
 console.log('public function');
 },

 // underscores are used for private methods
 _privateFunction: function(){
 console.log('private function');
 }
};

Usage:
// connect the widget obj to jQuery's API under the "foo" namespace
$.widget.bridge("foo", widgetName);

// create an instance of the widget for use
var instance = $('#foo').foo({
 baz: true
});

// your widget instance exists in the elem's data
console.log(instance.data("foo").element); // => #elem element

// bridge allows you to call public methods...
instance.foo("publicFunction"); // => "public method"

// bridge prevents calls to internal methods
instance.foo("_privateFunction"); // => #elem element

Further Reading

	“Using
 $.widget.bridge Outside of the Widget Factory,” Eric
 Hynds

jQuery Mobile Widgets With The Widget factory

jQuery mobile is a framework that encourages the design of
 ubiquitous Web applications that work both on popular mobile devices and
 platforms and on the desktop. Rather than writing unique applications for
 each device or OS, you simply write the code once and it should ideally
 run on many of the A-, B- and C-grade browsers out there at the
 moment.
The fundamentals behind jQuery mobile can also be applied to plugin
 and widget development, as seen in some of the core jQuery mobile widgets
 used in the official library suite. What’s interesting here is that even
 though there are very small, subtle differences in writing a
 “mobile”-optimized widget, if you’re familiar with using the jQuery UI
 Widget Factory, you should be able to start writing these right
 away.
The mobile-optimized widget below has a number of interesting
 differences than the standard UI widget pattern we saw earlier:
	$.mobile.widget is referenced
 as an existing widget prototype from which to inherit. For standard
 widgets, passing through any such prototype is unnecessary for basic
 development, but using this jQuery-mobile specific widget prototype
 provides internal access to further “options” formatting.

	You’ll notice in _create() a
 guide on how the official jQuery mobile widgets handle element
 selection, opting for a role-based approach that better fits the jQM
 mark-up. This isn’t at all to say that standard selection isn’t
 recommended, only that this approach might make more sense given the
 structure of jQM pages.

	Guidelines are also provided in comment form for applying your
 plugin methods on pagecreate as
 well as for selecting the plugin application via data roles and data
 attributes.

/*!
 * (jQuery mobile) jQuery UI Widget-factory plugin boilerplate (for 1.8/9+)
 * Author: @scottjehl
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

;(function ($, window, document, undefined) {

 //define a widget under a namespace of your choice
 //here 'mobile' has been used in the first parameter
 $.widget("mobile.widgetName", $.mobile.widget, {

 //Options to be used as defaults
 options: {
 foo: true,
 bar: false
 },

 _create: function() {
 // _create will automatically run the first time this
 // widget is called. Put the initial widget set-up code
 // here, then you can access the element on which
 // the widget was called via this.element
 // The options defined above can be accessed via
 // this.options

 //var m = this.element,
 //p = m.parents(":jqmData(role='page')"),
 //c = p.find(":jqmData(role='content')")
 },

 // Private methods/props start with underscores
 _dosomething: function(){ ... },

 // Public methods like these below can can be called
 // externally:
 // $("#myelem").foo("enable", arguments);

 enable: function() { ... },

 // Destroy an instantiated plugin and clean up modifications
 // the widget has made to the DOM
 destroy: function () {
 //this.element.removeStuff();
 // For UI 1.8, destroy must be invoked from the
 // base widget
 $.Widget.prototype.destroy.call(this);
 // For UI 1.9, define _destroy instead and don't
 // worry about calling the base widget
 },

 methodB: function (event) {
 //_trigger dispatches callbacks the plugin user can
 // subscribe to
 //signature: _trigger("callbackName" , [eventObject],
 // [uiObject])
 // e.g. this._trigger("hover", e /*where e.type ==
 // "mouseenter"*/, { hovered: $(e.target)});
 this._trigger('methodA', event, {
 key: value
 });
 },

 methodA: function (event) {
 this._trigger('dataChanged', event, {
 key: value
 });
 },

