Beej’s Guide to C Programming

Library Reference

Brian “Beej Jorgensen” Hall

v0.9.9, Copyright © December 30, 2022

Contents

1 Foreword

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2 The C Language

2.1

2.2

2.3
24
2.5

2.6
2.7
2.8
2.9

Audience L L e e e e e
HowtoRead ThisBook ittt
Platform and Compiler e
Official Homepage i i e e e
Email Policy e e
MIIToring o e e e e e e e e e e e
Note for Translators i e e e
Copyright and Distribution oo
Dedication e e e e e e e

W ININNDNNRFR R -

4

Background L e e e e 4
21,1 Comments e e e e e e e e e 4
2.1.2 Separators i e e e e e e e e e e e e e e e e e e 4
2.1.3 EXPressionso i e e e e e e e e e e e e 4
214 Statementso i e e e e e e e e e e e e e e e e e e 4
2.1.5 Booleans L e 4
216 Blocks oL 4
2.1.7 CodeExamples e e e 4
OPperators« v v i e e e e e e e e e e e e e e e e e e 5
2.2.1 ArithmeticOperators o v i it e e e e e 5
2.2.2 Pre- and Post-Increment and -Decrement 5
2.2.3 Comparison Operators v v v v v v v v e e e e e 5
224 Pointer Operators o v v vt i e e e e e e e e e e e e e 5
2.2.5 Structure and Union Operators oo v i o 5
2.2.6 Array Operators v it e e e e e e e e e e e e 6
2.2.7 Bitwise Operators Lo e e e e e e e e e 6
2.2.8 Assignment Operators i e e e e e e e e e e 6
229 Thesizeof Operator ¢ i v v v v it e e 6
2210 Type Casts . . . o v v v i e e e e e e e e e e e e e 6
2211 _Alignof Operator o v i i v it e e e e e 7
2212 Comma Operator« v vt e e e e e e e e e e e e e e e 7
Type Specifiers e 7
Constant Types o e e e e e e e e e 7
Composite TYpes o o o e e e e e e e e e e e e 8
251 structTypes 8
2.5.2 unionTypes 8
253 enumTypes. e e e e 9
Initializers e e e 9
Compound Literals e e 10
Type Aliases L. e e e 11
Additional Type-Related Specifiers, 11
2.9.1 Storage Class Specifiers 12
29.2 TypeQualifiers 12
2.9.3 Function Specifiers 12
2.9.4 Alignment Specifier 13

CONTENTS

2.10
211
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

if Statement L e e e e e e e e e e e e
for Statement e e e e e e e e e e e e e e e e e e
while Statement i e e e e e e e e e e e e e e e e
do-while Statement e e e e e e e
switch Statement e e e e e e e e e
break Statement L e e e e e e e e e e e e
continue Statement e e e e e e e e e e e e
goto Statement i e
return Statement L e e e e e e e e e e e e e
_Static_assert Statement e e e e e e e e e e
Functions L e e e e e
2.20.1 main() Function
2.20.2 Variadic Functions e e

3 <assert.h> Runtime and Compile-time Diagnostics

3.1
3.2
3.3

Macros o e e e e e e e e e e
assert() . . . e e e e e e e e e e e e e e e e
static_assert() L e e e e

4 <complex.h> Complex Number Functionality

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

cacos(), cacosf(),cacosl()« v v i i i i i e e e e e e e e e e
casin(), casinf(),casinl() e
catan(), catanf(),catanl() e e e
ccos(),ccosT(),ccosL() . . . v v v i i i i e e e e e e e e e e e e
csin(),csinf(),csinl() v i i i i e e e e e e e e e e e e e e
ctan(),ctanf(),ctanl() i e e e e e
cacosh(), cacoshf(),cacoshl()
casinh(), casinhf(),casinhl()
catanh(), catanhf(),catanhl(),
ccosh(), ccoshf(),ccoshl() i i i i i i i it i it e i i e e
csinh(), csinhf(),csinhl()« . . o i i i e e e e
ctanh(), ctanhf(),ctanhl() o Lo
cexp(),cexpf(),cexpl() o v i v v i i i e e e e e e e e
clog(),clogf(),clogl() « & o v i v i v i e e e e e e e e e
cabs(), cabsf(),cabsl() e e e e e
cpow(), cpowf (), cpowl() i i e e e e e e e e e e e e e
csqrt(),csqrtf(),csartl() o o v i i i e e e e e e e
carg(),cargf(),cargl()« o o i i i e e e e e e e e
cimag(), cimagf(),cimagl() o e e e e e
CMPLX(), CMPLXF (), CMPLXL() ' + v v v o v e e e e e e e e e e e e
conj(),conjf(),conjL() . . . v v v i i v i i e e e e e e e e e e e e

cproj (), cproj (), cproj() . .« v v v i i e e e e e e e e e e e e e e e
creal(),crealf(),creall() i i

5 <ctype.h> Character Classification and Conversion

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

isalnum() o L e e e e e e e e e e e e e e e e e e e
isalpha() o o o e e e e e e e e e e e e
isblank() . . . o . o o o e e e e e e e e e e e
Iscntrl() o e e e e e e e e e e e e e e e
isdigit() e e e e
isgraph() o o e e e e e e e e e e e e e e e e e e e
Islower () . . v v o i e
Isprint () o L e e e e e e e e e e e e e e e e e e
ispunct() . . . o . e e e e e e e e e e e e e e e e
isspace() . . . i e
Isupper() . o v e
Isxdigit () e e e e e e e e e e e e e e e e
tolower () o e e e e e e e e e e e e e e e
toupper() o e e e e e e e e e e e e e e e e e e

ii

13
13
14
14
14
15
15
15
16
16
16
16
17

18
18
18
20

22
24
24
25
26
27
28
29
30
30
31
32
33
34
35
35
36
37
38
39
40
7l
M
43

CONTENTS

6

7

10

1

12

13

<errno.h> Error Information
6.1 BITNO v v o v v e

<fenv.h> Floating Point Exceptions and Environment

7.1 Types and MacroS v v v v i e e e e e e e e e e e e e e e e e
7.2 Pragmas L e e e e e e
7.3 feclearexcept() o o v i i i i e e e e e e e e e e e e e e
7.4 fegetexceptflag() fesetexceptflag()
7.5 feraiseexcept () L e e e e
7.6 fetestexcept () e e e e e
7.7 fegetround() fesetround() e
7.8 fegetenv() fesetenv() e e e e e e e e
7.9 feholdexcept ()« o i i i i i i e e e e
7.10 feupdateenv() e e e e e e e e e e e e e

<float.h> Floating Point Limits

81 Background.
8.2 FLT_ROUNDS Details et e e
8.3 FLT_EVAL_METHOD Details
8.4 Subnormal Numbers
8.5 How Many Decimal Places CanTUse?
8.6 Comprehensive Example

<inttypes.h> More Integer Conversions

9.1 Macros e e e e e e e e e e e e
9.2 imaxabs() e e e e e e e e e e e e e e
9.3 imaxdiv() e e e e e e
9.4 strtoimax() strtoumax() e e e e
9.5 wcstoimax() westoumax ()o e e e e e e e e e e e e e e e

<is0646.h> Alternative Operator Spellings

<limits.h> Numeric Limits

11.1 CHAR_MINand CHAR_MAX i i e e e e e e e e e e e et e e e
11.2 Choosing the Correct Type o L o it e
11.3 Whither Two’s Complement? o v it vt e
114 Demo Program L.
<locale.h> locale handling

12,1 setlocale() . . . v v v v i e e e e e e e e e e e e e e e e
122 LocaleconV() . . v v v v v e
<math.h> Mathematics

13.1 Math FunctionIdioms
132 MathTypes o e e e e e e e e e e e e e
13.3 MathMacros o e e e e e e e e e e
13.4 MathErmors e e e e e e e e
13,5 MathPragmas e
13.6 fpclassify() . . . o v v v i e e e e e e e e e
13.7 isfinite(), isinf(), isnan(),isnormal()
13.8 signbit() o e e e e e e e e
13.9 acos(),acosf(),acosl() i i i i i e e e e e
13.10 asin(),asinf(),asinl() e e
13.11 atan(), atanf(), atanl(), atan2(), atan2f(),atan21()
13.12 cos(),cosT(),cosL() v v v v i i i e e e e e e e e
13.13 sin(),sinf(),sinl()« o o v e e e e
13.14 tan(), tanf(), tanl() e e e e e e e e e
13.15 acosh(),acoshf(),acoshl()

13.16 asinh(),asinhf(),asinhl()

1ii

56
56

59
59
60
60
61
62
63
64
65
66
67

70
71
72
72
72
72
74

77
77
78
79
80
81

83

84
84
85
85
85

87
87
89

CONTENTS

13.17 atanh(), atanhf(),atanhl(),
13.18 cosh(),coshf(),coshl() @ i i i
13.19 sinh(), sinhf(),sinh1() o o o i e
13.20 tanh(), tanhf (), tanhl() e e
13.21 exp(), expf(),expl() . . . & o v i i e e e e e e
13.22 exp2(), exp2f (), exp2L() i i e e e e e e e e e e
13.23 expmi(), expmif (), expmll() o o i e e e e e e e e
13.24 frexp(), frexpf(), frexpl()« o o o i i i i i e e e e e e e
13.25 ilogb(), ilogbf(),ilogbl() o o o v i i i it e et
13.26 ldexp(), ldexpf(), Ldexpl() o i i i it e e e e e e e e e
13.27 1log(), Logf(), Logl() i i e e e e e e e e
13.28 10g10(), Loglof (), Loglol() i i i e e e e e e e e e e e e e e
13.29 1loglp(), Loglpf(), Loglpl() i i i i e e e e e e e e e e e e e
13.30 1og2(), Log2f (), Log2L() . . « v v v v e e e e e e e e e e e e e e e e e e
13.31 logb(), logbf (), logbl() o o i i e e s e e e e
13.32 modf (), modff(), modfl()
13.33 scalbn(), scalbnf(), scalbnl() scalbln(), scalblnf(), scalblnl()
13.34 cbrt(),cbrtf(),cbrtl() e
13.35 fabs(), fabsf(),fabsl() @ e
13.36 hypot(), hypotf(),hypotl() i i
13.37 pow(), powf (), powl() e e e e e e e e e e
13.38 sqart() e e e e e e e e e
13.39 erf(),erff(),erfl() @ @ i e e
13.40 erfc(),erfcf(),erfcl() @ @ i i i i i e e e e e e e
13.41 Tlgamma(), Lgammaf (), lgammal()« v v v v v v it et e e
13.42 tgamma(), tgammaf(), tgammal() e
13.43 ceil(),ceilf(),ceill() i i i i i e it e e e e
13.44 floor(), floorf(), floorl() @ @ i i v i i i i i i it e
13.45 nearbyint(), nearbyintf(), nearbyintl()
13.46 rint(), rintf (), rintl() L e e
13.47 1lrint(), lrintf(), lrint1(), Llrint(), Llrintf(), Llrintl()
13.48 round(), roundf (), roundl() e
13.49 1round(), lroundf(), lroundl() 1lround(), 1lroundf(), Llroundl()
13.50 trunc(), truncf(), truncl() @ @ i e e e e e e
13.51 fmod(), fmodf (), fmodLl() o i e e
13.52 remainder(), remainderf(), remainderl()
13.53 remquo(), remquof (), remquol() e e e
13.54 copysign(), copysignf(), copysignl()
13.55 nan(),nanf(),nanl() e e e e e e e e e e
13.56 nextafter(), nextafterf(), nextafterl()
13.57 nexttoward(), nexttowardf (), nexttowardl()
13.58 fdim(), fdimf (), fdiml() e e
13.59 fmax(), fmaxf(), fmax1(), fmin(), fminf(), fminl()
13.60 fma(), fmaf(), fmal() e e e
13.61 isgreater(), isgreaterequal(), isless(), islessequal()
13.62 islessgreater() o v v v i i i e e e e e e e e e e e e e e e e e
13.63 disunordered() i e e e e e e e

14 <setjmp.h> Non-local Goto
141 setgmp() . . . o o e e e e e e e e e e e e e e e e e
142 longdmp() . . . o o o e e e e e e e e e e e e

15 <signal.h> signal handling
151 signal() . . . o i e e e e e e e e e e e e e e e e
15.2 raise() e e e e e

16 <stdalign.h> Macros for Alignment
16.1 alignas() _ALignas() . . v v v v v v i i e e e e e e e e e e e e
16.2 alignof() _ALignof() i e e e e e

iv

106
107
108
108
109
110
111
111
112
113
114
115
116
117
118
118
120
121
122
122
123
124
125
126
127
128
128
129
130
131
132
133
134
135
135
136
137
138
139
140
141
142
143
144
144
145
146

148
148
150

153
153
156

CONTENTS

17

18

19

20

21

22

<stdarg.h> Variable Arguments

171 va_arg() . . o e e e e e e e e e e e e e e e e e
17.2 0 va_copy() . « v v v e e e e e e e e e e e e e e e e e e e
17.3 va_end()o e e e e e
17.4 va_start() e e e e e e
<stdatomic.h> Atomic-Related Functions

18.1 AtomicTypes e e e
18.2 Lock-free Macros o i e e e e e e e e e
18.3 AtomicFlag
184 Memory Order o i e e e e e e e e e e e e
18.5 ATOMIC_VAR_INIT() . v v v v v it e e e e e e e e e e e e e e s
18.6 atomic_init() e e e e
18.7 kill_dependency() o v i i i i i e e e e e e e e e e
18.8 atomic_thread_fence() e
18.9 atomic_signal_fence() i i i e e e e e e e e
18.10 atomic_is_lock_free() i i i i i e e e e e e e
18.11 atomic_store() v i i e e e e e e e e
18.12 atomic_load() v v v i e e e e e e e
18.13 atomic_exchange() e e e
18.14 atomic_compare_exchange_*() e e e
18.15 atomic_fetch_*() e e e e e
18.16 atomic_flag_test_and_set() @ i i i i i it
18.17 atomic_flag_clear()« v v v i i i e e e e e e e e e e e e e
<stdbool.h> Boolean Types

19.1 Example e e e
19.2 _BoOL? . . . e e e e e e e e e e
<stddef.h> A Few Standard Definitions

20.1 ptrdiff_t e e e e e e e e e
20.2 size_t ... e e e e e e e e e e
20.3 max_align_t e e e e e
204 wchar_t e e e e e e e e
20.5 offsetof L e e e e e e e
<stdint.h> More Integer Types

21.1 Specific-Width Integers e e e e
21.2 OtherInteger TYPES« v v v o o e e e e e e e e e e e e e e e e e
213 MACIOS . .« v v v e e e e e e e e e e e e e e e e e e
21.4 OtherLimits e e e e e e e e e e
21.5 Macros for Declaring Constantso
<stdio.h> Standard I/O Library

221 remove() e e e e e e e e e
222 rename() e e e e e e e e e e e e e e e
22.3 tmpfile() e e e e e e e e e e e
224 tmpnam() e
225 fcloSe() . . v v i e e e e e e e e
226 FELUSN() o v o e e e
22.7 fopen() e e e e e e e e e
22.8 freopen() e e e e e e e e e e e e e
229 setbuf(),setvbuf() e e e e e
2210 printf(), fprintf(), sprintf (), snprintf()
2211 scanf(), fscanf(),sscanf() i i
22.12 vprintf(), vfprintf(), vsprintf(), vsnprintf()
22.13 vscanf(),vfscanf(),vsscanf()
22.14 getc(), fgetc(),getchar() e e e e e

2215 gets(), fgets() o i i i e e e e e e e e e e e e e

162
162
163
165
166

168
169
169
170
170
170
171
172
173
174
175
177
178
178
179
181
183
185

187
187
188

189
189
189
190
190
191

192
192
193
193
194
194

CONTENTS

23

24

25

26

22.16 putc(), fputc(), putchar() e e e e
22.17 puts(), fputs() o o o e e e e e e e e e e e e e e
2218 ungetc() e e e e e e e e e e
22.19 fread() e e e e e e e e e
22.20 fwrite() e e e e e e e e e e
22.21 fgetpos(), fsetpos() o o i e e e e e e
22.22 fseek(),rewind() e e e e e e e e e e
2223 FLtell() . . v v i e e e e e e e e e e
22.24 feof(), ferror(),clearerr() o o v i i v it v it it
2225 Perror() . . . o e e e e e e e e e e e

<stdlib.h> Standard Library Functions

23.1 <stdlib.h>Typesand Macros v v,
23.2 atof () . . o o e e e e e e
23.3 atoi(),atol(),atoll() o v i i i i e e e e e e e
23.4 strtod(), strtof(),strtold() e
23.5 strtol(), strtoll(), strtoul(),strtoull()
23.6 rand() e e e e e e e e e
23.7 srand() e e e e e e e e e
23.8 aligned_alloc() o i i i i e e e e e e e e e e e e
23.9 calloc(),malloc() v v v v e e e e e e e e e e e e e e e
23.10 free() . o v v v e e e e e e e e e e e e e e e e e e
2311 realloC() . « v v v v e
2312 abort() . . . e e e e e e e e e e e
23.13 atexit(),at_quick_exit() e e
23.14 exit(),quick_exit(), _Exit() e e e
23.15 getenv() L e e e e e e e e e e e e e e e e e e
23.16 system() e
23.17 bsearch() o e e e e e e e e e
23.18 gSOrt() . . v i i e e e e e e e e e
23.19 abs(), labs(), Llabs() o i i e e e e e e e e
23.20 div(), Ldiv(), TLdiv() . . . @ o v e e e e e e e
23.21 mblen() e
23.22 mbtowC () e
23.23 wetomb() e e e e e e e e e e
23.24 mbStowCS() e e e e e e e e e e e e e e e
23.25 westombs() e e e e e e e e e e e e e

<stdnoreturn.h> Macros for Non-Returning Functions

<string.h> String Manipulation

25.1 memcpy (), memmOVE() i i e e e e e e e e e e e e e e e e e e e
25.2 strepy(),strncpy() o o e e e e e e e e
25.3 strcat(),strncat() e e e e e e
25.4 strcmp(), strncmp(),memcmp() e e e e e e e e e e e
25.5 SErcoll() . . v v v e e e e e e e e e e e e e e e e
25.6 strxfrm() e e e e e e e e e e e
25.7 strchr(), strrchr(),memchr() e
25.8 strspn(),strcspn() L e e e e e e e e e e e e
25.9 strpbrk() e e e e e e e e e e e e
25.10 SErsStr() e
2511 strtok() e e e e e e e e e
2512 memset () e e e e e e e e e e e e e e e
25.13 strerror() e e e e e e e e e e e e
25.14 strlen() e e e e e e e e e e e e e e e

<tgmath.h> Type-Generic Math Functions
26.1 Example L e e e e

vi

224
225
226
227
228
229
230
232
233
234

236
237
237
238
239
241
243
244
246
247
248
249
250
251
253
254
255
256
257
259
260
261
262
263
264
266

268

269
270
270
272
273
274
275
277
278
279
280
281
282
283
284

285

CONTENTS

27 <threads.h> Multithreading Functions

28

29

30

27.1
27.2
27.3
27.4
27.5
27.6
27.7
27.8
27.9
27.10
27.11
27.12
27.13
27.14
27.15
27.16
27.17
27.18
27.19
27.20
27.21
27.22
27.23
27.24
27.25