 //Respond to any changes the user makes to the option method
 _setOption: function (key, value) {
 switch (key) {
 case "someValue":
 //this.options.someValue = doSomethingWith(value);
 break;
 default:
 //this.options[key] = value;
 break;
 }

 // For UI 1.8, _setOption must be manually invoked from
 // the base widget
 $.Widget.prototype._setOption.apply(this, arguments);
 // For UI 1.9 the _super method can be used instead
 // this._super("_setOption", key, value);
 }
 });

})(jQuery, window, document);

Usage:
var instance = $('#foo').widgetName({
 foo: false
});

instance.widgetName('methodB');

We can also self-initialize this widget whenever a new page in
 jQuery Mobile is created. jQuery Mobile's "page" plugin dispatches a
 "create" event when a jQuery Mobile page (found via data-role=page attr)
 is first initialized.We can listen for that event (called "pagecreate")
 and run our plugin automatically whenever a new page is created.
$(document).bind("pagecreate", function (e) {
 // In here, e.target refers to the page that was created
 // (it's the target of the pagecreate event)
 // So, we can simply find elements on this page that match a
 // selector of our choosing, and call our plugin on them.
 // Here's how we'd call our "foo" plugin on any element with a
 // data-role attribute of "foo":
 $(e.target).find("[data-role='foo']").foo(options);

 // Or, better yet, let's write the selector accounting for the configurable
 // data-attribute namespace
 $(e.target).find(":jqmData(role='foo')").foo(options);
});

That's it. Now you can simply reference the script containing your
 widget and pagecreate binding in a page running jQuery Mobile site, and it
 will automatically run like any other jQuery Mobile plugin.

RequireJS And The jQuery UI Widget Factory

RequireJS is a script loader that provides a clean solution for
 encapsulating application logic inside manageable modules. It’s able to
 load modules in the correct order (through its order plugin); it
 simplifies the process of combining scripts via its excellent optimizer;
 and it provides the means for defining module dependencies on a per-module
 basis.
James Burke has written a comprehensive set of tutorials on getting
 started with RequireJS. But what if you’re already familiar with it and
 would like to wrap your jQuery UI widgets or plugins in a
 RequireJS-compatible module wrapper?.
In the boilerplate pattern below, we demonstrate how a compatible
 widget can be defined that does the following:
	Allows the definition of widget module dependencies, building on
 top of the previous jQuery UI boilerplate presented earlier;

	Demonstrates one approach to passing in HTML template assets for
 creating templated widgets with jQuery (in conjunction with the jQuery
 tmpl plugin) (View the comments in _create().)

	Includes a quick tip on adjustments that you can make to your
 widget module if you wish to later pass it through the RequireJS
 optimizer

/*!
 * jQuery UI Widget + RequireJS module boilerplate (for 1.8/9+)
 * Authors: @jrburke, @addyosmani
 * Licensed under the MIT license
 */

// Note from James:
//
// This assumes you are using the RequireJS+jQuery file, and
// that the following files are all in the same directory:
//
// - require-jquery.js
// - jquery-ui.custom.min.js (custom jQuery UI build with widget factory)
// - templates/
// - asset.html
// - ao.myWidget.js

// Then you can construct the widget like so:

//ao.myWidget.js file:
define("ao.myWidget", ["jquery", "text!templates/asset.html", "jquery-ui.custom.min","jquery.tmpl"], function ($, assetHtml) {

 // define your widget under a namespace of your choice
 // 'ao' is used here as a demonstration
 $.widget("ao.myWidget", {

 // Options to be used as defaults
 options: {},

 // Set up widget (e.g. create element, apply theming,
 // bind events, etc.)
 _create: function () {

 // _create will automatically run the first time
 // this widget is called. Put the initial widget
 // set-up code here, then you can access the element
 // on which the widget was called via this.element.
 // The options defined above can be accessed via
 // this.options

 //this.element.addStuff();
 //this.element.addStuff();
 //this.element.tmpl(assetHtml).appendTo(this.content);
 },

 // Destroy an instantiated plugin and clean up modifications
 // that the widget has made to the DOM
 destroy: function () {
 //t his.element.removeStuff();
 // For UI 1.8, destroy must be invoked from the base
 // widget
 $.Widget.prototype.destroy.call(this);
 // For UI 1.9, define _destroy instead and don't worry
 // about calling the base widget
 },

 methodB: function (event) {
 // _trigger dispatches callbacks the plugin user can
 // subscribe to
 //signature: _trigger("callbackName" , [eventObject],
 // [uiObject])
 this._trigger('methodA', event, {
 key: value
 });
 },

 methodA: function (event) {
 this._trigger('dataChanged', event, {
 key: value
 });
 },

 //Respond to any changes the user makes to the option method
 _setOption: function (key, value) {
 switch (key) {
 case "someValue":
 //this.options.someValue = doSomethingWith(value);
 break;
 default:
 //this.options[key] = value;
 break;
 }

 // For UI 1.8, _setOption must be manually invoked from
 // the base widget
 $.Widget.prototype._setOption.apply(this, arguments);
 // For UI 1.9 the _super method can be used instead
 //this._super("_setOption", key, value);
 }

 //somewhere assetHtml would be used for templating, depending
 // on your choice.
 });
});

Usage:
index.html:
<script data-main="scripts/main" src="http://requirejs.org/docs/release/1.0.1/minified/require.js"></script>

main.js
require({

 paths: {
 'jquery': 'https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min',
 'jqueryui': 'https://ajax.googleapis.com/ajax/libs/jqueryui/1.8.18/jquery-ui.min',
 'boilerplate': '../patterns/jquery.widget-factory.requirejs.boilerplate'
 }
}, ['require', 'jquery', 'jqueryui', 'boilerplate'],
function (req, $) {

 $(function () {

 var instance = $('#elem').myWidget();
 instance.myWidget('methodB');

 });
});

Further Reading

	Using
 RequireJS with jQuery, Rebecca Murphey

	“Fast
 Modular Code With jQuery and RequireJS,” James Burke

	“jQuery’s
 Best Friends,” Alex Sexton

	“Managing
 Dependencies With RequireJS,” Ruslan Matveev

Globally And Per-Call Overridable Options (Best Options
 Pattern)

For our next pattern, we’ll look at an optimal approach to
 configuring options and defaults for your plugin. The way you’re probably
 familiar with defining plugin options is to pass through an object literal
 of defaults to $.extend, as
 demonstrated in our basic plugin boilerplate.
If, however, you’re working with a plugin with many customizable
 options that you would like users to be able to override either globally
 or on a per-call level, then you can structure things a little
 differently.
Instead, by referring to an options object defined within the plugin
 namespace explicitly (for example, $fn.pluginName.options) and merging this with
 any options passed through to the plugin when it is initially invoked,
 users have the option of either passing options through during plugin
 initialization or overriding options outside of the plugin (as
 demonstrated here).
/*!
 * jQuery 'best options' plugin boilerplate
 * Author: @cowboy
 * Further changes: @addyosmani
 * Licensed under the MIT license
 */

;(function ($, window, document, undefined) {

 $.fn.pluginName = function (options) {

 // Here's a best-practice for overriding 'defaults'
 // with specified options. Note how, rather than a
 // regular defaults object being passed as the second
 // parameter, we instead refer to $.fn.pluginName.options
 // explicitly, merging it with the options passed directly
 // to the plugin. This allows us to override options both
 // globally and on a per-call level.

 options = $.extend({}, $.fn.pluginName.options, options);

 return this.each(function () {

 var elem = $(this);

 });
 };

 // Globally overriding options
 // Here are our publicly accessible default plugin options
 // that are available in case the user doesn't pass in all
 // of the values expected. The user is given a default
 // experience but can also override the values as necessary.
 // e.g. $fn.pluginName.key ='otherval';

 $.fn.pluginName.options = {

 key: "value",
 myMethod: function (elem, param) {

 }
 };