<time.
28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10
28.11

Call_onCe() . . v v i e e e e e e e e e e e e e e e e e e e
cnd_broadcast() e e e e e e e e e e e e e
cnd_destroy () e e e e e e e e e e e e e
cnd_init () o e e e e e e e e e e e e e
cnd_signal() v i i e e e e e e e e e e e e e e e e e e
cnd_timedwait() o L e e e e e e e e e e e e e
cnd_wait() e e e e e e e e e e e e e e e e
mtx_destroy() e e e e e e e e e e e e e
MEX_INIt() . . o . e e e e e e e e e e e e
MEX_TOCK() . . . o e e e e e e e e e e e e e e
mtx_timedlock() o e e e e e e e e e e e e
MEX_trylock () o e e e e e e e e e e e e e e e e
MEX_UNToCKk () o o e e e e e e e e e e e e e e e e
thrd_create() o o @ i i e e e e e e e
thrd_current () e e e e e e e e e e e e e
thrd_detach() @ e e e e e e e e
thrd_equal() o i e e e e e e e e e e e e e e e e
thrd_exit() o o e e e e e e e e e e e e e
thrd_join() o o e e e e e e e e e e e
thrd_sleep()« o i 0 i e e e e e e e e e e e e e e e e
thrd_yield() o i e e e e e e e e e e e e e
tss_create() . . . o v e e e e e e e e e e e e e e e e
tss_delete() . . . o v v i i e e e e e e e e e e e e e e e e
tss_get() . . . o i e e e e e e e e e e e e e e
ESS_Set() . . v v o e e e e e e e e e e e e e

h> Date and Time Functions

Thread Safety Warning L
clock() . . o o e e e e e e e e e e e e e e
difftime() o e e e e e e
mMKEIme () . . . o e
time() . . . o e e e e e e e e e e e e e e e e e
timespec_get () L e e e e e e e e e e e e e e
asctime() e e e e e e e e e e e e e e
ctime() e e e e e e e e e e e e e e
gmtime () . .. e e e e e e e e e e e e e e e e e e
Localtime() v i i e
strftime() o o e e e e e e e e e e e

<uchar . h> Unicode utility functions

29.1
29.2
29.3
29.4

Types . . . o e e e e e e e
OS XISSUE o o e e e e e e e e
mbrtocl6() mbrtoc32() e e e e e e e
clértomb() c32rtomb() e e e e e e e e e

<wchar . h> Wide Character Handling

30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8
30.9
30.10
30.11
30.12

Restartable Functions
wprintf (), fwprintf (), swprintf()o
wscanf() fwscanf() swscanf() e e e
vwprintf() vfwprintf() vswprintf()o
vwscanf (), vfwscanf(),vswscanf()
getwc () fgetwc() getwchar() L o
Fgetws () . . . o e e e e e e e e e e e e e e e e
putwchar () putwc() fputwc() @ e e e
FPULWS () . o o e e e e e e e e e e e e e e e e e e e
fwide() o e e e e e e e e e e e e e
ungetwe () o e e e e e e e e e e e e e e e e e
wcstod() westof () westold() o L e e e e

vii

288
289
290
292
294
295
297
299
300
301
303
304
306
308
309
311
312
313
315
316
317
318
320
322
324
325

328
329
329
330
331
332
333
335
336
337
338
338

342
342
342
343
345

CONTENTS viil

31

30.13 westol() westoll() westoul() westoull() v oo .. 362
30.14 wescpy () WeSNCPY () . v v v i e 363
30.15 wmemcpy () wmemmove () it e e e e e e e e e e e e e e e e 364
30.16 wescat()wesncat() i it e e e e e e e e e e e e e e e 365
30.17 wecscmp(),wesnemp(),wmememp() e e e e e e e e e e e 366
30.18 wesSCOLL() . . . v v e e e e e e e e e e e e e e e e 367
30.19 wesxfrm() e e e e e e e e e e e e e e e 368
30.20 weschr()wesrchr() . . . o o 0 0 o e e e e e e e e e e e e 369
30.21 wesspn() WCSCSPN() v v v v v e 370
30.22 wespbrk() e e e e e e e e e e 371
30.23 WCSSEr() e e e e e e e e e e e e e e e 372
30.24 westok() e e e e e e e e e e e e e e 373
30.25 weslen() e e e e e e e e e e e e e e e e e e e 374
30.26 wesftime() e e e e e e e e e e 375
30.27 btowc()wctob() e e e e e e e e e e 376
30.28 mbsinit() e e e e e e e e e 377
30.29 mbrlen() e e e e e e e e e e e e e e e e e 378
30.30 mbrtowC() e 379
30.31 wertomb() e e e e e e e e e e e e e e e e 380
30.32 MbSrtowCS() . . v i i e 382
30.33 wesrtombs() e e e e e e e e 383
<wctype.h> Wide Character Classification and Transformation 386
31.1 dswalnum() e e e e e e e e e 386
31.2 dswalpha() e e e e e e e e 387
31.3 dswblank() e e e e e e e e e 388
31.4 dswentrl() e e e e e e e e e e e e e e e e e e e 389
315 dswdigit() e e e e e e e e e e e e e 389
31.6 dswgraph() e e e e e e e e e e e 390
31.7 dswlower() e e e e e e e e e e e 391
31.8 dswprint() e e e e e e e e 392
31.9 dswpunct() e e e e e e e e e e e e 392
3110 Aswspace() e e e e e e e e e e e e e e e e e e 393
LA Aswupper() . . v v e 394
3112 ZsWXAIgit() o v v v e e e 395
31.13 dswetype() e e e e e e e e e e e e e e 396
3114 wetype() e e e e e e e e e e e e e e e e 397
3115 towlower () e 399
3116 towupper() . . . v i e e e e e e e e e e e e e e e e e e e 400
31.17 towctrans() e e e e e e e e e e e e e e e e 400
3118 wetrans() e e e e e e e e e e e e e e e e 402

Chapter 1

Foreword

The door slowly creaks open revealing a long hall with dusty stacks of books of lore...
I admit, maybe not that.
But you have found the Library Reference portion of Beej’s Guide to C!

This isn’t a tutorial, but rather is a comprehensive set of manual pages (or man pages as Unix hackers like
to say) that define every function in the C Standard Library, complete with examples.

“This book, sir, contains every word in our beloved language.”

“Every single one, sir?”

“Every single one, sir!”

“Ah, well in that case, sir, I hope you will not object if I also offer the doctor my most enthu-
siastic contrafribularities.”

—Blackadder toying with Dr. Samuel Johnson

There are, in fact, a number of functions left out of this guide, most notably all the optional “safe” functions
(with a _s suffix).

But everything you’re likely to want is definitely covered in here. With examples.

Probably.

1.1 Audience

This guide is for people who are at least modestly proficient in C.

If you are not one of those people and wish to become one of those people, I can wholeheartedly recom-
mend with zero bias the book Beej’s Guide to C Programming’, freely available wherever the Internet is
sold.

1.2 How to Read This Book

Use the contents or index to find the function or category you’re after.

Then grab a bowl of your favorite cereal and devour the delicious, delicious verbiage.

1.3 Platform and Compiler

'l try to stick to Plain OI’-Fashioned ISO-standard C2. Well, for the most part. Here and there I might
go crazy and start talking about POSIX® or something, but we’ll see.

Uhttps://beej.us/guide/bgc/
Zhttps://en.wikipedia.org/wiki/ANSI_C
3https://en.wikipedia.org/wiki/POSIX

https://beej.us/guide/bgc/
https://en.wikipedia.org/wiki/ANSI_C
https://en.wikipedia.org/wiki/POSIX

Chapter 1. Foreword 2

Unix users (e.g. Linux, BSD, etc.) try running cc or gcc from the command line—you might already have
a compiler installed. If you don’t, search your distribution for installing gcc or clang.

Windows users should check out Visual Studio Community*. Or, if you’re looking for a more Unix-like
experience (recommended!), install WSL® and gcc.

Mac users will want to install XCode®, and in particular the command line tools.

There are a lot of compilers out there, and virtually all of them will work for this book. And a C++ compiler
will compile a lot of (but not all!) C code. Best use a proper C compiler if you can.

1.4 Official Homepage

This official location of this document is https://beej.us/guide/bgclr/’. There used to be a note
here about migrating off Chico State’s computers (my alma mater), but that’s something that happened
roughly a zillion years ago and the wording remained here only because it was copied over from the
Network Guide, [breath] which I apparently haven’t read in its entirety for quite some time.

The End.

1.5 Email Policy

I’'m generally available to help out with email questions so feel free to write in, but I can’t guarantee a
response. I lead a pretty busy life and there are times when I just can’t answer a question you have. When
that’s the case, I usually just delete the message. It’s nothing personal; I just won’t ever have the time to
give the detailed answer you require.

As a rule, the more complex the question, the less likely I am to respond. If you can narrow down your
question before mailing it and be sure to include any pertinent information (like platform, compiler, error
messages you’re getting, and anything else you think might help me troubleshoot), you’re much more
likely to get a response.

If you don’t get a response, hack on it some more, try to find the answer, and if it’s still elusive, then write
me again with the information you’ve found and hopefully it will be enough for me to help out.

Now that I’ve badgered you about how to write and not write me, I’d just like to let you know that I fully
appreciate all the praise the guide has received over the years. It’s a real morale boost, and it gladdens me
to hear that it is being used for good! : -) Thank you!

1.6 Mirroring

You are more than welcome to mirror this site, whether publicly or privately. If you publicly mirror the
site and want me to link to it from the main page, drop me a line at beej@beej . us.

1.7 Note for Translators

If you want to translate the guide into another language, write me at beej@beej.us and I'll link to your
translation from the main page. Feel free to add your name and contact info to the translation.

Please note the license restrictions in the Copyright and Distribution section, below.

1.8 Copyright and Distribution

Beej’s Guide to C Programming-Library Reference is Copyright © 2021 Brian “Beej Jorgensen” Hall.

“https://visualstudio.microsoft.com/vs/community/
Shttps://docs.microsoft.com/en-us/windows/wsl/install-win10
Shttps://developer.apple.com/xcode/
"https://beej.us/guide/bgclr/

https://visualstudio.microsoft.com/vs/community/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://developer.apple.com/xcode/
https://beej.us/guide/bgclr/
mailto:beej@beej.us
beej@beej.us

Chapter 1. Foreword 3

With specific exceptions for source code and translations, below, this work is licensed under the Cre-
ative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. To view a copy of this
license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

One specific exception to the “No Derivative Works” portion of the license is as follows: this guide may
be freely translated into any language, provided the translation is accurate, and the guide is reprinted in
its entirety. The same license restrictions apply to the translation as to the original guide. The translation
may also include the name and contact information for the translator.

The C source code presented in this document is hereby granted to the public domain, and is completely
free of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their students.

Contact beej@beej . us for more information.

1.9 Dedication

The hardest things about writing these guides are:

 Learning the material in enough detail to be able to explain it

+ Figuring out the best way to explain it clearly, a seemingly-endless iterative process

+ Putting myself out there as a so-called authority, when really I’m just a regular human trying to
make sense of it all, just like everyone else

» Keeping at it when so many other things draw my attention

A lot of people have helped me through this process, and I want to acknowledge those who have made
this book possible.

+ Everyone on the Internet who decided to help share their knowledge in one form or another. The
free sharing of instructive information is what makes the Internet the great place that it is.

+ The volunteers at cppreference.com® who provide the bridge that leads from the spec to the real

world.

The helpful and knowledgeable folks on comp.lang.c” and r/C_Programming!® who got me through

the tougher parts of the language.

Everyone who submitted corrections and pull-requests on everything from misleading instructions

to typos.

Thank you! v

8https://en.cppreference.com/
https://groups.google.com/g/comp.lang.c
Ohttps://www.reddit.com/r/C_Programming/

https://creativecommons.org/licenses/by-nc-nd/3.0/
beej@beej.us
https://en.cppreference.com/
https://groups.google.com/g/comp.lang.c
https://www.reddit.com/r/C_Programming/

Chapter 2

The C Language

This is just a quick overview of the fashionable and fun highlights of the syntax, keywords, and other
animals in the C menagerie.

2.1 Background

Some things you’ll need to make sense of the examples, below.

2.1.1 Comments
Comments in C start with // and go to the end of a line.

Multiline comments begin with /* and continue until a closing */.

2.1.2 Separators

Expressions in C are separated by semicolons (;). These tend to appear at the ends of lines.

2.1.3 Expressions

If it’s not a keyword or other reserved punctuation, it tends to be an expression. Think “math including
function calls”.

2.1.4 Statements

Think if, while, etc. Executable keywords.

2.1.5 Booleans

Ignoring the bool type, zero is false and non-zero is true.

2.1.6 Blocks

Multiple expressions and flow control keywords can be wrapped up in a block, made up of { followed by
one or more expressions or statements, followed by }.

2.1.7 Code Examples

They are meant to give an idea of how to use various statements, but not be comprehensive in terms of
examples.

In the examples, below, if either an expression or statement can be used, the word code is inserted.

Chapter 2. The C Language 5

2.2 Operators

2.2.1 Arithmetic Operators
The arithmetic operators: +, -, *, /, % (remainder).
Division is integer if all arguments are integers. Otherwise it’s a floating result.

You can also negate an expression by putting - in front of it. (You can also put a + in front of it—this
doesn’t do anything mathematically, but it causes the Usual Arithmetic Conversions to be performed on
the expression.)

2.2.2 Pre- and Post-Increment and -Decrement

The post-increment (++) and post-decrement (- -) operators (after the variable) do their work after the rest
of the expression has been evaluated.

int x = 10;
int y = 20;
int z = 30;

int w= (x++) + (y--) + (2++);
print("%d %d %d %d\n", x, y, z, w); // 11 19 31 60

The pre-increment (++) and pre-decrement (- -) operators (before the variable) do their work before the
rest of the expression has been evaluated.

int x = 10;
int y = 20;
int z = 30;

int w = (+4x) + (--y) + (+42);

print("%d %d %d %d\n", x, y, z, w); // 11 19 31 61

2.2.3 Comparison Operators

All of these return a Boolean true-y or false-y value.

Less than, greater than, and equal to are: <, >, ==, respectively.
Less than or equal to and greater than or equal to are <= and >=.

Not equal to is !=.

2.2.4 Pointer Operators
* in front of a pointer variable dereferences that variable.
& in front of a variable gives the address of that variable.

+and - arithmetic operators work on pointers for pointer arithmetic.

2.2.,5 Structure and Union Operators
The dot operator (.) can get a field value out of a struct or union.

The arrow operator (->) can get a field value out of a pointer to a struct or union. These two are
equivalent, assuming p is just such a pointer:

(*p) .bar;

p->bar;

Chapter 2. The C Language 6

2.2.6 Array Operators
The square bracket operators can reference a value in an array:

a[10] = 99;

This is syntactic sugar over pointer arithmetic and referencing. The above line is equivalent to:
*(a + 10) = 99;

2.2.7 Bitwise Operators

Bit shift right: >>, bit shift left: <<.

int i = x << 3; // left shift 3 bits

Whether or not a right shift on a signed value is sign-extended is implementation-defined.

Bitwise AND, OR, NOT, and XOR are &, |, ~, and #, respectively.

2.2.8 Assignment Operators
A standalone = is your basic assignment.

But there are also compound assignments that are like a shorthand version. For example, these two are
basically equivalent:

X =X + 1;

X +=1;

There are compound assignment operators for many of the other operators.
Arithmetic: +=, -=, *=, /=, and %=.

Bitwise: |=, &=, ~=, and A=.

2.2.9 The sizeof Operator

This is a compile-time operator that gives you the size in bytes of the type of the argument. The type of
the expression is used; the expression is not evaluated. sizeof works with any type, even user-defined
composite types.

The return type is the integer type size_t.

float f;

size_t x = sizeof f;

printf("f is %zu bytes\n", x);

You can also specify a raw type name in there by wrapping it in parentheses:

size_t x = sizeof(int);

printf("int is %zu bytes\n", x);

2.2.10 Type Casts
You can force an expression to be another type (within reason) by casting to that type.
You give the new type name in parentheses.

Here we are forcing the subexpression x to be type float just before the division!. This causes the
division, which would otherwise be an integer division, to be a floating point division.

IThis doesn’t change the type of x in other contexts—it’s just in this one usage in this expression.

Chapter 2. The C Language 7

17;
2;

int x
int y

float f = (float)x / y;

2.2.11 _Alignof Operator

You can get the byte alignment of any type with the _Alignof compile-time operator. If you include
<stdalign.h>, you can use alignof instead.

Any type can be the argument to the operator, which must be in parenthesis. Unlike sizeof, the argument
cannot be an expression.

printf("Alignment of int is %zu\n", alignof(int));

2.2.12 Comma Operator

You can separate subexpressions with commas, and each will be evaluated from left to right, and the value
of the entire expression will be the value of the subexpression after the last comma.

int x = (1, 2, 3); // Silly way to assign 'x = 3°

Usually this is used in the various clauses in loops. For example, we can do multiple assignments in a for
loop, and have multiple post expressions like this:

for (1 =2, j =10; 1 < 100; i++, j +=4) { ... }

2.3 Type Specifiers

Integer types from smallest to largest capacity: char, short, int, long, long long.
Any integer type may be prefaced with signed (the default except for char) or unsigned.
Whether or not char is signed is implementation defined.

Floating types from least accuracy to most: float, double, long double.

void is a type representing lack of type.

_Bool is a Boolean type. This becomes bool in C23. Earlier versions of C must include <stdbool.h>
to get bool.

_Complex indicates a complex floating type type, when paired with such a type. Include <complex.h>
to use complex instead.

complex float x = 1.2 + 2.3*I;
complex double y = 1.2 + 2.3*I;

_Imaginary is an optional keyword used to specify an imaginary type (the imaginary part of a complex
number) when paired with a floating type. Include <complex.h> to use imaginary instead. Neither
GCC nor clang support this.

imaginary float f = 2.3*I;

_Generic is a type “switcher” that allows you to emit different code at compile time depending on the
type of the data.

2.4 Constant Types

You can declare constants to be of specific types (though it might be a larger type). In the following
example unqualified types, case doesn’t matter, and the U can come before or after the L or LL.

Chapter 2. The C Language 8

123 int or larger

123L long int or larger
123LL long long int

123U unsigned int or larger
123UL unsigned long int or larger
123ULL unsigned long long int
123.4F float

123.4 double

123.4L long double

'a' char

"hello, world" char* (string)

You can specify the constant in other bases as well:

123 decimal
0x123 hexadecimal
0123 octal

You can also specify floating constants in base-10 exponential notation:
1.2e3 1.2 x 1013

And you can specify floats in hex! Except in this case the exponent is still in decimal, and the base is 2
instead of 10:

0x1.2p3 0x1.2 x 273

2.5 Composite Types

2.5.1 struct Types

You can build a composite type made out of other types with struct and then declare variables to be of
that type.

struct animal {
char *name;
int leg_count;

Y

struct animal a;
struct animal b = {"goat", 4};
struct animal c = {.name="goat", .leg_count=4};

Accessing is done with the dot operator (.) or, if the variable is a pointer to a struct, the arrow operator
(->).

struct animal *p = b;

printf("%d\n", b.leg_count);
printf("%d\n", p->leg_count);

2.5.2 union Types
These are like struct types in usage, except that you can only use one field at a time. (The fields all use
the same region of memory.)

union dt {
float distance;

Chapter 2. The C Language 9

int time;

)i

union dt a;

union dt b = {6}; // Initializes "distance'", the first field
union dt ¢ = {.distance=6}; // Initializes '"distance"
union dt d = {.time=6}; // Initializes "time"

Accessing is done with the dot operator (.) or, if the variable is a pointer to a union, the arrow operator
(->).

union dt *p = b;

printf("%d\n", b.time);
printf("%d\n", p->time);

2.5.3 enum Types

Gives you a typed way to have named constant integer values. These can be used with switch(), or as
an array size, or any other place constant values are needed.

Names are conventionally capitalized.

enum animal {
ANTELOPE,
BADGER,
CAT,
DOG,
ELEPHANT,
FISH

1
enum animal a = CAT;

if (a == CAT)
printf("The animal is a cat.\n");

The names have numeric values starting with zero and counting up. (In the example above, DOG would be
3.)

The numeric value can be overridden by specifying an integer exactly. Subsequent values increment from
the specified one.

enum animal {
ANTELOPE = 4,

BADGER, // Will be 5
CAT, // Will be 6
DOG = 3,

ELEPHANT, // Will be 4
FISH // Will be 5

};

As above, duplicate values are not illegal, but might be of marginal usefulness.

2.6 Initializers

You can do this when the variable is defined, but not elsewhere.

Initializing basic types:

Chapter 2. The C Language 10

int x = 12;

float y = 1.2;

char ¢ = 'a';

char *s = "Hello, world!";

Initializing array types:

int a[3] = {1,2,3};
int a[] = {1,2,3}; // Same as a[3]

int a[3] = {1, 2}; // Same as {1, 2, 0}
int a[3] = {1}; // Same as {1, 0, 0}
int a[3] = {0}; // Same as {0, 0, 0}

Initializing pointer types:
int q;
int *p = &q;

Initializing structs:
struct s {

int a;

float b;
};

struct s x0 {1, 2.2}; // Initialize fields in order

struct s x0 = {.a=1, .b=2.2}; // Initialize fields by name
struct s x0 = {.b=2.2, .a=1}; // Same thing

struct s x0 =
struct s x0 =

.2}; // All other fields initialized to O
.2, .a-=0}; // Same thing

Initializing unions:

union u {
int a;
float b;
1

union u x0 = {1}; // Initialize the first field (a)

union u x0 = {.a=1}; // Initialize fields by name
union u x0© .b=2.2%;

1
~

//union u x0 = {1, 2}; // ILLEGAL
//union u x0 {.a1, ,b=2}; // ILLEGAL

2.7 Compound Literals

You can declare “unnamed” objects in C. This is often useful for passing a struct to a function that
otherwise doesn’t need a name.