})(jQuery, window, document);

Usage:
$('#elem').pluginName({
 key: "foobar"
});

Further Reading

	jQuery
 Pluginization and the accompanying
 gist, Ben Alman

A Highly Configurable And Mutable Plugin

Like Alex Sexton’s pattern, the following logic for our plugin isn’t
 nested in a jQuery plugin itself. We instead define our plugin’s logic
 using a constructor and an object literal defined on its prototype, using
 jQuery for the actual instantiation of the plugin object.
Customization is taken to the next level by employing two little
 tricks, one of which you’ve seen in previous patterns:
	Options can be overridden both globally and per collection of
 elements;

	Options can be customized on a per-element level through HTML5 data
 attributes (as shown below). This facilitates plugin behavior that can
 be applied to a collection of elements but then customized inline
 without the need to instantiate each element with a different default
 value.

You don’t see the latter option in the wild too often, but it can be
 a significantly cleaner solution (as long as you don’t mind the inline
 approach). If you’re wondering where this could be useful, imagine writing
 a draggable plugin for a large set of elements. You could go about
 customizing their options like this:
javascript
$('.item-a').draggable({'defaultPosition':'top-left'});
$('.item-b').draggable({'defaultPosition':'bottom-right'});
$('.item-c').draggable({'defaultPosition':'bottom-left'});
//etc

But using our patterns inline approach, the following would be
 possible:
javascript
$('.items').draggable();

html
<li class="item" data-plugin-options='{"defaultPosition":"top-left"}'></div>
<li class="item" data-plugin-options='{"defaultPosition":"bottom-left"}'></div>

And so on. You may well have a preference for one of these
 approaches, but it is another potentially useful pattern to be aware
 of.
/*
 * 'Highly configurable' mutable plugin boilerplate
 * Author: @markdalgleish
 * Further changes, comments: @addyosmani
 * Licensed under the MIT license
 */

// Note that with this pattern, as per Alex Sexton's, the plugin logic
// hasn't been nested in a jQuery plugin. Instead, we just use
// jQuery for its instantiation.

;(function($, window, document, undefined){

 // our plugin constructor
 var Plugin = function(elem, options){
 this.elem = elem;
 this.$elem = $(elem);
 this.options = options;

 // This next line takes advantage of HTML5 data attributes
 // to support customization of the plugin on a per-element
 // basis. For example,
 // <div class=item' data-plugin-options='{"message":"Goodbye World!"}'></div>
 this.metadata = this.$elem.data('plugin-options');
 };

 // the plugin prototype
 Plugin.prototype = {
 defaults: {
 message: 'Hello world!'
 },

 init: function() {
 // Introduce defaults that can be extended either
 // globally or using an object literal.
 this.config = $.extend({}, this.defaults, this.options,
 this.metadata);

 // Sample usage:
 // Set the message per instance:
 // $('#elem').plugin({ message: 'Goodbye World!'});
 // or
 // var p = new Plugin(document.getElementById('elem'),
 // { message: 'Goodbye World!'}).init()
 // or, set the global default message:
 // Plugin.defaults.message = 'Goodbye World!'

 this.sampleMethod();
 return this;
 },

 sampleMethod: function() {
 // e.g. show the currently configured message
 // console.log(this.config.message);
 }
 }

 Plugin.defaults = Plugin.prototype.defaults;

 $.fn.plugin = function(options) {
 return this.each(function() {
 new Plugin(this, options).init();
 });
 };

 //optional: window.Plugin = Plugin;

})(jQuery, window , document);

Usage:
$('#elem').plugin({
 message: "foobar"
});

Further Reading

	“Creating
 Highly Configurable jQuery Plugins,” Mark Dalgleish

	“Writing
 Highly Configurable jQuery Plugins, Part 2,” Mark
 Dalgleish

UMD: AMD And CommonJS-Compatible Modules For Plugins

Whilst many of the plugin and widget patterns presented above are
 acceptable for general use, they aren’t without their caveats. Some
 require jQuery or the jQuery UI Widget Factory to be present in order to
 function, while only a few could be easily adapted to work well as
 globally compatible modules in both the browser and other
 environments.
We've already explored both AMD and CommonJS in the last chapter,
 but imagine how useful it would be if we could define and load plugin
 modules compatible with AMD, CommonJS and other standards that are also
 compatible with different environments (client-side, server-side and
 beyond).
To provide a solution for this problem, a number of developers
 including James Burke, myself, Thomas Davis and Ryan Florence have been
 working on an effort known as UMD (or Universal Module Definition). The
 goal of our efforts has been to provide a set of agreed upon patterns for
 plugins that can work in all environments. At present, a number of such
 boilerplates have been completed and are available on the UMD group repo
 https://github.com/umdjs/umd.
One such pattern we’ve worked on for jQuery
 plugins appears below and has the following features:
	A core/base plugin is loaded into a $.core namespace, which can then be easily
 extended using plugin extensions via the namespacing pattern. Plugins
 loaded via script tags automatically populate a plugin namespace under core (i.e. $.core.plugin.methodName()).

	The pattern can be quite nice to work with because plugin
 extensions can access properties and methods defined in the base or,
 with a little tweaking, override default behavior so that it can be
 extended to do more.

	A loader isn’t required at all to make this pattern fully
 function.

usage.html
<script type="text/javascript" src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
<script type="text/javascript" src="pluginCore.js"></script>
<script type="text/javascript" src="pluginExtension.js"></script>

<script type="text/javascript">

$(function(){

 // Our plugin 'core' is exposed under a core namespace in
 // this example, which we first cache
 var core = $.core;

 // Then use use some of the built-in core functionality to
 // highlight all divs in the page yellow
 core.highlightAll();

 // Access the plugins (extensions) loaded into the 'plugin'
 // namespace of our core module:

 // Set the first div in the page to have a green background.
 core.plugin.setGreen("div:first");
 // Here we're making use of the core's 'highlight' method
 // under the hood from a plugin loaded in after it

 // Set the last div to the 'errorColor' property defined in
 // our core module/plugin. If you review the code further down,
 // you'll see how easy it is to consume properties and methods
 // between the core and other plugins
 core.plugin.setRed('div:last');
});

</script>

pluginCore.js
// Module/Plugin core
// Note: the wrapper code you see around the module is what enables
// us to support multiple module formats and specifications by
// mapping the arguments defined to what a specific format expects
// to be present. Our actual module functionality is defined lower
// down, where a named module and exports are demonstrated.
//
// Note that dependencies can just as easily be declared if required
// and should work as demonstrated earlier with the AMD module examples.

(function (name, definition){
 var theModule = definition(),
 // this is considered "safe":
 hasDefine = typeof define === 'function' && define.amd,
 // hasDefine = typeof define === 'function',
 hasExports = typeof module !== 'undefined' && module.exports;

 if (hasDefine){ // AMD Module
 define(theModule);
 } else if (hasExports) { // Node.js Module
 module.exports = theModule;
 } else { // Assign to common namespaces or simply the global object (window)
 (this.jQuery || this.ender || this.$ || this)[name] = theModule;
 }
})('core', function () {
 var module = this;
 module.plugins = [];
 module.highlightColor = "yellow";
 module.errorColor = "red";

 // define the core module here and return the public API

 // This is the highlight method used by the core highlightAll()
 // method and all of the plugins highlighting elements different
 // colors
 module.highlight = function(el,strColor){
 if(this.jQuery){
 jQuery(el).css('background', strColor);
 }
 }
 return {
 highlightAll:function(){
 module.highlight('div', module.highlightColor);
 }
 };

});

pluginExtension.js
// Extension to module core

(function (name, definition) {
 var theModule = definition(),
 hasDefine = typeof define === 'function',
 hasExports = typeof module !== 'undefined' && module.exports;

 if (hasDefine) { // AMD Module
 define(theModule);
 } else if (hasExports) { // Node.js Module
 module.exports = theModule;
 } else { // Assign to common namespaces or simply the global object (window)