You use the type name in parens followed by an initializer to make the object.

Here’s an example of passing a compound literal to a function. Note that there’s no struct s variable in
main():

#include <stdio.h>

Chapter 2. The C Language 11

struct s {

int a, b;
};
int add(struct s x)
{
return x.a + X.b;
}
int main(void)
{
int t = add((struct s){.a=2, .b=4}); // <-- Here
printf("%d\n", t);
}

Compound literals have the lifetime of their scope.

You can also pass a pointer to a compound literal by taking its address:
foo(&(struct s){1, 2});

2.8 Type Aliases

You can set up a type alias for convenience or abstraction.

Here we’ll make a new type called time_counter that is just an int. It can only be used exactly like an
int. It’s just an alias for an int.

typedef int time_counter;

time_counter t = 3490;

Also works with structs or unions:

struct foo {
int bar;
float baz;
};

typedef struct foo funtype;
funtype f = {1, 2}; // "funtype" is an alias for "struct foo";

It also works inline, and with named or unnamed structs or unions:

typedef struct {
int bar;
float baz;

} funtype;

funtype f = {1, 2}, // "funtype" is an alias for the unnamed struct

2.9 Additional Type-Related Specifiers

You can give the compiler more hints about what qualities a type should have using these specifiers and
qualifiers.

Chapter 2. The C Language 12

2.9.1 Storage Class Specifiers

These can be placed before a type to provide more guidance about how the type is used.

auto int a
register int a
static int a
extern int a
thread_local int a

auto is the default, so it’s basically never used. Indicates automatic storage duration (things like local
variables get freed automatically when they fall out of scope). In C23 this keyword changes to indicate
type inference like C++.

register indicates that accessing this variable should be as quick as possible. Restricts some usage of
the variable giving the compiler a chance to optimize. Rare in daily use.

static at function scope indicates that this variable’s value should persist from call to call. At file scope
indicates that this variable should not be visible outside of this source file.

extern indicates that this variable refers to one declared in another source file.

_Thread_local means that every thread gets its own copy of this variable. You can use thread_local
if you include <threads. h>.

2.9.2 Type Qualifiers

These can be placed before a type to provide more guidance about how the type is used.

const int a

const int *p

int * const p

const int * const p
int * restrict p
volatile int a
atomic int a

const means the value can’t be modified. You can use it with pointers, as well:

const int a = 10; // Can't modify "a"
const int *p = &b // Can't modify the thing "p" points to ("b")
int *const p = &b // Can't modify "p"

const int *const p = & // Can't modify "p" or the thing it points to
restrict on a pointer means that there will only be one pointer to the item in question, freeing the
compiler to make some optimizations.

volatile indicates that the value in a variable might change at any time and should be loaded from
memory instead of being kept in a register. Usually used with memory-mapped hardware.

_Atomic (or atomic if you include <stdatomic.h>) tells the compiler that reads or writes to this type
should happen atomically. (This might be accomplished with a lock depending on the platform and type.)

2.9.3 Function Specifiers
These are used on functions to provide additional guidance for the compiler.

_Noreturn indicates that a function will never return. It can only run forever or exit the program entirely.
If you include <stdnoreturn.h>, you can use noreturn instead.

inline indicates that calls to this function should be as fast as possible. The intention here is that the
code of the function be moved inline to remove the overhead of the call and return. The compiler regards
inline as a suggestion, not a requirement.

Chapter 2. The C Language 13

2.9.4 Alignment Specifier

You can force the alignment of a variable with memory with _Alignas. If you include <stdalign.h>
you can use alignas instead.

alignas(0) has no effect.

alignas(16) int a = 12; // 16-byte alignment
alignas(long) int b = 34; // Same alignment as "long"

2.10 if Statement

if (boolean_expression) code;

if (boolean_expression) {
code;
code;
code;

}

if (boolean_expression) {
code;
code;

} else
code;

if (boolean_expression) {
code;
code;
} else if {
code;
code;
code;
} else {
code;

2.11 for Statement

Classic for-loop.
The bit in parens comes in three parts separated by semicolons:

« Initialization, executed once.
* Block entry condition, evaluated every time before entering the loop body.
* Post expression, evaluated every time after the loop body.

For example, initialize i to 0, enter the loop body while i < 10, and then increment i after each loop
iteration:
for (i = 0; i < 10; i++) {

code;

code;

code;

}

You can declare loop-local variables by specifying their type:
for (int 1 = 0; i < 10; i++) {
code;

Chapter 2. The C Language 14

code;

}

You can separate parts of the expressions with the comma operator:
for (i =0, j =5; 1i<10; i++, j *= 3) {

code;

code;

2.12 while Statement

This loop won’t enter if the Boolean expression is false. The continuation test happens before the loop.

while (boolean_expression) code;

while (boolean_expression) {
code;
code;

2.13 do-while Statement

This loop will run at least once even if the Boolean expression is false. The continuation test doesn’t
happen until after the loop.

do code while (boolean_expression);

do {
code;
code;
} while (boolean_expression);

2.14 switch Statement

Performs actions based on the value of an expression. The cases that it is compared against must be
constant values.

If the optional default is present, that code is executed if none of the cases match. Braces are not required
around the cases.

switch (expression) {
case constant:
code;
code;
break;

case constant:
code;
code;
break;

default:
code;
break;

}

The final break in the switch is unnecessary if there are no cases after it.

Chapter 2. The C Language 15

If the break isn’t present, the case falls through to the next one. It’s nice to put a comment to that effect
so other devs don’t hate you.

switch (expression) {
case constant:
code;
code;
// fall through!

case constant:
code;
break;

2.15 break Statement

This breaks out of a switch case, but it also can break out of any loop.

while (boolean_expression) {
code;

if (boolean_expression)
break;

code;

2.16 continue Statement

This can be used to short-circuit a loop and go to the next continuation condition test without completing
the body of the loop.

while (boolean_expression) {
code;
code;

if (boolean_expression_2)
continue;

// If boolean_expression_2, code down here will be skipped:

code;
code;

2.17 goto Statement
You can just jump anywhere within a function with goto. (You can’t goto between functions, only within
the same function as the goto.)

The destination of the goto is a label, which is an identifier followed by a colon (:). Labels are typically
left-justified all the way to the margin to make them visually stand out.

{
// Abusive demo code that should be a while loop

int i = 0;

Chapter 2. The C Language 16

loop:
printf("%d\n", i++);

if (i < 10)
goto loop;

2.18 return Statement

This is how you get back from a function. You can return multiple times or just once.
If a function with void return type falls off the end, the return is implicit.
If the return type is not void, the return statement must specify a return value of the same type.

Parentheses around the return value are not necessary (as it’s a statement, not a function).

int increment(int a)

{

return a + 1;

}

2.19 Static_assert Statement

This is a way to prevent compilation of a program if a certain constant condition is not met.
_Static_assert(__STDC_VERSION__ >= 201112L, "You need at least C11!")

2.20 Functions

You need to specify the return type and parameter types for the function, and the body goes in a block
afterward.
Variables in the function are local to that function.

// Function that adds two numbers

int add(int x, int y)
{

int sum = x + y;

return sum;

}

Functions that return nothing should be return type void. Functions that accept no parameters should
have void as the parameter list.

// All side effects, all the time!

void foo(void)

{
some_global = 12;
printf("Here we go!\n");

2.20.1 main() Function

This is the function that runs when you first start the program. It will be one of these forms:

Chapter 2. The C Language 17

int main(void)
int main(int argc, char *argv[])
The first form ignores all command line parameters.

The second form stores the count of the command line parameters in argc, and stores the parameters
themselves as an array of strings in argv. The first of these, argv[0], is typically the name of the
executable. The last argv pointer has the value NULL.

The return values usually show up as exit status codes in the OS. If there is no return, falling off the end
of main() is an implied return 2.

2.20.2 Variadic Functions

Some functions can take a variable number of arguments. Every function must have at least one argument.
The remaining arguments are specified by ... and can be read with the va_start(), va_arg(), and
va_end() macros.

Here’s an example that adds up a variable number of integer values.

int add(int count, ...)

{
int total = O;
va_list va;

va_start(va, count); // Start with arguments after "count"

for (int i = 0; i < count; i++) {
int n = va_arg(va, int); // Get the next int

total += n;

va_end(va); // All done

return total;

2Note that this implication only for main(), and not for any other functions.

Chapter 3

<assert.h> Runtime and
Compile-time Diagnostics

Macro Description

assert() Runtime assertion
static_assert() Compile-time assertion

This functionality has to do with things that Should Never Happen™. If you have something that should
never be true and you want your program to bomb out because it happened, this is the header file for you.

There are two types of assertions: compile-time assertions (called “static assertions”) and runtime asser-
tions. If the assertion fails (i.e. the thing that you need to be true is not true) then the program will bomb
out either at compile-time or runtime.

3.1 Macros

If you define the macro NDEBUG before you include <assert. h>, then the assert () macro will have no
effect. You can define NDEBUG to be anything, but 1 seems like a good value.

Since assert () causes your program to bomb out at runtime, you might not desire this behavior when
you go into production. Defining NDEBUG causes assert () to be ignored.

NDEBUG has no effect on static_assert().

3.2 assert()

Bomb out at runtime if a condition fails
Synopsis
#include <assert.h>

void assert(scalar expression);

Description

You pass in an expression to this macro. If it evaluates to false, the program will crash with an assertion
failure (by calling the abort () function).

18

Chapter 3. <assert.h> Runtime and Compile-time Diagnostics 19

Basically, you’re saying, “Hey, I’'m assuming this condition is true, and if it’s not, I don’t want to continue
running.”

This is used while debugging to make sure no unexpected conditions arise. And if you find during de-
velopment that the condition does arise, maybe you should modify the code to handle it before going to
production.

If you’ve defined the macro NDEBUG to any value before <assert . h> was included, the assert () macro
is ignored. This is a good idea before production.

Unlike static_assert(), this macro doesn’t allow you to print an arbitrary message. If you want to do
this, you can roll your own assert as a preprocessor macro:

#define ASSERT(c, m) \

do { \
if (I(c)) {\
fprintf(stderr, __ _FILE ":%d: assertion %s failed: %s\n", \
__LINE_, #c, m); \
exit(1), \
3\
} while(0)

Return Value
This macro doesn’t return (since it calls abort () which never returns).

If NDEBUG is set, the macro evaluates to ((void)®), which does nothing.

Example

Here’s a function that divides the size of our goat herd. But we’re assuming we’ll never get a © passed to
us.

So we assert that amount != 0... and if it is, the program aborts/
//#define NDEBUG 1 // uncomment this to disable the assert

#include <stdio.h>
#include <assert.h>

int goat_count = 10;

void divide_goat_herd_by(int amount)

{
assert(amount !'= 0);
goat_count /= amount;
}
int main(void)
{
divide_goat_herd_by(2); // OK
divide_goat_herd_by(0); // Causes the assert to fire
}

When I run this and pass 0 to the function, I get the following on my system (the exact output may vary):

assert: assert.c:10: divide_goat_herd_by: Assertion “amount != 0' failed.

Chapter 3. <assert.h> Runtime and Compile-time Diagnostics 20

See Also

static_assert(), abort()

3.3 static_assert()

Bomb out at compile-time if a condition fails

Synopsis
#inc lude <assert.h>

static_assert(constant-expression, string-literal);

Description
This macro prevents your program from even compiling if a condition isn’t true.
And it prints the string literal you give it.

Basically if constant-expression is false, then compilation will cease and the string-literal will
be printed.

The constant expression must be truly constant—just values, no variables. And the same is true for the
string literal: no variables, just a literal string in double quotes. (It has to be this way since the program’s
not running at this point.)

Return Value

Not applicable, as this is a compile-time feature.

Example

Here’s a partial example with an algorithm that presumably has poor performance or memory issues if
the size of the local array is too large. We prevent that eventuality at compile-time by catching it with the
static_assert().

#include <stdio.h>
#include <assert.h>

#define ARRAY_SIZE 16

int main(void)

‘ static_assert(ARRAY_SIZE > 32, "ARRAY_SIZE too small");
int a[ARRAY_SIZE];
a[32] = 10;
printf("%d\n", a[32]);

}

On my system, when I try to compile it, this prints (your output may vary):

In file included from static_assert.c:2:
static_assert.c: In function ‘main’:
static_assert.c:8:5: error: static assertion failed: "ARRAY_SIZE too small"

Chapter 3. <assert.h> Runtime and Compile-time Diagnostics

8 | static_assert(ARRAY_SIZE > 32, "ARRAY_SIZE too small");

See Also

assert()

21

Chapter 4

<complex.h> Complex Number
Functionality

The complex functions in this reference section come in three flavors each: double complex, float
complex, and long double complex.
The float variants end with f and the long double variants end with 1, e.g. for complex cosine:

ccos() double complex
ccosf() float complex
ccosl() 1long double complex

The table below only lists the double complex version for brevity.

Function Description

cabs() Compute the complex absolute value
cacos() Compute the complex arc-cosine

cacosh() Compute the complex arc hyperbolic cosine
carg() Compute the complex argument

casin() Compute the complex arc-sine

casinh() Compute the complex arc hyperbolic sine
catan() Compute the complex arc-tangent

catanh() Compute the complex arc hyperbolic tangent
ccos() Compute the complex cosine

ccosh() Compute the complex hyperbolic cosine
cexp() Compute the complex base-e exponential
cimag() Returns the imaginary part of a complex number
clog() Compute the complex logarithm

CMPLX() Build a complex value from real and imaginary types
conj() Compute the conjugate of a complex number
cproj() Compute the projection of a complex number
creal() Returns the real part of a complex number
csin() Compute the complex sine

csinh() Compute the complex hyperbolic sine
csqrt() Compute the complex square root

ctan() Compute the complex tangent

ctanh() Compute the complex hyperbolic tangent

You can test for complex number support by looking at the _STDC_NO_COMPLEX__ macro. If it’s defined,
complex numbers aren’t available.

There are possibly two types of numbers defined: complex and imaginary. No system I’m currently aware
of implements imaginary types.

22

Chapter 4. <comp lex. h> Complex Number Functionality 23

The complex types, which are a real value plus a multiple of , are:

float complex
double complex
long double complex

The imaginary types, which hold a multiple of 7, are:

float imaginary
double imaginary
long double imaginary

The mathematical value 7 = +/—1 is represented by the symbol _Complex_I or _Imaginary_I, if it
exists.

The The macro I will be preferentially set to _Imaginary_TI (if it exists), or to _Complex_I otherwise.

You can write imaginary literals (if supported) using this notation:

double imaginary x = 3.4 * I;

You can write complex literals using regular complex notation:
double complex x = 1.2 + 3.4 * I;

or build them with the CMPLX () macro:
double complex x = CMPLX(1.2, 3.4); // Like 1.2 + 3.4 * I

The latter has the advantage of handing special cases of complex numbers correctly (like those involving
infinity or signed zeroes) as if _Imaginary_I were present, even if it’s not.

All angular values are in radians.

Some functions have discontinuities called branch cuts. Now, I’m no mathematician so I can’t really talk
sensibly about this, but if you’re here, I like to think you know what you’re doing when it comes to this
side of things.

If you system has signed zeroes, you can tell which side of the cut you’re on by the sign. And you can’t
if you don’t. The spec elaborates:

Implementations that do not support a signed zero [...] cannot distinguish the sides of branch
cuts. These implementations shall map a cut so the function is continuous as the cut is
approached coming around the finite endpoint of the cut in a counter clockwise direction.
(Branch cuts for the functions specified here have just one finite endpoint.) For example,
for the square root function, coming counter clockwise around the finite endpoint of the cut
along the negative real axis approaches the cut from above, so the cut maps to the positive
imaginary axis.

Finally, there’s a pragma called CX_LIMITED_RANGE that can be turned on and off (default is off). You
can turn it on with:

#pragma STDC CX_LIMITED_RANGE ON

It allows for certain intermediate operations to underflow, overflow, or deal badly with infinity, presumably
for a tradeoff in speed. If you’re sure these types of errors won’t occur with the numbers you’re using
AND you’re trying to get as much speed out as you can, you could turn this macro on.

The spec also elaborates here:
The purpose of the pragma is to allow the implementation to use the formulas:
(x+1iy) X (u+ 1) = (zu—yv) + i(yu + zv)
(2 + i)/ (u+ iv) = [(wu+ yo) + i(yu — z0)]/(u? +1?)
o+ iy| = Va2 + 92

where the programmer can determine they are safe.

Chapter 4. <comp lex. h> Complex Number Functionality 24

4.1 cacos(),cacosf(), cacosl()

Compute the complex arc-cosine

Synopsis

#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

Description
Computes the complex arc-cosine of a complex number.

The complex number z will have an imaginary component in the range [0, 7], and the real component is
unbounded.

There are branch cuts outside the interval [—1, +1] on the real axis.

Return Value

Returns the complex arc-cosine of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

‘ double complex x = 8 + 1.5708 * I;

double complex y = cacos(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 0.195321 + -2.7880061

See Also

ccos(), casin(), catan()

4.2 casin(), casinf(), casinl()

Compute the complex arc-sine

Chapter 4. <comp lex. h> Complex Number Functionality 25
Synopsis

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

long double complex casinl(long double complex z);

Description
Computes the complex arc-sine of a complex number.

The complex number z will have an imaginary component in the range [—m/2, +7 /2], and the real
component is unbounded.

There are branch cuts outside the interval [—1, +1] on the real axis.

Return Value

Returns the complex arc-sine of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

' double complex x = 8 + 1.5708 * I;

double complex y = casin(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 1.375476 + 2.7880061

See Also

csin(), cacos(), catan()

4.3 catan(), catanf(), catanl()

Compute the complex arc-tangent

Synopsis

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

Chapter 4. <comp lex. h> Complex Number Functionality 26

long double complex catanl(long double complex z);

Description
Computes the complex arc-tangent of a complex number.

The complex number z will have an real component in the range [—7 /2, +7 /2], and the imaginary
component is unbounded.

There are branch cuts outside the interval [—, 4] on the imaginary axis.

Return Value

Returns the complex arc-tangent of z.

Example

#include <stdio.h>
#inc lude <complex.h>

int main(void)

{

double wheat = 8;

double sheep = 1.5708;

double complex x = wheat + sheep * I;

double complex y = catan(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 1.450947 + 0.0232991

See Also

ctan(), cacos(), casin()

4.4 ccos(),ccosf(),ccosl()

Compute the complex cosine

Synopsis

#inc lude <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

Chapter 4. <comp lex. h> Complex Number Functionality 27

Description

Computes the complex cosine of a complex number.

Return Value
Returns the complex cosine of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

' double complex x = 8 + 1.5708 * I;

double complex y = ccos(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: -0.365087 + -2.2768181i

See Also

csin(), ctan(), cacos()

4.5 csin(),csinf(), csinl()

Compute the complex sine

Synopsis

#inc lude <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);

long double complex csinl(long double complex z);

Description

Computes the complex sine of a complex number.

Return Value

Returns the complex sine of z.

Example

Chapter 4. <comp lex. h> Complex Number Functionality

#include <stdio.h>
#include <complex.h>

int main(void)

{ double complex x =
double complex y =
printf("Result: %f

}

Output:

8 + 1.5708 * I;

csin(x);

+ %fi\n", creal(y), cimag(y));

Result: 2.482485 + -0.334840i

See Also

ccos(), ctan(), casin()

4.6 ctan(),ctanf(),ctanl()

Compute the complex tangent

Synopsis

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

long double complex ctanl(long double complex z);

Description

Computes the complex tangent of a complex number.