 // account for for flat-file/global module extensions
 var obj = null;
 var namespaces = name.split(".");
 var scope = (this.jQuery || this.ender || this.$ || this);
 for (var i = 0; i < namespaces.length; i++) {
 var packageName = namespaces[i];
 if (obj && i == namespaces.length - 1) {
 obj[packageName] = theModule;
 } else if (typeof scope[packageName] === "undefined") {
 scope[packageName] = {};
 }
 obj = scope[packageName];
 }

 }
})('core.plugin', function () {

 // Define your module here and return the public API.
 // This code could be easily adapted with the core to
 // allow for methods that overwrite and extend core functionality
 // in order to expand the highlight method to do more if you wish.
 return {
 setGreen: function (el) {
 highlight(el, 'green');
 },
 setRed: function (el) {
 highlight(el, errorColor);
 }
 };

});

Whilst work on improving these patterns is ongoing, please do feel
 free to check out the patterns suggested to date as you may find them
 helpful.
Further Reading

	“Using AMD
 Loaders to Write and Manage Modular JavaScript,” John
 Hann

	“Demystifying CommonJS
 Modules,” Alex Young

	“AMD
 Module Patterns: Singleton,” John Hann

	“Run-Anywhere
 JavaScript Modules Boilerplate Code,” Kris Zyp

	“Standards
 And Proposals for JavaScript Modules And jQuery,” James
 Burke

What Makes A Good Plugin Beyond Patterns?

At the end of the day, patterns are just one aspect of plugin
 development. And before we wrap up, here are my criteria for selecting
 third-party plugins, which will hopefully help developers write
 them.
Quality Do your best to adhere to
 best-practices with both the JavaScript and jQuery that you write. Are
 your solutions optimal? Do they follow the jQuery Core
 Style Guidelines? If not, is your code at least relatively clean
 and readable?
Compatibility Which versions of
 jQuery is your plugin compatible with? Have you tested it with the latest
 builds? If the plugin was written before jQuery 1.6, then it might have
 issues with attributes, because the way we approach them changed with that
 release. New versions of jQuery offer improvements and opportunities for
 the jQuery project to improve on what the core library offers. With this
 comes occasional breakages (mainly in major releases) as we move towards a
 better way of doing things. I’d like to see plugin authors update their
 code when necessary or, at a minimum, test their plugins with new versions
 to make sure everything works as expected.
Reliability Your plugin should
 come with its own set of unit tests. Not only do these prove your plugin
 actually works, but they can also improve the design without breaking it
 for end users. I consider unit tests essential for any serious jQuery
 plugin that is meant for a production environment, and they’re not that
 hard to write. For an excellent guide to automated JavaScript testing with
 QUnit, you may be interested in “Automating
 JavaScript Testing With QUnit,” by Jorn Zaefferer.
Performance If the plugin needs
 to perform tasks that require a lot of computing power or that heavily
 manipulates the DOM, then you should follow best-practices that minimize
 this. Use jsPerf.com to test
 segments of your code so that you’re aware of how well it performs in
 different browsers before releasing the plugin.
Documentation If you intend for
 other developers to use your plugin, ensure that it’s well documented.
 Document your API. What methods and options does the plugin support? Does
 it have any gotchas that users need to be aware of? If users cannot figure
 out how to use your plugin, they’ll likely look for an alternative. Also,
 do your best to comment the code. This is by far the best gift you could
 give to other developers. If someone feels they can navigate your code
 base well enough to fork it or improve it, then you’ve done a good
 job.
Likelihood of maintenance When
 releasing a plugin, estimate how much time you’ll have to devote to
 maintenance and support. We all love to share our plugins with the
 community, but you need to set expectations for your ability to answer
 questions, address issues and make improvements. This can be done simply
 by stating your intentions for maintenance in the
 README file, and let users decide whether to make
 fixes themselves.
In this section, we’ve explored several time-saving design patterns
 and best-practices that can be employed to improve your plugin development
 process. Some are better suited to certain use cases than others, but I
 hope that the code comments that discuss the ins and outs of these
 variations on popular plugins and widgets were useful.
Remember, when selecting a pattern, be practical. Don’t use a plugin
 pattern just for the sake of it; rather, spend some time understanding the
 underlying structure, and establish how well it solves your problem or
 fits the component you’re trying to build. Choose the pattern that best
 suits your needs.

Chapter 15. Conclusions

That’s it for this introduction to the world of design patterns in
 JavaScript - I hope you’ve found it useful. The contents of this book should
 hopefully have given you sufficient information to get started using the
 patterns covered in your day-to-day projects.
Design patterns make it easier to reuse successful designs and
 architectures. It’s important for every developer to be aware of design
 patterns but it’s also essential to know how and when to use them.
 Implementing the right patterns intelligently can be worth the effort but
 the opposite is also true. A badly implemented pattern can yield little
 benefit to a project.
Also keep in mind that it is not the number of patterns you implement
 that's important but how you choose to implement them. For example, don’t
 choose a pattern just for the sake of using ‘one’ but rather try
 understanding the pros and cons of what particular patterns have to offer
 and make a judgment based on it’s fitness for your application.
If I’ve encouraged your interest in this area further and you would
 like to learn more about design patterns, there are a number of excellent
 titles on this area available for generic software development but also
 those that cover specific languages.
I'm happy to recommend:
	'Patterns
 Of Enterprise Application Architecture' by Martin Fowler

	'JavaScript
 Patterns' by Stoyan Stefanov

	‘Pro
 JavaScript Design Patterns’ by Ross Harmes and Dustin
 Diaz.

If you’ve managed to absorb most of the information in my book, I
 think you’ll find reading these the next logical step in your learning
 process (beyond trying out some pattern examples for yourself of
 course).
Thanks for reading Essential JavaScript Design
 Patterns. For more educational material on learning JavaScript,
 please feel free to read more from me on my blog http://addyosmani.com or on Twitter
 @addyosmani.

Chapter 16. References

	Design Principles and Design Patterns - Robert C Martinhttp://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

	Ralph Johnson - Special Issue of ACM On Patterns and Pattern
 Languages - http://www.cs.wustl.edu/~schmidt/CACM-editorial.html

	Hillside Engineering Design Patterns Library - http://hillside.net/patterns/

	Pro JavaScript Design Patterns - Ross Harmes and Dustin Diaz
 http://jsdesignpatterns.com/

	Design Pattern Definitions - http://en.wikipedia.org/wiki/Design_Patterns

	Patterns and Software Terminology http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

	Reap the benefits of Design Patterns - Jeff Juday http://articles.techrepublic.com.com/5100-10878_11-5173591.html

	JavaScript Design Patterns - Subramanyan Guhan http://www.slideshare.net/rmsguhan/javascript-design-patterns

	What Are Design Patterns and Do I Need Them? - James Moaoriello
 http://www.developer.com/design/article.php/1474561

	Software Design Patterns - Alex Barnett http://alexbarnett.net/blog/archive/2007/07/20/software-design-patterns.aspx

	Evaluating Software Design Patterns - Gunni Rode http://www.rode.dk/thesis/

	SourceMaking Design Patterns http://sourcemaking.com/design_patterns

	The Singleton - Prototyp.ical http://prototyp.ical.ly/index.php/2007/03/01/javascript-design-patterns-1-the-singleton/

	JavaScript Patterns - Stoyan Stevanov - http://www.slideshare.net/stoyan/javascript-patterns

	Stack Overflow - Design Pattern Implementations in JavaScript
 (discussion) http://stackoverflow.com/questions/24642/what-are-some-examples-of-design-pattern-implementations-using-javascript

	The Elements of a Design Pattern - Jared Spool http://www.uie.com/articles/elements_of_a_design_pattern/

	Stack Overflow - Examples of Practical JS Design Patterns
 (discussion) http://stackoverflow.com/questions/3722820/examples-of-practical-javascript-object-oriented-design-patterns