Return Value

Returns the complex tangent of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)
{
double complex x =

double complex y =

printf("Result: %f

8 + 1.5708 * I;
ctan(x);

+ %fi\n", creal(y),

cimag(y));

Chapter 4. <comp lex. h> Complex Number Functionality 29

Output:
Result: -0.027073 + 1.0859901

See Also

ccos(), csin(), catan()

4.7 cacosh(), cacoshf(), cacoshl()

Compute the complex arc hyperbolic cosine
Synopsis

#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

Description
Computes the complex arc hyperbolic cosine of a complex number.
There is a branch cut at values less than 1 on the real axis.

The return value will be non-negative on the real number axis, and in the range [—i7, +i7] on the imagi-
nary axis.

Return Value
Returns the complex arc hyperbolic cosine of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

' double complex x = 8 + 1.5708 * I;

double complex y = cacosh(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 2.788006 + 0.195321i

See Also

casinh(), catanh(), acosh()

Chapter 4. <comp lex. h> Complex Number Functionality 30

4.8 casinh(), casinhf(), casinhl()

Compute the complex arc hyperbolic sine
Synopsis

#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

Description
Computes the complex arc hyperbolic sine of a complex number.
There are branch cuts outside [—i, 4] on the imaginary axis.

The return value will be unbounded on the real number axis, and in the range [—im/2, +i7/2] on the
imaginary axis.

Return Value
Returns the complex arc hyperbolic sine of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

' double complex x = 8 + 1.5708 * I;

double complex y = casinh(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 2.794970 + 0.192476i

See Also

cacosh(), catanh(), asinh()

4.9 catanh(), catanhf(), catanhl()

Compute the complex arc hyperbolic tangent

Synopsis

Chapter 4. <comp lex. h> Complex Number Functionality 31

#include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

Description
Computes the complex arc hyperbolic tangent of a complex number.
There are branch cuts outside [—1, +1] on the real axis.

The return value will be unbounded on the real number axis, and in the range [—i7/2, +i7/2] on the
imaginary axis.

Return Value
Returns the complex arc hyperbolic tangent of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

' double complex x = 8 + 1.5708 * I;

double complex y = catanh(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 0.120877 + 1.546821i

See Also

cacosh(), casinh(), atanh()

4.10 ccosh(), ccoshf(), ccoshl()

Compute the complex hyperbolic cosine
Synopsis

#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

Chapter 4. <comp lex. h> Complex Number Functionality

Description

Computes the complex hyperbolic cosine of a complex number.

Return Value
Returns the complex hyperbolic cosine of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

' double complex x = 8 + 1.5708 * I;

double complex y = ccosh(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: -0.005475 + 1490.4788261

See Also

csinh(), ctanh(), ccos()

4.11 csinh(), csinhf(), csinhl()

Compute the complex hyperbolic sine

Synopsis

#inc lude <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

Description

Computes the complex hyperbolic sine of a complex number.

Return Value

Returns the complex hyperbolic sine of z.

Example

Chapter 4. <comp lex. h> Complex Number Functionality

#include <stdio.h>
#include <complex.h>

int main(void)

‘ double complex x = 8 + 1.5708 * I;

double complex y = csinh(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: -0.005475 + 1490.4791611

See Also

ccosh(), ctanh(), csin()

4.12 ctanh(), ctanhf(), ctanhl()

Compute the complex hyperbolic tangent
Synopsis

#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

Description

Computes the complex hyperbolic tangent of a complex number.

Return Value

Returns the complex hyperbolic tangent of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)
{
double complex x = 8 + 1.5708 * I;

double complex y = ctanh(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));

Chapter 4. <comp lex. h> Complex Number Functionality

Output:
Result: 1.000000 + -0.000000i1

See Also

ccosh(), csinh(), ctan()

4.13 cexp(), cexpf(), cexpl()

Compute the complex base-e exponential
Synopsis

#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);

long double complex cexpl(long double complex z);

Description

Computes the complex base-e exponential of z.

Return Value

Returns the complex base-e exponential of z.

Example

#include <stdio.h>
#inc lude <complex.h>

int main(void)

‘ double complex x =1 + 2 * I;

double complex y = cexp(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: -1.131204 + 2.4717271

See Also

cpow(), clog(), exp()

34

Chapter 4. <comp lex. h> Complex Number Functionality 35

4.14 clog(), clogf(), clogl()

Compute the complex logarithm

Synopsis

#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);

long double complex clogl(long double complex z);

Description
Compute the base-e complex logarithm of z. There is a branch cut on the negative real axis.

The returns value is unbounded on the real axis and in the range [—i7, +i7] on the imaginary axis.

Return Value

Returns the base-e complex logarithm of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

‘ double complex x =1 + 2 * I;

double complex y = clog(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 0.804719 + 1.1071491

See Also

cexp(), Llog()

4.15 cabs(), cabsf(), cabs1()

Compute the complex absolute value

Synopsis
#include <complex.h>

double cabs(double complex z);

Chapter 4. <comp lex. h> Complex Number Functionality 36

float cabsf(float complex z);

long double cabsl(long double complex z);

Description

Computes the complex absolute value of z.

Return Value

Returns the complex absolute value of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

‘ double complex x =1 + 2 * I;

double complex y = cabs(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 2.236068 + 0.0000001

See Also
fabs(), abs()

4.16 cpow(), cpowf(), cpowl()

Compute complex power

Synopsis

#include <complex.h>

double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);

long double complex cpowl(long double complex X,
long double complex y);

Description
Computes the complex z¥.

There is a branch cut for x along the negative real axis.

Chapter 4. <comp lex. h> Complex Number Functionality

Return Value

Returns the complex x¥.

Example

#include <stdio.h>
#inc lude <complex.h>

int main(void)

{

double complex x =1 + 2 * I;

double complex y = 3 + 4 * I;

double r = cpow(x, y);

printf("Result: %f + %fi\n", creal(r), cimag(r));
}
Result:

Result: 0.129010 + 0.0000001

See Also

csqrt(), cexp()

4.17 csqrt(),csqrtf(), csqrtl()

Compute the complex square root

Synopsis

#include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);

long double complex csqrtl(long double complex z);

Description
Computes the complex square root of z.

There is a branch cut along the negative real axis.

The return value is in the right half of the complex plane and includes the imaginary axis.

Return Value

Returns the complex square root of z.

Example

37

Chapter 4. <comp lex. h> Complex Number Functionality 38

#include <stdio.h>
#include <complex.h>

int main(void)

‘ double complex x =1 + 2 * I;

double complex y = csqrt(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 1.272020 + 0.7861511

See Also

cpow(), sqrt()

4.18 carg(), cargf(), cargl()

Compute the complex argument
Synopsis

#include <complex.h>

double carg(double complex z);
float cargf(float complex z);

long double cargl(long double complex z);

Description
Computes the complex argument (AKA phase angle) of z.
There is a branch cut along the negative real axis.

Returns a value in the range [—, +7].

Return Value

Returns the complex argument of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)
{

double complex x =1 + 2 * I;

double y = carg(x);

Chapter 4. <comp lex. h> Complex Number Functionality

printf("Result: %f\n", y);
}

Output:
Result: 1.107149

4.19 cimag(), cimagf(), cimagl()

Returns the imaginary part of a complex number
Synopsis

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

Description

Returns the imaginary part of z.

As a footnote, the spec points out that any complex number x is part of the following equivalency:

X == creal(x) + cimag(x) * I;

Return Value
Returns the imaginary part of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

{
double complex x =1 + 2 * I;
double y = cimag(x);
printf("Result: %f\n", y);

}

Output—just the imaginary part:
Result: 2.000000

See Also

creal()

Chapter 4. <comp lex. h> Complex Number Functionality 40

4.20 CMPLX(), CMPLXF(), CMPLXL()

Build a complex value from real and imaginary types

Synopsis

#include <complex.h>

double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);

long double complex CMPLXL(long double x, long double y);

Description
These macros build a complex value from real and imaginary types.

Now I know what you’re thinking. “But I can already build a complex value from real and imaginary
types using the I macro, like in the example you’re about to give us.”

double complex x = 1 + 2 * I;

And that’s true.

But the reality of the matter is weird and complex.

Maybe I got undefined, or maybe you redefined it.

Or maybe I was defined as _Complex_I which doesn’t necessarily preserve the sign of a zero value.

As the spec points out, these macros build complex numbers as if _Imaginary_I were defined (thus
preserving your zero sign) even if it’s not. That is, they are defined equivalently to:

#define CMPLX(x, y) ((double complex)((double)(x) + \
_Imaginary_I * (double)(y)))

#define CMPLXF(x, y) ((float complex)((float)(x) + \
_Imaginary I * (float)(y)))

#define CMPLXL(x, y) ((long double complex)((long double)(x) + \
_Imaginary_I * (long double)(y)))

Return Value

Returns the complex number for the given real x and imaginary y components.

Example

#include <stdio.h>
#include <complex.h>

int main(void)
{
double complex x = CMPLX(1, 2); // Like 1 + 2 * I

printf("Result: %f + %fi\n", creal(x), cimag(x));
}

Output:

Chapter 4. <comp lex. h> Complex Number Functionality

Result: 1.000000 + 2.000000i

See Also

creal(), cimag()

4.21 conj(),conjf(),conjl()

Compute the conjugate of a complex number
Synopsis

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

Description

41

This function computes the complex conjugate! of z. Apparently it does this by reversing the sign of the

imaginary part, but dammit, I’m a programmer not a mathematician, Jim!

Return Value

Returns the complex conjugate of z

Example

#include <stdio.h>
#inc lude <complex.h>

int main(void)

‘ double complex x =1 + 2 * I;

double complex y = conj(x);

printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 1.000000 + -2.000000i1

4.22 cproj(),cproj(),cproj()

Compute the projection of a complex number

Thttps://en.wikipedia.org/wiki/Complex_conjugate

https://en.wikipedia.org/wiki/Complex_conjugate

Chapter 4. <comp lex. h> Complex Number Functionality 42

Synopsis

#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);

long double complex cprojl(long double complex z);

Description
Computes the projection of z onto a Riemann sphere?.

Now we’re really outside my expertise. The spec has this to say, which I’m quoting verbatim because I’m
not knowledgable enough to rewrite it sensibly. Hopefully it makes sense to anyone who would need to
use this function.

z projects to z except that all complex infinities (even those with one infinite part and one
NaN part) project to positive infinity on the real axis. If z has an infinite part, then cproj(z)
is equivalent to

INFINITY + I * copysign(0.0, cimag(z))

So there you have it.

Return Value

Returns the projection of z onto a Riemann sphere.

Example

Fingers crossed this is a remotely sane example...

#include <stdio.h>
#include <complex.h>
#1include <math.h>

int main(void)

{
double complex x =1 + 2 * I;
double complex y = cproj(x);
printf("Result: %f + %fi\n", creal(y), cimag(y));
x = INFINITY + 2 * I;
y = cproj(x);
printf("Result: %f + %fi\n", creal(y), cimag(y));
}
Output:

Result: 1.000000 + 2.000000i
Result: inf + 0.000000i1

Zhttps://en.wikipedia.org/wiki/Riemann_sphere

https://en.wikipedia.org/wiki/Riemann_sphere

Chapter 4. <comp lex. h> Complex Number Functionality

4.23 creal(),crealf(),creall()

Returns the real part of a complex number
Synopsis

#include <complex.h>

double creal(double complex z);
float crealf(float complex z);

long double creall(long double complex z);

Description
Returns the real part of z.

As a footnote, the spec points out that any complex number x is part of the following equivalency:

X == creal(x) + cimag(x) * I;

Return Value
Returns the real part of z.

Example

#include <stdio.h>
#include <complex.h>

int main(void)

{
double complex x =1 + 2 * I;
double y = creal(x);
printf("Result: %f\n", y);

}

Output—just the real part:
Result: 1.000000

See Also

cimag()

43

Chapter 5

<ctype.h> Character Classification
and Conversion

Function Description

isalnum() Tests if a character is alphabetic or is a digit
isalpha() Returns true if a character is alphabetic
isblank() Tests if a character is word-separating whitespace
iscntrl() Test if a character is a control character
isdigit() Tests if a character is a digit

isgraph() Tests if the character is printable and not a space
islower () Tests if a character is lowercase

isprint() Tests if a character is printable

ispunct() Test if a character is punctuation

isspace() Test if a character is whitespace

isupper() Tests if a character is uppercase

isxdigit() Tests if a character is a hexadecimal digit
tolower () Convert a letter to lowercase

toupper () Convert a letter to uppercase

This collection of macros is good for testing characters to see if they’re of a certain class, such as alphabetic,
numeric, control characters, etc.

Surprisingly, they take int arguments instead of some kind of char. This is so you can feed EOF in
for convenience if you have an integer representation of that. If not EOF, the value passed in has to be
representable in an unsigned char. Otherwise it’s (dun dun DUUNNNN) undefined behavior. So you
can forget about passing in your UTF-8 multibyte characters.

You can portably avoid this undefined behavior by casting the arguments to these functions to (unsigned
char). This is irksome and ugly, admittedly. The values in the basic character set are all safe to use since
they’re positive values that fit into an unsigned char.

Also, the behavior of these functions varies based on locale.

In many of the pages in this section, I give some examples. These are from the “C” locale, and might vary
if you’ve set a different locale.

Note that wide characters have their own set of classification functions, so don’t try to use these on
wchar_ts. Or else!

44

Chapter 5. <ctype.h> Character Classification and Conversion

5.1 isalnum()

Tests if a character is alphabetic or is a digit

Synopsis
#include <ctype.h>

int isalnum(int c);

Description

Tests if a character is alphabetic (A-Z or a-z) or a digit (0-9).

Is equivalent to:
isalpha(c) || isdigit(c)

Return Value

Returns true if a character is alphabetic (A-z or a-z) or a digit (0-9).

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// 1%
printf("%s\n", isalnum('a')? "yes
printf("%s\n", isalnum('B')? "yes"
printf("%s\n", isalnum('5')? "yes"
printf("%s\n", isalnum('?')? "yes"

}

See Also

isalpha(), isdigit()

"no");
"no");
"no");
"no");

// yes
// yes
// yes
// no

5.2 isalpha()

Returns true if a character is alphabetic

Synopsis
#include <ctype.h>

int isalpha(int c);

Description

Returns true for alphabetic characters (A-Z or a-z).

Technically (and in the “C” locale) equivalent to:

45

Chapter 5. <ctype.h> Character Classification and Conversion 46

isupper(c) || islower(c)

Extra super technically, because I know you’re dying for this to be extra unnecessarily complex, it can
also include some locale-specific characters for which this is true:

liscntrl(c) && !'isdigit(c) && !ispunct(c) && !isspace(c)

and this is true:

isupper(c) || islower(c)

Return Value
Returns true for alphabetic characters (A-Z or a-z).

Or for any of the other crazy stuff in the description, above.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// v
printf("%s\n", isalpha('a')? "yes": "no"); // yes
printf("%s\n", isalpha('B')? "yes": "no"); // yes
printf("%s\n", isalpha('5')? "yes": "no"); // no
printf("%s\n", isalpha('?')? "yes": "no"); // no
}
See Also
isalnum()

5.3 isblank()

Tests if a character is word-separating whitespace
Synopsis
#inc lude <ctype.h>

int isblank(int c);

Description
True if the character is a whitespace character used to separate words in a single line.

For example, space (' ') or horizontal tab (' \t"'). Other locales might define other blank characters.

Return Value

Returns true if the character is a whitespace character used to separate words in a single line.

Chapter 5. <ctype.h> Character Classification and Conversion 47

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// 1%
printf("%s\n", isblank(' ')? "yes": "no");
printf("%s\n", isblank('\t')? "yes": '"no");
printf("%s\n", isblank('\n')? "yes": "no");
printf("%s\n", isblank('a')? "yes": "no");
printf("%s\n", isblank('?')? "yes": "no");

}

See Also

isspace()

// yes
// yes
// no
// no
// no

5.4 iscntrl()

Test if a character is a control character

Synopsis
#include <ctype.h>

int iscntrl(int c);

Description

A control character is a locale-specific non-printing character.

For the “C” locale, this means control characters are in the range 0x00 to 0x1F (the character right before

SPACE) and 0x7F (the DEL character).

Basically if it’s not an ASCII (or Unicode less than 128) printable character, it’s a control character in the

“C” locale.

Return Value

Returns true if c is a control character.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// 1%
printf("%s\n", iscntrl('\t')? "yes": "no");
printf("%s\n", iscntrl('\n')? "yes": "no");
printf("%s\n", iscntrl('\r')? "yes": "no");

// yes (tab)
// yes (newline)
// yes (return)

Chapter 5. <ctype.h> Character Classification and Conversion

printf("%s\n", iscntrl('\a')? "yes":
printf("%s\n", iscntrl(' ')? "yes'":
printf("%s\n", iscntrl('a')? "yes":
printf("%s\n", iscntrl('?')? "yes'":

See Also

isgraph(), isprint()

"no");
"no");
"no");
"no");

// yes (bell)
// no
// no
// no

5.5 isdigit()

Tests if a character is a digit

Synopsis
#include <ctype.h>

int isdigit(int c);

Description

Tests if c is a digit in the range 0-9.

Return Value

Returns true if the character is a digit, unsurprisingly.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// v
printf("%s\n", isdigit('0')? "yes":
printf("%s\n", isdigit('5')? "yes":
printf("%s\n", isdigit('a')? "yes'":
printf("%s\n", isdigit('B')? "yes":
printf("%s\n", isdigit('?')? "yes'":

See Also

isalnum(), isxdigit()

"nO");
"nO"),‘
||n0||),.
llnoll .

4
"nO”);

// yes
// yes
// no
// no
// no

5.6 isgraph()

Tests if the character is printable and not a space

48

Chapter 5. <ctype.h> Character Classification and Conversion

Synopsis
#include <ctype.h>

int isgraph(int c);

Description

Tests if c is any printable character that isn’t a space (' ').

Return Value
Returns true if c is any printable character that isn’t a space ('

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// v
printf("%s\n", isgraph('0')? "yes": "no");
printf("%s\n", isgraph('a')? "yes": "no");
printf("%s\n", isgraph('B')? "yes": "no");
printf("%s\n", isgraph('?')? "yes": "no");
printf("%s\n", isgraph(' ')? "yes": "no");
printf("%s\n", isgraph('\n')? "yes": "no");
}
See Also

iscntrl(), isprint()

|)'

// yes
// yes
// yes
// yes
// no
// no

5.7 islower()

Tests if a character is lowercase

Synopsis
#include <ctype.h>

int islower(int c);

Description

Tests if a character is lowercase, in the range a-z.

49

In other locales, there could be other lowercase characters. In all cases, to be lowercase, the following

must be true:

liscntrl(c) && !isdigit(c) && !ispunct(c) && !isspace(c)

Chapter 5. <ctype.h> Character Classification and Conversion

Return Value

Returns true if the character is lowercase.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
//
//
printf("%s\n",
printf("%s\n",
printf("%s\n",
printf("%s\n",
printf("%s\n",

See Also

isupper(), isalpha(), toupper(), tolower()

5.8 isprint()

testing this char
v

islower('c')? "yes":

islower('0')? "yes

islower('B')? "yes":
islower('?')? "yes":
islower ("' ')? "yes":

"no");
"no");
"no");
"no");
"no");

// yes
// no
// no
// no
// no

Tests if a character is printable

Synopsis
#include <ctype.h>

int isprint(int c);

Description

Tests if a character is printable, including space ('

the cold.

Return Value

50

"). So like isgraph(), except space isn’t left out in

Returns true if the character is printable, including space ('

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
//
//
printf("%s\n",
printf("%s\n",
printf("%s\n",

testing this char
v

isprint('c')? "yes'":
isprint('e')? "yes":
isprint(' ')? "yes":

llnoll) .
4
llnoll) .
r
llnoll) .
r

// yes
// yes
// yes

Chapter 5. <ctype.h> Character Classification and Conversion

printf("%s\n", isprint('\r')? "yes":

See Also

isgraph(), iscntr1()

Hnon);

// no

5.9 ispunct()

Test if a character is punctuation

Synopsis
#include <ctype.h>

int ispunct(int c);

Description
Tests if a character is punctuation.

In the “C” locale, this means:

lisspace(c) && !isalnum(c)

In other locales, there could be other punctuation characters (but they also can’t be space or alphanumeric).

Return Value

True if the character is punctuation.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// %
printf("%s\n", ispunct(',')? "yes":
printf("%s\n", ispunct('!')? "yes'":
printf("%s\n", ispunct('c')? "yes'":
printf("%s\n", ispunct('0')? "yes":
printf("%s\n", ispunct(' ')? "yes'":
printf("%s\n", ispunct('\n')? "yes":

}

See Also

isspace(), isalnum()

"no");
"no");
"no");
"no");
"no");
"no");

yes
yes
no
no
no
no

Chapter 5. <ctype.h> Character Classification and Conversion 52

5.10 isspace()

Test if a character is whitespace

Synopsis
#include <ctype.h>

int isspace(int c);

Description
Tests if c is a whitespace character. These are:

* Space (' ')

Formfeed ('\f")

* Newline ('\n"')
 Carriage Return ('\r")
» Horizontal Tab ('\t")
* Vertical Tab ('\v"')

Other locales might specify other whitespace characters. isalnum() is false for all whitespace characters.

Return Value
True if the character is whitespace.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// v
printf("%s\n", isspace(' ')? "yes'":
printf("%s\n", isspace('\n')? "yes":
printf("%s\n", isspace('\t')? "yes":
printf("%s\n", isspace(',')? "yes'":
printf("%s\n", isspace('!')? "yes'":
printf("%s\n", isspace('c')? "yes'":

}

See Also

isblank()

"no");
"no") ;
"no");

"no");

"no");

"no");

// yes
// yes
// yes
// no
// no
// no

5.11 isupper()

Tests if a character is uppercase

Synopsis

Chapter 5. <ctype.h> Character Classification and Conversion

#include <ctype.h>

int isupper(int c);

Description

Tests if a character is uppercase, in the range A-Z.

53

In other locales, there could be other uppercase characters. In all cases, to be uppercase, the following

must be true:

liscntrl(c) && !isdigit(c) && !ispunct(c) && !isspace(c)

Return Value

Returns true if the character is uppercase.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// %
printf("%s\n", isupper('B')? "yes":
printf("%s\n", isupper('c')? "yes'":
printf("%s\n", isupper('0')? "yes'":
printf("%s\n", isupper('?')? "yes":
printf("%s\n", isupper(' ')? "yes'":

}

See Also

islower(), isalpha(), toupper(), tolower()

"no");
"no");
"no");
"no");
"no");

// yes
// no
// no
// no
// no

5.12 isxdigit()

Tests if a character is a hexadecimal digit

Synopsis
#include <ctype.h>

int isxdigit(int c);

Description

Returns true if the character is a hexadecimal digit. Namely if it’s 0-9, a-f, or A-F.

Return Value

True if the character is a hexadecimal digit.

Chapter 5. <ctype.h> Character Classification and Conversion 54

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// testing this char
// 1%
printf("%s\n", isxdigit('B')? "yes": "no"); // yes
printf("%s\n", isxdigit('c')? "yes": '"no"); // yes
printf("%s\n", isxdigit('2')? "yes": "no"); // yes
printf("%s\n", isxdigit('G')? "yes": "no"); // no
printf("%s\n", isxdigit('?')? "yes": "no"); // no

}

See Also

isdigit()

5.13 tolower()

Convert a letter to lowercase

Synopsis
#include <ctype.h>

int tolower(int c);

Description

If the character is uppercase (i.e. isupper(c) is true), this function returns the corresponding lowercase
letter.

Different locales might have different upper- and lowercase letters.

Return Value

Returns the lowercase value for an uppercase letter. If the letter isn’t uppercase, returns it unchanged.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
// changing this char
// %
printf("%c\n", tolower('B')); // b (made lowercase!)
printf("%c\n", tolower('e')); // e (unchanged)
printf("%c\n", tolower('!')); // ! (unchanged)

Chapter 5. <ctype.h> Character Classification and Conversion 55

See Also

toupper(), islower (), isupper()

5.14 toupper()

Convert a letter to uppercase

Synopsis

#include <ctype.h>

int toupper(int c);

Description

If the character is lower (i.e. islower (c) is true), this function returns the corresponding uppercase letter.

Different locales might have different upper- and lowercase letters.

Return Value

Returns the uppercase value for a lowercase letter. If the letter isn’t lowercase, returns it unchanged.

Example

#include <stdio.h>
#include <ctype.h>

int main(void)

{
//
//
printf("%c\n",
printf("%c\n",
printf("%c\n",

See Also

changing this char

v
toupper('B')); // B (unchanged)
toupper('e')); // E (made uppercase!)
toupper('!")); // ! (unchanged)

tolower (), islower (), isupper()

Chapter 6

<errno.h> Error Information

Variable Description

errno Holds the error status of the last call

This header defines a single variable!, errno, that can be checked to see if an error has occurred.

errno is set to @ on startup, but no library function sets it to @. If you’re going to use solely it to check
for errors, set it to © before the call and then check it after. Not only that, but if there’s no error, all library
functions will leave the value of errno unchanged.

Often, though, you’ll get some error indication from the function you’re calling then check errno to see
what went wrong.

This is commonly used in conjunction with perror() to get a human-readable error message that corre-
sponds to the specific error.

Important Safety Tip: You should never make your own variable called er rno—that’s undefined behavior.

Note that the C Spec defines less than a handful of values errno can take on. Unix defines a bunch more?,

as does Windows?.

6.1 errno

Holds the error status of the last call
Synopsis

errno // Type 1is undefined, but it's assignable

Description

Indicates the error status of the last call (note that not all calls will set this value).

Value Description

0 No error
EDOM Domain error (from math)
EILSEQ Encoding error (from character conversion)

IReally it’s just required to be a modifiable lvalue, so not necessarily a variable. But you can treat it as such.
Zhttps://man.archlinux.org/man/errno.3.en
3https://docs.microsoft.com/en-us/cpp/c-runtime-library/errno-constants?view=msvc-160

56

https://man.archlinux.org/man/errno.3.en
https://docs.microsoft.com/en-us/cpp/c-runtime-library/errno-constants?view=msvc-160

Chapter 6. <errno.h> Error Information 57

Value Description

ERANGE Range error (from math)

If you’re doing a number of math functions, you might come across EDOM or ERANGE.
With multibyte/wide character conversion functions, you might see EILSEQ.

And your system might define any other number of values that errno could be set to, all of which will
begin with the letter E.

Fun Fact: you can use EDOM, EILSEQ, and ERANGE with preprocessor directives such as #ifdef. But,
frankly, I’m not sure why you’d do that other than to test their existence.

Example

The following prints an error message, since passing 2.0 to acos() is outside the function’s domain.

#include <stdio.h>
#include <math.h>
#include <errno.h>

int main(void)

{
double x;
errno = 0; // Make sure this is clear before the call
X = acos(2.0); // Invalid argument to acos()
if (errno == EDOM)
perror("acos");
else
printf("Answer is %f\n", x);
return 0;
}
Output:

acos: Numerical argument out of domain

The following prints an error message (on my system), since passing 1e+30 to exp() produces a result
that’s outside the range of a double.

#include <stdio.h>

#include <math.h>

#include <errno.h>

int main(void)

{

double x;
errno = 0; // Make sure this is clear before the call
X = exp(1e+30); // Pass in some too-huge number
if (errno == ERANGE)
perror("exp");

else
printf("Answer is %f\n", Xx);

20

21

22

23

24

25

26

Chapter 6. <errno.h> Error Information 58

return 0;

}

Output:
exp: Numerical result out of range

This example tries to convert an invalid character into a wide character, failing. This sets errno to EILSEQ.
We then use perror () to print an error message.

#include <stdio.h>
#include <string.h>
#inc lude <wchar.h>
#include <errno.h>
#inc lude <locale.h>

int main(void)

{
setlocale(LC_ALL, "");
char *bad_str = "\xff"; // Probably invalid char in this locale
wchar_t wc;
size_t result;
mbstate_t ps;
memset (&ps, 0, sizeof ps);
result = mbrtowc(&wc, bad_str, 1, &ps);
if (result == (size_t)(-1))
perror("mbrtowc"); // mbrtowc: Illegal byte sequence
else
printf("Converted to L'%lc'\n", wc);
return 0O;
}
Output:

mbrtowc: Invalid or incomplete multibyte or wide character

See Also

perror(), mbrtoc16(), ci6rtomb(), mbrtoc32(), c32rtomb(), fgetwc(), fputwc(), mbrtowc(),
wcrtomb (), mbsrtowcs(), wecsrtombs(), <math.h>,

Chapter 7

<fenv.h> Floating Point Exceptions
and Environment

Function

Description

feclearexcept()
fegetexceptflag()
fesetexceptflag()
feraiseexcept()
fetestexcept()
fegetround()
fesetround()
fegetenv()
fesetenv()
feholdexcept()
feupdateenv()

Clear floating point exceptions

Save the floating point exception flags

Restore the floating point exception flags

Raise a floating point exception through software
Test to see if an exception has occurred

Get the rounding direction

Set the rounding direction

Save the entire floating point environment

Restore the entire floating point environment

Save floating point state and install non-stop mode
Restore floating point environment and apply recent exceptions

7.1 Types and Macros

There are two types defined in this header:

Type Description
fenv_t The entire floating point environment
fexcept_t A set of floating point exceptions

The “environment” can be thought of as the status at this moment of the floating point processing system:
this includes the exceptions, rounding, etc. It’s an opaque type, so you won’t be able to access it directly,
and it must be done through the proper functions.

If the functions in question exist on your system (they might not be!), then you’ll also have these macros
defined to represent different exceptions:

Macro Description

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT

Division by zero

Result was not exact, was rounded
Domain error

Numeric overflow

Numeric underflow

All of the above combined

59

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 60

The idea is that you can bitwise-OR these together to represent multiple exceptions, e.g. FE_INVALID | FE_OVERFLOW.

The functions, below, that have an excepts parameter will take these values.

See <math . h> for which functions raise which exceptions and when.

7.2 Pragmas

Normally C is free to optimize all kinds of stuff that might cause the flags to not look like you might
expect. So if you’re going to use this stuff, be sure to set this pragma:

#pragma STDC FENV_ACCESS ON

If you do this at global scope, it remains in effect until you turn it off:
#pragma STDC FENV_ACCESS OFF

If you do it in block scope, it has to come before any statements or declarations. In this case, it has effect
until the block ends (or until it is explicitly turned off.)

A caveat: this program isn’t supported on either of the compilers I have (gcc and clang) as of this writing,
so though I have built the code, below, it’s not particularly well-tested.

7.3 feclearexcept()

Clear floating point exceptions

Synopsis
#include <fenv.h>

int feclearexcept(int excepts);

Description
If a floating point exception has occurred, this function can clear it.
Set excepts to a bitwise-OR list of exceptions to clear.

Passing 0 has no effect.

Return Value
Returns 0 on success and non-zero on failure.
Example
#include <stdio.h>
#include <math.h>
#inc lude <fenv.h>
int main(void)
{
#pragma STDC FENV_ACCESS ON

double f = sqrt(-1);

int r = feclearexcept(FE_INVALID);

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 61

printf("%d %f\n", r, f);

See Also

feraiseexcept(), fetestexcept()

7.4 fegetexceptflag() fesetexceptflag()

Save or restore the floating point exception flags

Synopsis
#include <fenv.h>
int fegetexceptflag(fexcept_t *flagp, int excepts);

int fesetexceptflag(fexcept_t *flagp, int excepts);

Description
Use these functions to save or restore the current floating point environment in a variable.

Set excepts to the set of exceptions you want to save or restore the state of. Setting it to FE_ALL_EXCEPT
will save or restore the entire state.

Note that fexcept_t is an opaque type—you don’t know what’s in it.

excepts can be set to zero for no effect.

Return Value
Returns © on success or if excepts is zero.

Returns non-zero on failure.

Example

This program saves the state (before any error has happened), then deliberately causes a domain error by
trying to take v/ —1.
After that, it restores the floating point state to before the error had occurred, thereby clearing it.

#include <stdio.h>
#include <math.h>
#include <fenv.h>

int main(void)

{
#pragma STDC FENV_ACCESS ON
fexcept_t flag;

fegetexceptflag(&flag, FE_ALL_EXCEPT); // Save state

double f = sqrt(-1); // I imagine this won't work
printf("%f\n", f); // "nan"

20

21

22

23

24

25

26

27

Chapter 7. <fenv.h> Floating Point Exceptions and Environment

if (fetestexcept(FE_INVALID))

printf("1: Domain error\n");

else

// This prints!

printf("1: No domain error\n");

fesetexceptflag(&flag, FE_ALL_EXCEPT); // Restore to before error

if (fetestexcept(FE_INVALID))

printf("2: Domain error\n");

else

printf("2: No domain error\n"); // This prints!

7.5 feraiseexcept()

Raise a floating point exception through software

Synopsis
#include <fenv.h>

int feraiseexcept(int excepts);

Description

This attempts to raise a floating point exception as if it had happened.

You can specify multiple exceptions to raise.

If either FE_UNDERFLOW or FE_OVERFLOW is raised, C might also raise FE_INEXACT.

62

If either FE_UNDERFLOW or FE_OVERFLOW is raised at the same time as FE_INEXACT, then FE_UNDERFLOW
or FE_OVERFLOW will be raised before FE_INEXACT behind the scenes.

The order the other exceptions are raised is undefined.

Return Value

Returns 0 if all the exceptions were raised or if excepts is 0.

Returns non-zero otherwise.

Example

This code deliberately raises a division-by-zero exception and then detects it.

#include <stdio.h>
#include <math.h>
#include <fenv.h>
int main(void)
#pragma STDC FENV_ACCESS ON

feraiseexcept (FE_DIVBYZERO);

if (fetestexcept(FE_DIVBYZERO)

FE_DIVBYZERO)

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 63

printf("Detected division by zero\n"); // This prints!!
else
printf("This is fine.\n");

See Also

feclearexcept(), fetestexcept()

7.6 fetestexcept()

Test to see if an exception has occurred

Synopsis
#include <fenv.h>

int fetestexcept(int excepts);

Description

Put the exceptions you want to test in excepts, bitwise-ORing them together.

Return Value

Returns the bitwise-OR of the exceptions that have been raised.

Example

This code deliberately raises a division-by-zero exception and then detects it.

#include <stdio.h>
#include <math.h>
#inc lude <fenv.h>

int main(void)

{
#pragma STDC FENV_ACCESS ON
feraiseexcept(FE_DIVBYZERO);
if (fetestexcept(FE_DIVBYZERO) == FE_DIVBYZERO)
printf("Detected division by zero\n"); // This prints!!
else
printf("This is fine.\n");
}
See Also

feclearexcept(), feraiseexcept()

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 64

7.7 fegetround() fesetround()

Get or set the rounding direction

Synopsis
#include <fenv.h>
int fegetround(void);

int fesetround(int round);

Description
Use these to get or set the rounding direction used by a variety of math functions.

Basically when a function “rounds” a number, it wants to know how to do it. By default, it does it how
we tend to expect: if the fractional part is less than 0.5, it rounds down closer to zero, otherwise up farther
from zero.

Macro Description

FE_TONEAREST Round to the nearest whole number, the default
FE_TOWARDZERO Round toward zero always

FE_DOWNWARD Round toward the next lesser whole number
FE_UPWARD Round toward the next greater whole number

Some implementations don’t support rounding. If it does, the above macros will be defined.

Note that the round () function is always “to-nearest” and doesn’t pay attention to the rounding mode.

Return Value
fegetround() returns the current rounding direction, or a negative value on error.

fesetround() returns zero on success, or non-zero on failure.

Example

This rounds some numbers

#include <stdio.h>
#include <math.h>
#include <fenv.h>

// Helper function to print the rounding mode
const char *rounding_mode_str(int mode)

{
switch (mode) {
case FE_TONEAREST: return "FE_TONEAREST";
case FE_TOWARDZERO: return "FE_TOWARDZERO";
case FE_DOWNWARD: return "FE_DOWNWARD";
case FE_UPWARD: return "FE_UPWARD";
}
return "Unknown";
}

int main(void)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 65

{
#pragma STDC FENV_ACCESS ON
int rm;
rm = fegetround();
printf("%s\n", rounding_mode_str(rm)); // Print current mode
printf("%f %f\n", rint(2.1), rint(2.7)); // Try rounding
fesetround(FE_TOWARDZERO) ; // Set the mode
rm = fegetround();
printf("%s\n", rounding_mode_str(rm)); // Print it
printf("%f %f\n", rint(2.1), rint(2.7)); // Try it now!
}
Output:

FE_TONEAREST
2.000000 3.000000
FE_TOWARDZERO
2.000000 2.000000

See Also

nearbyint(), nearbyintf(), nearbyintl(), rint(), rintf(), rint1l(), lrint(), lrintf(),
lrint1(), Llrint(), 1lrintf(), Llrint1()

7.8 fegetenv() fesetenv()

Save or restore the entire floating point environment

Synopsis
#include <fenv.h>

int fegetenv(fenv_t *envp);
int fesetenv(const fenv_t *envp);

Description

You can save the environment (exceptions, rounding direction, etc.) by calling fegetenv() and restore
it with fesetenv().

Use this if you want to restore the state after a function call, i.e. hide from the caller that some floating
point exceptions or changes occurred.

Return Value

fegetenv() and fesetenv() return 0 on success, and non-zero otherwise.

Example

This example saves the environment, messes with the rounding and exceptions, then restores it. After the
environment is restored, we see that the rounding is back to default and the exception is cleared.

20

21

22

23

24

25

26

27

28

29

30

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 66

#include <stdio.h>
#include <math.h>
#inc lude <fenv.h>

void show_status(void)

{
printf("Rounding is FE_TOWARDZERO: %d\n",
fegetround() == FE_TOWARDZERO) ;
printf("FE_DIVBYZERO is set: %d\n",
fetestexcept (FE_DIVBYZERO) != 0);
}
int main(void)
{
#pragma STDC FENV_ACCESS ON
fenv_t env;
fegetenv(&env); // Save the environment
fesetround(FE_TOWARDZERO) ; // Change rounding
feraiseexcept (FE_DIVBYZERO); // Raise an exception
show_status();
fesetenv(&env); // Restore the environment
show_status();
}
Output:

Rounding is FE_TOWARDZERO: 1
FE_DIVBYZERO is set: 1
Rounding is FE_TOWARDZERO: 0
FE_DIVBYZERO is set: ©

See Also

feholdexcept(), feupdateenv()

7.9 feholdexcept()

Save floating point state and install non-stop mode
Synopsis
#include <fenv.h>

int feholdexcept(fenv_t *envp);

Description

This is just like fegetenv () except that it updates the current environment to be in non-stop mode, namely
it won’t halt on any exceptions.

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 67
It remains in this state until you restore the state with fesetenv() or feupdateenv().

Return Value

Example

This example saves the environment and goes into non-stop mode, messes with the rounding and excep-
tions, then restores it. After the environment is restored, we see that the rounding is back to default and
the exception is cleared. We’ll also be out of non-stop mode.

20

21

22

23

24

25

26

27

28

29

30

31

#include <stdio.h>
#include <math.h>
#include <fenv.h>

void show_status(void)

{
printf("Rounding is FE_TOWARDZERO: %d\n",
fegetround() == FE_TOWARDZERO);
printf("FE_DIVBYZERO is set: %d\n",
fetestexcept (FE_DIVBYZERO) != 0);
}
int main(void)
{
#pragma STDC FENV_ACCESS ON
fenv_t env;
// Save the environment and don't stop on exceptions
feholdexcept(&env);
fesetround(FE_TOWARDZERO) ; // Change rounding
feraiseexcept(FE_DIVBYZERO); // Raise an exception
show_status();
fesetenv(&env); // Restore the environment
show_status();
}
See Also

fegetenv(), fesetenv(), feupdateenv()

7.10 feupdateenv()

Restore floating point environment and apply recent exceptions

Synopsis
#include <fenv.h>

int feupdateenv(const fenv_t *envp);

20

21

22

23

24

25

26

27

28

29

30

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 68

Description

This is like fesetenv() except that it modifies the passed-in environment so that it is updated with
exceptions that have happened in the meantime.

So let’s say you had a function that might raise exceptions, but you wanted to hide those in the caller. One
option might be to:

1. Save the environment with fegetenv() or feholdexcept().
2. Do whatever you do that might raise exceptions.
3. Restore the environment with fesetenv(), thereby hiding the exceptions that happened in step 2.