	Design Patterns in JavaScript Part 1 - Nicholas Zakkas http://www.webreference.com/programming/javascript/ncz/column5/

	Stack Overflow - Design Patterns in jQuery http://stackoverflow.com/questions/3631039/design-patterns-used-in-the-jquery-library

	Classifying Design Patterns By AntiClue - Elyse Neilson http://www.anticlue.net/archives/000198.htm

	Design Patterns, Pattern Languages and Frameworks - Douglas
 Schmidt http://www.cs.wustl.edu/~schmidt/patterns.html

	Show Love To The Module Pattern - Christian Heilmann http://www.wait-till-i.com/2007/07/24/show-love-to-the-module-pattern/

	JavaScript Design Patterns - Mike G. http://www.lovemikeg.com/2010/09/29/javascript-design-patterns/

	Software Designs Made Simple - Anoop Mashudanan http://www.scribd.com/doc/16352479/Software-Design-Patterns-Made-Simple

	JavaScript Design Patterns - Klaus Komenda http://www.klauskomenda.com/code/javascript-programming-patterns/

	Introduction to the JavaScript Module Pattern https://www.unleashed-technologies.com/blog/2010/12/09/introduction-javascript-module-design-pattern

	Design Patterns Explained - http://c2.com/cgi/wiki?DesignPatterns

	Mixins explained http://en.wikipedia.org/wiki/Mixin

	Working with GoF's Design Patterns In JavaScript http://aspalliance.com/1782_Working_with_GoFs_Design_Patterns_in_JavaScript_Programming.all

	Using Object.createhttp://stackoverflow.com/questions/2709612/using-object-create-instead-of-new

	t3knomanster's JavaScript Design Patterns - http://t3knomanser.livejournal.com/922171.html

	Working with GoF Design Patterns In JavaScript Programming -
 http://aspalliance.com/1782_Working_with_GoFs_Design_Patterns_in_JavaScript_Programming.7

	JavaScript Advantages - Object Literals http://stackoverflow.com/questions/1600130/javascript-advantages-of-object-literal

	JavaScript Class Patterns - Liam McLennan http://geekswithblogs.net/liammclennan/archive/2011/02/06/143842.aspx

	Understanding proxies in jQuery - http://stackoverflow.com/questions/4986329/understanding-proxy-in-jquery

	Speaking on the Observer pattern - http://www.javaworld.com/javaworld/javaqa/2001-05/04-qa-0525-observer.html

	Singleton examples in JavaScript - Hardcode.nl - http://www.hardcode.nl/subcategory_1/article_526-singleton-examples-in-javascript.htm

	Design Patterns by Gamma, Helm supplement - http://exciton.cs.rice.edu/javaresources/DesignPatterns/

About the Author
Addy Osmani is a writer, speaker, and a JavaScript developer.He is a member of the jQuery core [Bug Triage/Docs/Learning] teams where helps with bugs, documentation, and developer evangelism.

When not working at AOL his personal OS projects include jQuery UI Bootstrap and TodoMVC, which help developers compare JavaScript MVC frameworks. Addy is the author of the popular ebook, Essential JavaScript Design Patterns. His personal blog is http://addyosmani.com/blog/

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/orm_front_cover.jpg
L R R R R R RRRRERRRREERRRRDDCmmm]
A JavaScript and jQuery Developer’s Guide

Learning

O'REILLY® Addy Osmani

OEBPS/img/ns1.png
® o 0

> Object top.htnl:33
true top.htnl:37
¥ object top.htnl:42

v longer: Object
vversion: Object
¥ looks: Object
¥ like: Object
vthis: Object
> _proto_: Object
Object.

vnoduleB: Object
vmoduleC: Object
vmoduled: Object

vmodules:
vnodule2: Object
> __proto__: Object
»_proto_: Object
»_proto__: Object

Y - — — — — — — — — — — — — — — — — — —— 1

153

>2| Q| © | <tpframe> ¢| @ | Erors Wamings Logs 2