But that hides all exceptions. What if you just wanted to hide some of them? You could use feupda-
teenv () like this:

1. Save the environment with fegetenv() or feholdexcept ().

2. Do whatever you do that might raise exceptions.

3. Call feclearexcept() to clear the exceptions you want to hide from the caller.

4. Call feupdateenv() to restore the previous environment and update it with the other exceptions
that have occurred.

So it’s like a more capable way of restoring the environment than simply fegetenv()/fesetenv().

Return Value

Returns © on success, non-zero otherwise.

Example
This program saves state, raises some exceptions, then clears one of the exceptions, then restores and
updates the state.

#include <stdio.h>
#include <math.h>
#include <fenv.h>

void show_status(void)

{
printf("FE_DIVBYZERO: %d\n'", fetestexcept(FE_DIVBYZERO) != 0);
printf("FE_INVALID : %d\n'", fetestexcept(FE_INVALID) != Q);
printf("FE_OVERFLOW : %d\n\n", fetestexcept(FE_OVERFLOW) != 0);
}

int main(void)
#pragma STDC FENV_ACCESS ON
fenv_t env;
feholdexcept(&env); // Save the environment
// Pretend some bad math happened here:
feraiseexcept (FE_DIVBYZERO); // Raise an exception
feraiseexcept (FE_INVALID); // Raise an exception
feraiseexcept (FE_OVERFLOW); // Raise an exception
show_status();

feclearexcept (FE_INVALID);

feupdateenv(&env); // Restore the environment

31

32

Chapter 7. <fenv.h> Floating Point Exceptions and Environment 69

show_status();

}

In the output, at first we have no exceptions. Then we have the three we raised. Then after we re-
store/update the environment, we see the one we cleared (FE_INVALID) hasn’t been applied:

FE_DIVBYZERO: 0

FE_INVALID : ©
FE_OVERFLOW : ©

FE_DIVBYZERO: 1
FE_INVALID 1
FE_OVERFLOW : 1
FE_DIVBYZERO: 1
FE_INVALID 0
FE_OVERFLOW : 1

See Also

fegetenv(), fesetenv(), feholdexcept (), feclearexcept()

Chapter 8

<float.h> Floating Point Limits

Macro Minimum Magnitude

Description

FLT_ROUNDS
FLT_EVAL_METHOD
FLT_HAS_SUBNORM
DBL_HAS_SUBNORM
LDBL_HAS_SUBNORM
FLT_RADIX 2
FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10
DECIMAL_DIG 10
FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10
FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37
FLT_MAX_EXP
DBL_MAX_EXP

LDBL_MAX_EXP

Current rounding mode

Types used for evaluation

Subnormal support for float

Subnormal support for double

Subnormal support for long double

Floating point radix (base)

Number of base FLT_RADIX digits in a float

Number of base FLT_RADIX digits in a double
Number of base FLT_RADIX digits in a long double
Number of decimal digits required to encode a float
Number of decimal digits required to encode a double
Number of decimal digits required to encode a long
double

Number of decimal digits required to encode the the
widest floating point number supported

Number of decimal digits that can be safely stored in a
float

Number of decimal digits that can be safely stored in a
double

Number of decimal digits that can be safely stored in a
long double

FLT_RADIX to the FLT_MIN_EXP-1 power is the
smallest normalized float

FLT_RADIX to the DBL_MIN_EXP-1 power is the
smallest normalized double

FLT_RADIX to the LDBL_MIN_EXP-1 power is the
smallest normalized long double

Minimum exponent such that 10 to this number is a
normalized float

Minimum exponent such that 10 to this number is a
normalized double

Minimum exponent such that 10 to this number is a
normalized long_double

FLT_RADIX to the FLT_MAX_EXP-1 power is the largest
finite f loat

FLT_RADIX to the DBL_MAX_EXP-1 power is the largest
finite double

FLT_RADIX to the LDBL_MAX_EXP-1 power is the
largest finite long double

70

Chapter 8. <float.h> Floating Point Limits 71

Macro Minimum Magnitude Description

FLT_MAX_10_EXP -37 Minimum exponent such that 10 to this number is a
finite float

DBL_MAX_10_EXP -37 Minimum exponent such that 10 to this number is a
finite double

LDBL_MAX_10_EXP -37 Minimum exponent such that 10 to this number is a
finite long_double

FLT_MAX 1E+37 Largest finite f loat

DBL_MAX 1E+37 Largest finite double

LDBL_MAX 1E+37 Largest finite long double

Macro Maximum Value Description

FLT_EPSILON 1E-5 Difference between 1 and the next biggest representable
float

DBL_EPSILON 1E-9 Difference between 1 and the next biggest representable
double

LDBL_EPSILON 1E-9 Difference between 1 and the next biggest representable
long double

FLT_MIN 1E-37 Minimum positive normalized f loat

DBL_MIN 1E-37 Minimum positive normalized double

LDBL_MIN 1E-37 Minimum positive normalized long double

FLT_TRUE_MIN 1E-37 Minimum positive float

DBL_TRUE_MIN 1E-37 Minimum positive double

LDBL_TRUE_MIN 1E-37 Minimum positive long double

The minimum and maximum values here are from the spec—they should what you can at least expect
across all platforms. Your super dooper machine might do better, still!

8.1 Background

The spec allows a lot of leeway when it comes to how C represents floating point numbers. This header
file spells out the limits on those numbers.

It gives a model that can describe any floating point number that I know you’re going to absolutely love.
It looks like this:

14
— E —k
x = sb® fkb y Emin S € S Cmaz
k=1

where:

Variable Meaning

Sign, —1 or 1

Base (radix), probably 2 on your system

Exponent

Precision: how many base-b digits in the number
The individual digits of the number, the significand

el S

But let’s blissfully ignore all that for a second.

Let’s assume your computer uses base 2 for it’s floating point (it probably does). And that in the example
below the 1s-and-0s numbers are in binary, and the rest are in decimal.

The short of it is you could have floating point numbers like shown in this example:

Chapter 8. <float.h> Floating Point Limits 72

—0.10100101 x 2% = —10100.101 = —20.625

That’s your fractional part multiplied by the base to the exponent’s power. The exponent controls where
the decimal point is. It “floats” around!

8.2 FLT_ROUNDS Details

This tells you the rounding mode. It can be changed with a call to fesetround().

Mode Description

-1 Indeterminable

Toward zero

To nearest

Toward positive infinity

Toward negative infinity... and beyond!

W N R o

Unlike every other macro in this here header, FLT_ROUNDS might not be a constant expression.

8.3 FLT_EVAL_METHOD Details

This basically tells you how floating point values are promoted to different types in expressions.

Method Description
-1 Indeterminable
0 Evaluate all operations and constants to the precision of their respective types
1 Evaluate float and double operations as double and long double ops as long
double
2 Evaluate all operations and constants as long double

8.4 Subnormal Numbers

The macros FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM all let you know if those
types support subnormal numbers®.

Value Description

-1 Indeterminable
0 Subnormals not supported for this type
1 Subnormals supported for this type

8.5 How Many Decimal Places Can I Use?

It depends on what you want to do.

The safe thing is if you never use more than FLT_DIG base-10 digits in your float, you’re good. (Same
for DBL_DIG and LDBL_DIG for their types.)

And by “use” I mean print out, have in code, read from the keyboard, etc.

You can print out that many decimal places with printf() and the %g format specifier:

Ihttps://en.wikipedia.org/wiki/Subnormal_number

https://en.wikipedia.org/wiki/Subnormal_number

Chapter 8. <float.h> Floating Point Limits 73

#include <stdio.h>
#include <float.h>

int main(void)

{
float pi = 3.1415926535897932384626433832795028841971;
// With %g or %G, the precision refers to the number of significant
// digits:
printf("%.*g\n", FLT_DIG, pi); // For me: 3.14159
// But %f prints too many, since the precision is the number of
// digits to the right of the decimal--it doesn't count the digits
// to the left of it:
printf("%.*f\n", FLT_DIG, pi); // For me: 3.14159... 3 ???
}

That’s the end, but stay tuned for the exciting conclusion of “How Many Decimal Places Can I Use?”

Because base 10 and base 2 (your typical FLT_RADIX) don’t mix very well, you can actually have more
than FLT_DIG in your float; the bits of storage go out a little farther. But these might round in a way
you don’t expect.

But if you want to convert a floating point number to base 10 and then be able to convert it back again
to the exact same floating point number, you’ll need FLT_DECIMAL_DIG digits from your float to make
sure you get those extra bits of storage represented. (And DBL_DECIMAL_DIG and LDBL_DECIMAL_DIG
for those corresponding types.)

Here’s some example output that shows how the value stored might have some extra decimal places at the
end.

#include <stdio.h>

#1include <math.h>

#include <assert.h>

#include <float.h>

int main(void)

{
printf("FLT_DIG = %d\n", FLT_DIG);

printf("FLT_DECIMAL DIG = %d\n\n'", FLT_DECIMAL_DIG);
assert(FLT_DIG == 6); // Code below assumes this

for (float x = 0.123456; X < 0.12346; x += 0.000001) {
printf("As written: %.*g\n", FLT_DIG, X);
printf("As stored: %.*g\n\n", FLT_DECIMAL_DIG, X);

}

And the output on my machine, starting at 8.123456 and incrementing by ©.000001 each time:

FLT_DIG = 6
FLT_DECIMAL_DIG = 9

As written: 0.123456
As stored: 0.123456001

As written: 0.123457
As stored: 0.123457

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Chapter 8. <float.h> Floating Point Limits 74

As written: 0.123458
As stored: ©.123457998
As written: 0.123459
As stored: ©.123458996

As written: 0.12346
As stored: ©.123459995

You can see that the value stored isn’t always the value we’re expecting since base-2 can’t represent all
base-10 fractions exactly. The best it can do is store more places and then round.

Also notice that even though we tried to stop the for loop before 8.123460, it actually ran including that
value since the stored version of that number was 0.123459995, which is still less than 0.123460.

Aren’t floating point numbers fun?

8.6 Comprehensive Example

Here’s a program that prints out the details for a particular machine:

#include <stdio.h>
#include <float.h>

int main(void)

{
printf("FLT_RADIX: %d\n", FLT_RADIX);
printf("FLT_ROUNDS: %d\n", FLT_ROUNDS);
printf("FLT_EVAL_METHOD: %d\n", FLT_EVAL_METHOD);
printf("DECIMAL_DIG: %d\n\n'", DECIMAL_DIG);

printf("FLT_HAS_SUBNORM: %d\n", FLT_HAS_SUBNORM);
printf("FLT_MANT_DIG: %d\n'", FLT_MANT_DIG);

printf("FLT _DECIMAL DIG: %d\n", FLT_DECIMAL_DIG);
printf("FLT_DIG: %d\n", FLT_DIG);

printf("FLT_MIN_EXP: %d\n", FLT_MIN_EXP);
printf("FLT_MIN_10 EXP: %d\n", FLT_MIN_10_EXP);
printf("FLT_MAX_EXP: %d\n", FLT_MAX_EXP);
printf("FLT_MAX_10 EXP: %d\n", FLT_MAX_10_EXP);
printf("FLT_MIN: %.*e\n", FLT_DECIMAL_DIG, FLT_MIN);
printf("FLT_MAX: %.*e\n", FLT_DECIMAL_DIG, FLT_MAX);
printf("FLT_EPSILON: %.*e\n", FLT_DECIMAL_DIG, FLT_EPSILON);
printf("FLT_TRUE_MIN: %.*e\n\n", FLT_DECIMAL_DIG, FLT_TRUE_MIN);

printf("DBL_HAS_ SUBNORM: %d\n", DBL_HAS_SUBNORM);
printf("DBL_MANT_DIG: %d\n'", DBL_MANT_DIG);
printf("DBL_DECIMAL DIG: %d\n", DBL_DECIMAL_DIG);
printf("DBL_DIG: %d\n", DBL_DIG);

printf("DBL_MIN_EXP: %d\n", DBL_MIN_EXP);
printf("DBL_MIN_ 10 EXP: %d\n", DBL_MIN_10_EXP);
printf("DBL_MAX_EXP: %d\n'", DBL_MAX_EXP);
printf("DBL_MAX_ 10 EXP: %d\n", DBL_MAX_10_EXP);
printf("DBL_MIN: %.*e\n", DBL_DECIMAL_DIG, DBL_MIN);
printf("DBL_MAX: %.*e\n", DBL_DECIMAL_DIG, DBL_MAX);
printf("DBL_EPSILON: %.*e\n", DBL_DECIMAL_DIG, DBL_EPSILON);
printf("DBL_TRUE_MIN: %.*e\n\n'", DBL_DECIMAL_DIG, DBL_TRUE_MIN);

printf("LDBL_HAS_SUBNORM: %d\n", LDBL_HAS_SUBNORM);

38

39

40

41

42

43

45

46

47

48

49

Chapter 8. <float.h> Floating Point Limits 75

}

printf("LDBL_MANT _DIG: %d\n'", LDBL_MANT_DIG);

printf("LDBL DECIMAL DIG: %d\n", LDBL_DECIMAL_DIG);
printf("LDBL_DIG: %d\n", LDBL_DIG);

printf("LDBL_MIN_EXP: %d\n", LDBL_MIN_EXP);
printf("LDBL_MIN_10_EXP: %d\n", LDBL_MIN_10_EXP);
printf("LDBL MAX EXP: %d\n'", LDBL_MAX_EXP);
printf("LDBL_MAX_ 10 EXP: %d\n", LDBL_MAX_10_EXP);
printf("LDBL_MIN: %.*Le\n", LDBL_DECIMAL_DIG, LDBL_MIN);
printf("LDBL_MAX: %.*Le\n", LDBL_DECIMAL_DIG, LDBL_MAX);
printf("LDBL _EPSILON: %.*Le\n", LDBL_DECIMAL_DIG, LDBL_EPSILON);
printf("LDBL_TRUE_MIN: %.*Le\n\n", LDBL_DECIMAL_DIG, LDBL_TRUE_MIN);

printf("sizeof(float): %zu\n", sizeof(float));
printf("sizeof(double): %zu\n", sizeof(double));
printf("sizeof(long double): %zu\n", sizeof(long double));

And here’s the output on my machine:

FLT_RADIX: 2
FLT_ROUNDS: 1
FLT_EVAL_METHOD: ©
DECIMAL_DIG: 21

FLT_HAS_SUBNORM: 1
FLT_MANT_DIG: 24
FLT_DECIMAL_DIG: 9

FLT_DIG: 6

FLT_MIN_EXP: -125
FLT_MIN_10_EXP: -37
FLT_MAX_EXP: 128
FLT_MAX_10_EXP: 38

FLT_MIN: 1.175494351e-38
FLT_MAX: 3.402823466e+38
FLT_EPSILON: 1.192092896e-07
FLT_TRUE_MIN: 1.401298464e-45

DBL_HAS_SUBNORM: 1

DBL_MANT_DIG: 53

DBL_DECIMAL_DIG: 17

DBL_DIG: 15

DBL_MIN_EXP: -1021

DBL_MIN_10_EXP: -307

DBL_MAX_EXP: 1024

DBL_MAX_10_EXP: 308

DBL_MIN: 2.22507385850720138e-308
DBL_MAX: 1.79769313486231571e+308
DBL_EPSILON: 2.22044604925031308e-16
DBL_TRUE_MIN: 4.94065645841246544e-324

LDBL_HAS_SUBNORM: 1
LDBL_MANT_DIG: 64
LDBL_DECIMAL_DIG: 21
LDBL_DIG: 18
LDBL_MIN_EXP: -16381
LDBL_MIN_10_EXP: -4931
LDBL_MAX_EXP: 16384
LDBL_MAX_10_EXP: 4932

Chapter 8. <float.h> Floating Point Limits

LDBL_MIN: 3.362103143112093506263e-4932
LDBL_MAX: 1.189731495357231765021e+4932
LDBL_EPSILON: 1.084202172485504434007e-19
LDBL_TRUE_MIN: 3.645199531882474602528e-4951

sizeof(float): 4
sizeof(double): 8
sizeof(long double): 16

76

Chapter 9

<inttypes.h> More Integer
Conversions

Function Description

imaxabs() Compute the absolute value of an intmax_t
imaxdiv() Compute the quotient and remainder of intmax_ts
strtoimax() Convert strings to type intmax_t

strtoumax() Convert strings to type uintmax_t

wcstoimax() Convert wide strings to type intmax_t
wcstoumax() Convert wide strings to type uintmax_t

This header does conversions to maximum sized integers, division with maximum sized integers, and also
provides format specifiers for printf () and scanf () for a variety of types defined in <stdint.h>,

The header <stdint.h> is included by this one.

9.1 Macros
These are to help with printf() and scanf() when you use a type such as int_least16_t... what
format specifiers do you use?

Let’s start with printf()—all these macros start with PRI and then are followed by the format specifier
you’d typically use for that type. Lastly, the number of bits is added on.

For example, the format specifier for a 64-bit integer is PRId64—the d is because you usually print integers
with "%d".

An unsigned 16-bit integer could be printed with PRIu16.

These macros expand to string literals. We can take advantage of the fact that C automatically concatenates
neighboring string literals and use these specifiers like this:

#include <stdio.h> // for printf()
#include <inttypes.h>

int main(void)
{
intl6_t x = 32;

printf("The value is %" PRId16 "!\n", x);
}

There’s nothing magical happening on line 8, above. Indeed, if I print out the value of the macro:

77

Chapter 9. <inttypes.h> More Integer Conversions

printf("%s\n", PRId16);

we get this on my system:

hd

which is a printf() format specifier meaning “short signed integer” .

So back to line 8, after string literal concatenation, it’s just as if I’d typed:

printf("The value is %hd!\n", x);

78

Here’s a table of all the macros you can use for printf () format specifiers... substitute the number of
bits for N, usually 8, 16, 32, or 64.

PRIAN
PRIiN
PRION
PRIUN
PRIXN
PRIXN

PRIALEASTN
PRIiLEASTN
PRIOLEASTN
PRIULEASTN
PRIXLEASTN
PRIXLEASTN

PRIAFASTN
PRIiFASTN
PRIOFASTN
PRIUFASTN
PRIXFASTN
PRIXFASTN

PRIAMAX
PRIiMAX
PRIOMAX
PRIUMAX
PRIXMAX
PRIXMAX

PRIMPTR
PRIiPTR
PRIOPTR
PRIUPTR
PRIXPTR
PRIXPTR

Note again how the lowercase center letter represents the usual format specifiers you’d pass to printf():

d, i, o, u, x, and X.

And we have a similar set of macros for scanf () for reading in these various types:

SCNdN
SCNiN
SCNoN
SCNuN
SCNxN

SCNALEASTN
SCNiLEASTN
SCNOLEASTN
SCNULEASTN
SCNXLEASTN

SCNdFASTN
SCNiFASTN
SCNOFASTN
SCNUFASTN
SCNXFASTN

SCNdMAX
SCNiMAX
SCNoMAX
SCNuUMAX
SCNXMAX

SCNdPTR
SCNiPTR
SCNOPTR
SCNUPTR
SCNXPTR

The rule is that for each type defined in <stdint . h> there will be corresponding printf() and scanf()

macros defined here.

9.2 imaxabs()

Compute the absolute value of an intmax_t

Synopsis

#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

Description

When you need the absolute value of the biggest integer type on the system, this is the function for you.

The spec notes that if the absolute value of the number cannot be represented, the behavior is undefined.
This would happen if you tried to take the absolute value of the smallest possible negative number in a
two’s-complement system.

Return Value

Returns the absolute value of the input,

l-

Chapter 9. <inttypes.h> More Integer Conversions

Example

#include <stdio.h>
#include <inttypes.h>

int main(void)

{
intmax_t j = -3490;
printf("%jd\n", imaxabs(j)); // 3490
}
See Also
fabs()

79

9.3 imaxdiv()

Compute the quotient and remainder of intmax_ts

Synopsis

#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Description

When you want to do integer division and remainder in a single operation, this function will do it for you.

It computes numer/denom and numer%denom and returns the result in a structure of type imaxdiv_t.

This structure has two imaxdiv_t fields, quot and rem, that you use to retrieve the sought-after values.

Return Value

Returns an imaxdiv_t containing the quotient and remainder of the operation.

Example

#include <stdio.h>
#include <inttypes.h>

int main(void)

{
intmax_t numer = INTMAX_C(3490);
intmax_t denom = INTMAX_C(17);
imaxdiv_t r = imaxdiv(numer, denom);
printf("Quotient: %jd, remainder: %jd\n"
}

Output:

, r.quot, r.rem);

Chapter 9. <inttypes.h> More Integer Conversions 80

Quotient: 205, remainder: 5

See Also

remquo()

9.4 strtoimax() strtoumax()

Convert strings to types intmax_t and uintmax_t

Synopsis
#inc lude <inttypes.h>

intmax_t strtoimax(const char * restrict nptr, char ** restrict endptr,
int base);

uintmax_t strtoumax(const char * restrict nptr, char ** restrict endptr,
int base);

Description
These work just like the strtol() family of functions, except they return an intmax_t or uintmax_t.

See the strtol() reference page for details.

Return Value
Returns the converted string as an intmax_t or uintmax_t.

If the result is out of range, the returned value will be INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX, as
appropriate. And the errno variable will be set to ERANGE.

Example

The following example converts a base-10 number to an intmax_t. Then it attempts to convert an invalid
base-2 number, catching the error.

#include <stdio.h>
#include <inttypes.h>

int main(void)

{
intmax_t r;
char *endptr;

// Valid base-10 number
r = strtoimax("123456789012345", &endptr, 10);

if (*endptr != '\0'")

printf("Invalid digit: %c\n", *endptr);
else

printf("value is %jd\n", r);

// The following binary number contains an invalid digit
r = strtoimax("0100102010101101", &endptr, 2);

20

21

22

23

24

Chapter 9. <inttypes.h> More Integer Conversions 81

if (*endptr != '\0')
printf("Invalid digit: %c\n", *endptr);
else
printf("value is %jd\n", r);
}
Output:

Value is 123456789012345
Invalid digit: 2

See Also

strtol(), errno

9.5 wcstoimax() westoumax()

Convert wide strings to types intmax_t and uintmax_t

Synopsis
#include <stddef.h> // for wchar_t

#include <inttypes.h>

intmax_t wcstoimax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

Description
These work just like the westo1() family of functions, except they return an intmax_t or uintmax_t.

See the wcstol() reference page for details.

Return Value
Returns the converted wide string as an intmax_t or uintmax_t.

If the result is out of range, the returned value will be INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX, as
appropriate. And the errno variable will be set to ERANGE.

Example

The following example converts a base-10 number to an intmax_t. Then it attempts to convert an invalid
base-2 number, catching the error.

#1include <wchar.h>
#include <inttypes.h>

int main(void)

{
intmax_t r;
wchar_t *endptr;

Chapter 9. <inttypes.h> More Integer Conversions

// Valid base-10 number
r = wcstoimax(L"123456789012345", &endptr, 10);

if (*endptr !'= '\0')

wprintf(L"Invalid digit: %Llc\n", *endptr);
else

wprintf(L"Value is %jd\n", r);

// The following binary number contains an invalid digit
r = westoimax(L"0100102010101101", &endptr, 2);

if (*endptr != '\0'")

wprintf(L"Invalid digit: %lc\n", *endptr);
else

wprintf(L"value is %jd\n", r);

}

Value is 123456789012345
Invalid digit: 2

See Also

wcstol(), errno

82

Chapter 10

<is0646 . h> Alternative Operator
Spellings

ISO-646 is a character encoding standard that’s very similar to ASCII. But it’s missing a few notable
characters, like |, A, and ~.

Since these are operators or parts of operators in C, this header file defines a number of macros you can
use in case those characters aren’t found on your keyboard. (And also C++ can use these same alternate
spellings.)

Operator <iso0646.h> equivalent

&& and

&= and_eq
& bitand
| bitor

~ compl

! not

= not_eq
I or

| = or_eq

A xor

A= xor_eq

Interestingly, there is no eq for ==, and & and ! are included despite being in ISO-646.

Example usage:

#include <stdio.h>
#include <is0646.h>

int main(void)

{
int x = 12;
int y = 30;
if (x == 12 and y not_eq 40)
printf("Now we know.\n");
}

I’ve personally never seen this file included, but I’m sure it gets used from time to time.

83

Chapter 11

<limits.h> Numeric Limits

Important note: the “minimum magnitude” in the table below is the minimum allowed by the spec. It’s
very likely that the values on your bad-ass system exceed those, below.

Macro Minimum Magnitude Description

CHAR_BIT 8

SCHAR_MIN -127

SCHAR_MAX 127

UCHAR_MAX 255

CHAR_MIN 0 or SCHAR_MIN

CHAR_MAX SCHAR_MAX or
UCHAR_MAX

MB_LEN_MAX 1

Number of bits in a byte

Minimum value of a signed char
Maximum value of a signed char
Maximum value of an unsigned char!
More detail below

More detail below

Maximum number of bytes in a multibyte character on any
locale

Minimum value of a short

Maximum value of a short

Maximum value of an unsigned short

Minimum vale of an int

Maximum value of an int

SHRT_MIN -32767
SHRT_MAX 32767
USHRT_MAX 65535
INT_MIN -32767
INT_MAX 32767

UINT_MAX 65535

Maximum value of an unsigned int

LONG_MIN -2147483647 Minimum value of a long

LONG_MAX 2147483647 Maximum value of a long

ULONG_MAX 4294967295 Maximum value of an unsigned long

LLONG_MIN - Minimum value of a long long
9223372036854775807

LLONG_MAX 9223372036854775807 Maximum value of a long long

ULLONG_MAX 18446744073709551615 Maximum value of an unsigned long long

11.1 CHAR_MIN and CHAR_MAX

When it comes to the CHAR_MIN and CHAR_MAX macros, it all depends on if your char type is signed or
unsigned by default. Remember that C leaves that up to the implementation? No? Well, it does.

So if it’s signed, the values of CHAR_MIN and CHAR_MAX are the same as SCHAR_MIN and SCHAR_MAX.
And if it’s unsigned, the values of CHAR_MIN and CHAR_MAX are the same as © and UCHAR_MAX.

Side benefit: you can tell at runtime if the system has signed or unsigned chars by checking to see if
CHAR_MIN is ©.

1The minimum value of an unsigned char is . Same fo an unsigned short and unsigned long. Or any unsigned type,
for that matter.

84

Chapter 11. <limits.h> Numeric Limits 85

#include <stdio.h>
#include <limits.h>

int main(void)
{
printf("chars are %ssigned\n", CHAR_MIN == @2 "un": "");

}

On my system, chars are signed.

11.2 Choosing the Correct Type

If you want to be super portable, choose a type you know will be at least as big as you need by the table,
above.

That said, a lot of code, for better or (likely) worse, assumes ints are 32-bits, when in actuality it’s only
guaranteed to be 16.

If you need a guaranteed bit size, check out the int_leastN_t types in <stdint.h>.

11.3 Whither Two’s Complement?

If you were looking closely and have a priori knowledge of the matter, you might have thought I erred in
the minimum values of the macros, above.

“short goes from 32767 to -32767? Shouldn’t it go to -32768?”

No, I have it right. The spec list the minimum magnitudes for those macros, and some old-timey systems
might have used a different encoding for their signed values that could only go that far.

Virtually every modern system uses Two’s Complement? for signed numbers, and those would go from
32767 to -32768 for a short. Your system probably does, too.

11.4 Demo Program

Here’s a program to print out the values of the macros:

#include <stdio.h>
#include <limits.h>

int main(void)

{
printf("CHAR_BIT = %d\n", CHAR_BIT);
printf("SCHAR_MIN = %d\n", SCHAR_MIN);
printf("SCHAR_MAX = %d\n", SCHAR_MAX);
printf("UCHAR_MAX = %d\n", UCHAR_MAX);
printf("CHAR_MIN = %d\n", CHAR_MIN);
printf("CHAR_MAX = %d\n", CHAR_MAX);
printf("MB_LEN_MAX = %d\n", MB_LEN_MAX);
printf("SHRT_MIN = %d\n", SHRT_MIN);
printf("SHRT_MAX = %d\n", SHRT_MAX);
printf("USHRT MAX = %u\n", USHRT_MAX);
printf("INT_MIN = %d\n'", INT_MIN);
printf("INT_MAX = %d\n'", INT_MAX);
printf("UINT_MAX = %u\n", UINT_MAX);
printf("LONG_MIN = %1ld\n", LONG_MIN);
printf("LONG_MAX = %1d\n", LONG_MAX);

https://en.wikipedia.org/wiki/Tw0%27s_complement

https://en.wikipedia.org/wiki/Two%27s_complement

21

22

23

24

25

Chapter 11. <limits.h> Numeric Limits 86

printf("ULONG_MAX = %lu\n", ULONG_MAX);
printf("LLONG_MIN %11d\n", LLONG_MIN);
printf("LLONG_MAX = %11d\n", LLONG_MAX);
printf("ULLONG_MAX = %1lu\n", ULLONG_MAX);

}

On my 64-bit Intel system with clang, this outputs:

CHAR_BIT = 8

SCHAR_MIN = -128

SCHAR_MAX = 127

UCHAR_MAX = 255

CHAR_MIN = -128

CHAR_MAX = 127

MB_LEN_MAX = 6

SHRT_MIN = -32768

SHRT_MAX = 32767

USHRT_MAX = 65535

INT_MIN = -2147483648

INT_MAX = 2147483647

UINT_MAX = 4294967295

LONG_MIN = -9223372036854775808
LONG_MAX = 9223372036854775807
ULONG_MAX = 18446744073709551615
LLONG_MIN = -9223372036854775808
LLONG_MAX = 9223372036854775807
ULLONG_MAX = 18446744073709551615

Looks like my system probably uses two’s-complement encoding for signed numbers, my chars are
signed, and my ints are 32-bit.

Chapter 12

<locale.h> locale handling

Function Description
setlocale() Set the locale
localeconv() Get information about the current locale

The “locale” is the details of how the program should run given its physical location on the planet.
For example, in one locale, a unit of money might be printed as $123, and in another €123.
Or one locale might use ASCII encoding and another UTF-8 encoding.

By default, the program runs in the “C” locale. It has a basic set of characters with a single-byte encoding.
If you try to print UTF-8 characters in the C locale, nothing will print. You have to switch to a proper
locale.

12.1 setlocale()

Set the locale
Synopsis
#include <locale.h>

char *setlocale(int category, const char *locale);

Description
Sets the locale for the given category.

Category is one of the following:

Category Description

LC_ALL All of the following categories

LC_COLLATE Affects the strcoll() and strxfrm() functions
LC_CTYPE Affects the functions in <ctype.h>
LC_MONETARY Affects the monetary information returned from

localeconv()

87

Chapter 12. <locale. h> locale handling 88

Category Description

LC_NUMERIC Affects the decimal point for formatted I/O and
formatted string functions, and the monetary
information returned from localeconv()

LC_TIME Affects the strftime() and wesftime()
functions

And there are three portable things you can pass in for locale; any other string passed in is
implementation-defined and non-portable.

Locale Description

"c" Set the program to the C locale
e (Empty string) Set the program to the native locale
of this system

NULL Change nothing; just return the current locale
Other Set the program to an implementation-defined
locale

The most common call, I’d wager, is this:

// Set all locale settings to the local, native locale

setlocale(LC_ALL, "");

Handily, setlocale() returns the locale that was just set, so you could see what the actual locale is on
your system.

Return Value

On success, returns a pointer to the string representing the current locale. You may not modify this string,
and it might be changed by subsequent calls to setlocale().

On failure, returns NULL.

Example

Here we get the current locale. Then we set it to the native locale, and print out what that is.

#include <stdio.h>
#include <locale.h>

int main(void)
{

char *1loc;

// Get the current locale
loc = setlocale(LC_ALL, NULL);

printf("Starting locale: %s\n", loc);

// Set (and get) the locale to native locale
loc = setlocale(LC_ALL, "");

printf("Native locale: %s\n", 1loc);

}

Output on my system:

Chapter 12. <locale. h> locale handling 89

Starting locale: C
Native locale: en_US.UTF-8

Note that my native locale (on a Linux box) might be different from what you see.

Nevertheless, I can explicitly set it on my system without a problem, or to any other locale I have installed:
loc = setlocale(LC_ALL, "en_US.UTF-8"); // Non-portable

But again, your system might have different locales defined.

See Also

localeconv(), strcoll(), strxfrm(), strftime(),wcsftime(), printf(), scanf(), <ctype.h>

12.2 localeconv()

Get information about the current locale

Synopsis
#include <locale.h>

struct lconv *localeconv(void);

Description
This function just returns a pointer to a struct lconv, but is still a bit of a powerhouse.

The returned structure contains tons of information about the locale. Here are the fields of struct lconv
and their meanings.

First, some conventions. In the field names, below, a _p_ means “positive”, and _n_ means “negative”,
and int_ means “international”. Though a lot of these are type char or char*, most (or the strings they
point to) are actually treated as integers’.

Before we go further, know that CHAR_MAX (from <limits.h>) is the maximum value that can be held in
a char. And that many of the following char values use that to indicate the value isn’t available in the
given locale.

Field Description

char *mon_decimal_point Decimal pointer character for money, e.g. ".".
char *mon_thousands_sep Thousands separator character for money, e.g. ", ".

char *mon_grouping Grouping description for money (see below).

char *positive_sign Positive sign for money, e.g. "+" or "".

char *negative_sign Negative sign for money, e.g. "-".

char *currency_symbol Currency symbol, e.g. "$".

char frac_digits When printing monetary amounts, how many digits to print past the
decimal point, e.g. 2.

char p_cs_precedes 1 if the currency_symbol comes before the value for a non-negative
monetary amount, 0 if after.

char n_cs_precedes 1 if the currency_symbol comes before the value for a negative
monetary amount, 0 if after.

char p_sep_by_space Determines the separation of the currency symbol from the value

for non-negative amounts (see below).

IRemember that char is just a byte-sized integer.

Chapter 12. <locale. h> locale handling 90

Field Description

char n_sep_by_space Determines the separation of the currency symbol from the value
for negative amounts (see below).

char p_sign_posn Determines the positive_sign position for non-negative values.

char p_sign_posn Determines the positive_sign position for negative values.

char *int_curr_symbol International currency symbol, e.g. "USD ".

char int_frac_digits International value for frac_digits.

char int_p_cs_precedes International value for p_cs_precedes.

char int_n_cs_precedes International value for n_cs_precedes.

char int_p_sep_by_space International value for p_sep_by_space.
char int_n_sep_by_space International value for n_sep_by_space.
char int_p_sign_posn International value for p_sign_posn.
char int_n_sign_posn International value for n_sign_posn.

Even though many of these have char type, the value stored within is meant to be accessed as an integer.

All the sep_by_space variants deal with spacing around the currency sign. Valid values are:

Value Description
0 No space between currency symbol and value.
1 Separate the currency symbol (and sign, if any) from the value with a space.
2 Separate the sign symbol from the currency symbol (if adjacent) with a

space, otherwise separate the sign symbol from the value with a space.

The sign_posn variants are determined by the following values:

Value Description

0 Put parens around the value and the currency symbol.

1 Put the sign string in front of the currency symbol and value.
2 Put the sign string after the currency symbol and value.

3 Put the sign string directly in front of the currency symbol.

4 Put the sign string directly behind the currency symbol.

Return Value
Returns a pointer to the structure containing the locale information.
The program may not modify this structure.

Subsequent calls to localeconv() may overwrite this structure, as might calls to setlocale() with
LC_ALL, LC_MONETARY, or LC_NUMERIC.

Example

Here’s a program to print the locale information for the native locale.

#include <stdio.h>
#include <locale.h>
#include <limits.h> // for CHAR_MAX

void print_grouping(char *mg)

{

int done = 0;

while (!done) {
if (*mg == CHAR_MAX)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

Chapter 12. <locale. h> locale handling

printf("CHAR_MAX ");

else
printf("%c ", *mg + '0");
done = *mg == CHAR_MAX || *mg =
mg++;
}
}
int main(void)
{
setlocale(LC_ALL, "");
struct lconv *1c = localeconv();
printf("mon_decimal_point : %s\n",
printf("mon_thousands_sep : %s\n",
printf("mon_grouping ");
print_grouping(lc->mon_grouping);
printf("\n");
printf("positive_sign © %s\n",
printf("negative_sign © %s\n",
printf("currency_symbol : %s\n",
printf("frac_digits : %c\n",
printf("p_cs_precedes : %c\n",
printf("n_cs_precedes : %c\n",
printf("p_sep_by_space © %c\n",
printf("n_sep_by_space :%c\n'",
printf("p_sign_posn : %c\n",
printf("p_sign_posn : %c\n",
printf("int_curr_symbol : %s\n",
printf("int_frac_digits © %c\n",
printf("int_p_cs_precedes : %c\n",
printf("int_n_cs_precedes : %c\n",
printf("int_p_sep_by_space: %c\n",
printf("int_n_sep_by_space: %c\n",
printf("int_p_sign_posn © %c\n",
printf("int_n_sign_posn © %c\n",
}

Output on my system:

mon_decimal_point .
mon_thousands_sep : ,
mon_grouping
positive_sign
negative_sign
currency_symbol
frac_digits
p_cs_precedes
n_cs_precedes
p_sep_by_space
n_sep_by_space
p_sign_posn
p_sign_posn
int_curr_symbol : USD
int_frac_digits
int_p_cs_precedes
int_n_cs_precedes : 1

P RO O R REN®BI w
w
(o]

BN

l4

lc->mon_decimal_point);
lc->mon_thousands_sep);

lc->positive_sign);
lc->negative_sign);
lc->currency_symbol);
lc->frac_digits);
lc->p_cs_precedes);
lc->n_cs_precedes);
lc->p_sep_by_space);
lc->n_sep_by_space);
lc->p_sign_posn);
lc->p_sign_posn);
lc->int_curr_symbol);
lc->int_frac_digits);
lc->int_p_cs_precedes);
lc->int_n_cs_precedes);
lc->int_p_sep_by_ space);
lc->int_n_sep_by_space);
lc->int_p_sign_posn);
lc->int_n_sign_posn);

91

Chapter 12. <locale. h> locale handling

int_p_sep_by_space:
int_n_sep_by space:
int_p_sign_posn
int_n_sign_posn

R R R R

See Also

setlocale()

92

Chapter 13

<math.h> Mathematics

Many of the following functions have float and long double variants as described below (e.g. pow(),
powf (), powl()). The float and long double variants are omitted from the following table to keep
your eyeballs from melting out.

Function Description

acos() Calculate the arc cosine of a number.
acosh() Compute arc hyperbolic cosine.
asin() Calculate the arc sine of a number.
asinh() Compute arc hyperbolic sine.

atan(), atan2()
atanh()

cbrt()

ceil()
copysign()
cos()

cosh()

erf()

erfc()

exp()

exp2()

expm1()

fabs()

fdim()

floor ()

fma()
fmax (), fmin()
fmod()
fpclassify()
frexp()

hypot ()
ilogb()
isfinite()
isgreater()
isgreatereequal()
isinf()
isless()
islesseequal()
islessgreater()
isnan()
isnormal()
isunordered()

Calculate the arc tangent of a number.

Compute the arc hyperbolic tangent.

Compute the cube root.

Ceiling—return the next whole number not smaller than the given number.
Copy the sign of one value into another.

Calculate the cosine of a number.

Compute the hyperbolic cosine.

Compute the error function of the given value.

Compute the complementary error function of a value.

Compute e raised to a power.

Compute 2 to a power.

Compute e* — 1.

Compute the absolute value.

Return the positive difference between two numbers clamped at 0.
Compute the largest whole number not larger than the given value.
Floating (AKA “Fast”) multiply and add.

Return the maximum or minimum of two numbers.

Compute the floating point remainder.

Return the classification of a given floating point number.

Break a number into its fraction part and exponent (as a power of 2).
Compute the length of the hypotenuse of a triangle.

Return the exponent of a floating point number.

True if the number is not infinite or NaN.

True if one argument is greater than another.

True if one argument is greater than or equal to another.

True if the number is infinite.

True if one argument is less than another.

True if one argument is less than or equal to another.

Test if a floating point number is less than or greater than another.
True if the number is Not-a-Number.

True if the number is normal.

Macro returns true if either floating point argument is NaN.

93

Chapter 13. <math.h> Mathematics 94

Function Description

ldexp() Multiply a number by an integral power of 2.

lgamma () Compute the natural logarithm of the absolute value of I'(z).
log() Compute the natural logarithm.

log10() Compute the log-base-10 of a number.

log2() Compute the base-2 logarithm of a number.

logh() Extract the exponent of a number given FLT_RADIX.

logip() Compute the natural logarithm of a number plus 1.

lrint() Returns x rounded in the current rounding direction as an integer.

lround(), Llround()
modf ()

nan()

nearbyint()
nextafter()
nexttoward()

Round a number in the good old-fashioned way, returning an integer.
Extract the integral and fractional parts of a number.

Return NAN.

Rounds a value in the current rounding direction.

Get the next (or previous) representable floating point value.

Get the next (or previous) representable floating point value.

pow() Compute a value raised to a power.

remainder () Compute the remainder I[EC 60559-style.

remquo() Compute the remainder and (some of the) quotient.
rint() Rounds a value in the current rounding direction.
round() Round a number in the good old-fashioned way.
scalbn(), scalbln() Efficiently compute x X r", where r is FLT_RADIX.
signbit() Return the sign of a number.

sin() Calculate the sine of a number.

sqrt() Calculate the square root of a number.

tan() Calculate the tangent of a number.

tanh() Compute the hyperbolic tangent.

tgamma () Compute the gamma function, I'(x).

trunc() Truncate the fractional part off a floating point value.

It’s your favorite subject: Mathematics! Hello, I’'m Doctor Math, and I’ll be making math FUN and

EASY!

[vomiting sounds]

Ok, I know math isn’t the grandest thing for some of you out there, but these are merely functions that
quickly and easily do math you either know, want, or just don’t care about. That pretty much covers it.

13.1 Math Function Idioms

Many of these math functions exist in three forms, each corresponding to the argument and/or return types
the function uses, float, double, or long double.

The alternate form for float is made by appending f to the end of the function name.

The alternate form for long double is made by appending 1 to the end of the function name.

For example, the pow() function, which computes ¥, exists in these forms:

double

pow(double x, double y);
float powf(float x, float y);

// double
// float

long double powl(long double x, long double y); // long double

Remember that parameters are given values as if you assigned into them. So if you pass a double to
powf (), it’ll choose the closest float it can to hold the double. If the double doesn’t fit, undefined
behavior happens.

13.2 Math Types

We have two exciting new types in <math.h>:

Chapter 13. <math.h> Mathematics 95

e float_t
* double_t

The float_t type is at least as accurate as a float, and the double_t type is at least as accurate as a
double.

The idea with these types is they can represent the most efficient way of storing numbers for maximum
speed.

Their actual types vary by implementation, but can be determined by the value of the FLT_EVAL_METHOD
macro.

FLT_EVAL_METHOD float_t type double_t type

0 float double

1 double double

2 long double long double

Other Implementation-defined Implementation-defined

For all defined values of FLT_EVAL_METHOD, float_t is the least-precise type used for all floating cal-
culations.

13.3 Math Macros

There are actually a number of these defined, but we’ll cover most of them in their relevant reference
sections, below.

But here are a couple:
NAN represents Not-A-Number.

Defined in <float . h>is FLT_RADIX: the number base used by floating point numbers. This is commonly
2, but could be anything.

13.4 Math Errors

As we know, nothing can ever go wrong with math... except everything!
So there are just a couple errors that might occur when using some of these functions.
» Range errors mean that some result is beyond what can be stored in the result type.

* Domain errors mean that you’ve passed in an argument that doesn’t have a defined result for this
function.

* Pole errors mean that the limit of the function as « approaches the given argument is infinite.

» Overflow errors are when the result is really large, but can’t be stored without incurring large
roundoff error.

* Underflow errors are like overflow errors, except with very small numbers.
Now, the C math library can do a couple things when these errors occur:

+ Set errno to some value, or...
* Raise a floating point exception.

Your system might vary on what happens. You can check it by looking at the value of the variable
math_errhandling. It will be equivalent to one of the following!:

Though the system defines MATH_ERRNO as 1 and MATH_ERREXCEPT as 2, it’s best to always use their symbolic names. Just in
case.

Chapter 13. <math.h> Mathematics 96

math_errhandling Description

MATH_ERRNO The system uses errno for math errors.
MATH_ERREXCEPT The system uses exceptions for math errors.
MATH_ERRNO | MATH_ERREXCEPT The system does both! (That’s a bitwise-OR!)

You are not allowed to change math_errhandling.

For a fuller description on how exceptions work and their meanings, see the <fenv.h> section.

13.5 Math Pragmas

In a nutshell, pragmas offer various ways to control the compiler’s behavior. In this case, we’re talking
about controlling how C’s math library works.

In specific, we have a pragma FP_CONTRACT that can be turned off and on.
What does it mean?

First of all, keep in mind that any operation in an expression can cause rounding error. So each step of the
expression can introduce more rounding error.

But what if the compiler knows a double secret way of taking the expression you wrote and converting
it to a single instruction that reduced the number of steps such that the intermediate rounding error didn’t
occur?

Could it use it? I mean, the results would be different than if you let the rounding error settle each step of
the way...

Because the results would be different, you can tell the compiler if you want to allow it to do this or not.

If you want to allow it:
#pragma STDC FP_CONTRACT ON

and to disallow it:

#pragma STDC FP_CONTRACT OFF

If you do this at global scope, it stays at whatever state you set it to until you change it.
If you do it at block scope, it reverts to the value outside the block when the block ends.

The initial value of the FP_CONTRACT pragma varies from system to system.

13.6 fpclassify()

Return the classification of a given floating point number.
Synopsis
#1include <math.h>

int fpclassify(any_floating_type x);

Description
What kind of entity does this floating point number represent? What are the options?

We’re used to floating point numbers being regular old things like 3.14 or 3490.0001.

20

21

22

23

24

Chapter 13. <math.h> Mathematics 97

But floating point numbers can also represent things like infinity. Or Not-A-Number (NAN). This function
will let you know which type of floating point number the argument is.

This is a macro, so you can use it with float, double, long double or anything similar.

Return Value

Returns one of these macros depending on the argument’s classification:

Classification Description

FP_INFINITE Number is infinite.

FP_NAN Number is Not-A-Number (NAN).
FP_NORMAL Just a regular number.
FP_SUBNORMAL Number is a sub-normal number.
FP_ZERO Number is zero.

A discussion of subnormal numbers is beyond the scope of the guide, and is something that most devs
go their whole lives without dealing with. In a nutshell, it’s a way to represent really small numbers that
might normally round down to zero. If you want to know more, see the Wikipedia page on denormal
numbers?.

Example

Print various number classifications.

#include <stdio.h>
#include <math.h>

const char *get_classification(double n)

{
switch (fpclassify(n)) {
case FP_INFINITE: return "infinity";
case FP_NAN: return "not a number";
case FP_NORMAL: return "normal";
case FP_SUBNORMAL: return "subnormal";
case FP_ZERO: return "zero";
}
return "unknown";
}
int main(void)
{
printf(" 1.23: %s\n", get_classification(1.23));
printf(" 0.0: %s\n", get_classification(0.0));
printf("sqrt(-1): %s\n", get_classification(sqrt(-1)));
printf("1/tan(0): %s\n", get_classification(1/tan(0)));
printf(" 1e-310: %s\n", get_classification(1e-310)); // very small!
}
Output>:
1.23: normal
0.0: zero

sqrt(-1): not a number

Zhttps://en.wikipedia.org/wiki/Denormal_number
3This is on my system. Some systems will have different points at which numbers become subnormal, or they might not support
subnormal values at all.

https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number

Chapter 13. <math.h> Mathematics 98

1/tan(0): infinity
1e-310: subnormal

See Also

isfinite(), isinf (), isnan(), isnormal(), signbit()

13.7 isfinite(), isinf(), isnan(), isnormal()

Return true if a number matches a classification.
Synopsis

#include <math.h>

int isfinite(any_floating_type Xx);
int isinf(any_floating_type x);

int isnan(any_floating_type x);

int isnormal(any_floating_type X);

Description

These are helper macros to fpclassify(). Bring macros, they work on any floating point type.

Macro Description

isfinite() True if the number is not infinite or NaN.
isinf() True if the number is infinite.

isnan() True if the number is Not-a-Number.

isnormal() True if the number is normal.

For more superficial discussion on normal and subnormal numbers, see fpclassify().

Return Value

Returns non-zero for true, and zero for false.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf(" isfinite(1.23): %d\n", isfinite(1.23)); // 1
printf(" isinf(1/tan(0)): %d\n", isinf(1/tan(0))); // 1
printf(" isnan(sqrt(-1)): %d\n", isnan(sqrt(-1))); // 1
printf("isnormal(1le-310): %d\n", isnormal(1le-310)); // 0

Chapter 13. <math.h> Mathematics 99

See Also

fpclassify(), signbit(),

13.8 signbit()
Return the sign of a number.
Synopsis

#1inc lude <math.h>

int signbit(any_floating_type x);

Description

This macro takes any floating point number and returns a value indicating the sign of the number, positive
or negative.

Return Value
Returns 1 if the sign is negative, otherwise 0.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%d\n", signbit(3490.0)); // 0
printf("%d\n", signbit(-37.0)); // 1
}
See Also

fpclassify(), isfinite(), isinf(), isnan(), isnormal(), copysign()

13.9 acos(), acosf(), acosl()
Calculate the arc cosine of a number.

Synopsis

#include <math.h>

double acos(double x);

float acosf(float Xx);
long double acosl(long double Xx);

Chapter 13. <math.h> Mathematics 100

Description

Calculates the arc cosine of a number in radians. (That is, the value whose cosine is x.) The number must
be in the range -1.0 to 1.0.

For those of you who don’t remember, radians are another way of measuring an angle, just like degrees.
To convert from degrees to radians or the other way around, use the following code:

pi = 3.14159265358979;
degrees = radians * 180 / pi;
radians = degrees * pi / 180;

Return Value

Returns the arc cosine of x, unless x is out of range. In that case, errno will be set to EDOM and the
return value will be NaN. The variants return different types.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

double acosx;
long double ldacosx;

acosx = acos(0.2);
ldacosx = acosl1(0.3L);

printf("%f\n", acosx);
printf("%Lf\n", ldacosx);

See Also

asin(), atan(), atan2(), cos()

13.10 asin(), asinf(), asinl()

Calculate the arc sine of a number.

Synopsis
#include <math.h>
double asin(double x);

float asinf(float x);
long double asinl(long double x);

Description

Calculates the arc sine of a number in radians. (That is, the value whose sine is x.) The number must be
in the range -1.0 to 1.0.

For those of you who don’t remember, radians are another way of measuring an angle, just like degrees.
To convert from degrees to radians or the other way around, use the following code:

Chapter 13. <math.h> Mathematics 101

pi = 3.14159265358979;
degrees = radians * 180 / pi;
radians = degrees * pi / 180;

Return Value

Returns the arc sine of x, unless x is out of range. In that case, errno will be set to EDOM and the return
value will be NaN. The variants return different types.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

double asinx;
long double ldasinx;

asinx = asin(0.2);
ldasinx = asinl(0.3L);

printf("%f\n", asinx);
printf("%Lf\n", ldasinx);

See Also

acos(), atan(), atan2(), sin()

13.11 atan(), atanf(), atanl(), atan2(), atan2f(), atan21()

Calculate the arc tangent of a number.

Synopsis
#include <math.h>
double atan(double x);

float atanf(float x);
long double atanl(long double Xx);

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan21(long double y, long double x);

Description
Calculates the arc tangent of a number in radians. (That is, the value whose tangent is x.)

The atan2() variants are pretty much the same as using atan() with y/x as the argument...except that
atan2() will use those values to determine the correct quadrant of the result.

For those of you who don’t remember, radians are another way of measuring an angle, just like degrees.
To convert from degrees to radians or the other way around, use the following code:

Chapter 13. <math.h> Mathematics

pi = 3.14159265358979;
degrees = radians * 180 / pi;
radians = degrees * pi / 180;

Return Value

102

The atan() functions return the arc tangent of x, which will be between PI/2 and -P1/2. The atan2()

functions return an angle between PI and -PI.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

double atanx;
long double ldatanx;

atanx = atan(0.7);
ldatanx = atanl(0.3L);

printf("%f\n", atanx);
printf("%Lf\n", ldatanx);

atanx = atan2(7, 10);
ldatanx = atan21(3L, 10L);

printf("%f\n", atanx);
printf("%Lf\n", ldatanx);

See Also

tan(), asin(), atan()

13.12 cos(), cosf(), cosl()

Calculate the cosine of a number.
Synopsis
#include <math.h>

double cos(double x)
float cosf(float x)

long double cosl(long double x)

Description
Calculates the cosine of the value x, where x is in radians.

For those of you who don’t remember, radians are another way of measuring an angle, just like degrees.
To convert from degrees to radians or the other way around, use the following code:

Chapter 13. <math.h> Mathematics

pi = 3.14159265358979;
degrees = radians * 180 / pi;
radians = degrees * pi / 180;

Return Value

Returns the cosine of x. The variants return different types.

Example

#include <stdio.h>
#include <math.h>

int main(void)

103

{
double cosx;
long double 1ldcosx;
cosx = c0s(3490.0); // round and round we go!
ldcosx = cos1(3.490L);
printf("%f\n", cosx);
printf("%Lf\n", ldcosx);
}
See Also

sin(), tan(), acos()

13.13 sin(), sinf(), sinl()

Calculate the sine of a number.

Synopsis
#include <math.h>
double sin(double x);

float sinf(float x);
long double sinl(long double Xx);

Description
Calculates the sine of the value x, where x is in radians.

For those of you who don’t remember, radians are another way of measuring an angle, just like degrees.
To convert from degrees to radians or the other way around, use the following code:

pi = 3.14159265358979;
degrees = radians * 180 / pi;
radians = degrees * pi / 180;

Return Value

Returns the sine of x. The variants return different types.

Chapter 13. <math.h> Mathematics 104

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
double sinx;
long double ldsinx;
sinx = sin(3490.0); // round and round we go!
ldsinx = sinl(3.490L);
printf("%f\n", sinx);
printf("%Lf\n", ldsinx);
}
See Also

cos(), tan(), asin()

13.14 tan(), tanf(), tanl()

Calculate the tangent of a number.

Synopsis
#include <math.h>

double tan(double x)
float tanf(float x)
long double tanl(long double x)

Description
Calculates the tangent of the value x, where x is in radians.

For those of you who don’t remember, radians are another way of measuring an angle, just like degrees.
To convert from degrees to radians or the other way around, use the following code:

pi = 3.14159265358979;
degrees = radians * 180 / pi;
radians = degrees * pi / 180;

Return Value

Returns the tangent of x. The variants return different types.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

Chapter 13. <math.h> Mathematics

double tanx;
long double ldtanx;

tanx = tan(3490.0); // round and round we go!

ldtanx = tanl(3.490L);

printf("%f\n", tanx);
printf("%Lf\n", ldtanx);

See Also

sin(), cos(),atan(), atan2()

13.15 acosh(), acoshf(), acoshl()

Compute arc hyperbolic cosine.
Synopsis

#include <math.h>

double acosh(double x);
float acoshf(float x);

long double acoshl(long double Xx);

Description

Trig lovers can rejoice! C has arc hyperbolic cosine!

These functions return the nonnegative acosh of x, which must be greater than or equal to 1.

Return Value
Returns the arc hyperbolic cosince in the range [0, +00].

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

printf("acosh 1.8 = %f\n", acosh(1.8));
}
See Also

asinh()

// 1.192911

105

Chapter 13. <math.h> Mathematics 106

13.16 asinh(), asinhf(), asinhl()
Compute arc hyperbolic sine.

Synopsis

#1include <math.h>

double asinh(double x);

float asinhf(float x);

long double asinhl(long double x);

Description
Trig lovers can rejoice! C has arc hyperbolic sine!

These functions return the asinh of x.

Return Value

Returns the arc hyperbolic sine.

Example

#include <stdio.h>
#include <math.h>

int main(void)
{
printf("asinh 1.8 = %f\n", asinh(1.8)); // 1.350441

}

See Also

acosh()

13.17 atanh(), atanhf(), atanhl()

Compute the arc hyperbolic tangent.
Synopsis

#1include <math.h>

double atanh(double x);
float atanhf(float x);

long double atanhl(long double Xx);

Chapter 13. <math.h> Mathematics

Description

107

These functions compute the arc hyperbolic tangent of x, which must be in the range [—1, +1]. Passing

exactly —1 or +1 might result in a pole error.

Return Value
Returns the arc hyperbolic tangent of x.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

printf("atanh 0.5 = %f\n", atanh(0.5)); // 0.549306
}
See Also

acosh(), asinh()

13.18 cosh(), coshf(), coshl()

Compute the hyperbolic cosine.
Synopsis

#include <math.h>

double cosh(double x);
float coshf(float x);

long double coshl(long double Xx);

Description

These functions predictably compute the hyperbolic cosine of x. A range error might occur if x is too

large.

Return Value

Returns the hyperbolic cosine of x.

Example

#include <stdio.h>
#include <math.h>

int main(void)
{

printf("cosh 0.5 = %f\n", cosh(0.5)); // 1.127626
}

Chapter 13. <math.h> Mathematics 108

See Also

sinh(), tanh()

13.19 sinh(), sinhf(), sinhl()

Compute the hyperbolic sine.
Synopsis

#1include <math.h>
double sinh(double x);
float sinhf(float x);

long double sinhl(long double x);

Description

These functions predictably compute the hyperbolic sine of x. A range error might occur if x is too large.

Return Value

Returns the hyperbolic sine of x.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

printf("sinh 0.5 = %f\n", sinh(0.5)); // 0.521095
}
See Also

sinh(), tanh()

13.20 tanh(), tanhf(), tanhl()

Compute the hyperbolic tangent.
Synopsis

#include <math.h>

double tanh(double x);
float tanhf(float x);

long double tanhl(long double Xx);

1

2

3

Chapter 13. <math.h> Mathematics 109

Description
These functions predictably compute the hyperbolic tangent of x.

Mercifully, this is the last trig-related man page I’m going to write.

Return Value
Returns the hyperbolic tangent of x.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

printf("tanh 0.5 = %f\n", tanh(0.5)); // 0.462117
}
See Also

cosh(), sinh()

13.21 exp(), expf(), expl()

Compute e raised to a power.

Synopsis

#include <math.h>
double exp(double x);
float expf(float x);

long double expl(long double x);

Description
Compute e” where ¢ is Euler’s number®.

The number e is named after Leonard Euler, born April 15, 1707, who is responsible, among other things,
for making this reference page longer than it needed to be.

Return Value

Returns e*.

Example

#include <stdio.h>
#include <math.h>

“https://en.wikipedia.org/wiki/E_(mathematical_constant)

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Chapter 13. <math.h> Mathematics 110

int main(void)

{
printf("exp(1) = %f\n", exp(1)); // 2.718282
printf("exp(2) = %f\n", exp(2)); // 7.389056
}
See Also

exp2(), expml(), pow(), Log()

13.22 exp2(), exp2f(), exp21()
Compute 2 to a power.

Synopsis

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);

Description

These functions raise 2 to a power. Very exciting, since computers are all about twos-to-powers!
These are likely to be faster than using pow() to do the same thing.

They support fractional exponents, as well.

A range error occurs if x is too large.

Return Value

exp2 () returns 2*.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("223 = %f\n", exp2(3)); // 2/3 = 8.000000
printf("248 = %f\n", exp2(8)); // 278 = 256.000000
printf("2/20.5 = %f\n", exp2(0.5)); // 2/0.5 = 1.414214

}

See Also

exp(), pow()

Chapter 13. <math.h> Mathematics 111

13.23 expmi(), expmif(), expmil()

Compute e* — 1.

Synopsis

#include <math.h>
double expmil(double x);
float expmif(float x);

long double expmil(long double x);

Description

This is just like exp () except—plot twist!—it computes that result minus one.
For more discussion about what e is, see the exp () man page.

If x is giant, a range error might occur.

For small values of x near zero, expm1(x) might be more accurate than computing exp(x)-1.

Return Value

Returns e* — 1.

Example

#include <stdio.h>
#include <math.h>

int main(void)
{
printf("%f\n", expmi(2.34)); // 9.381237

}

See Also

exp()

13.24 frexp(), frexpf(), frexpl()

Break a number into its fraction part and exponent (as a power of 2).
Synopsis

#include <math.h>

double frexp(double value, int *exp);

float frexpf(float value, int *exp);

long double frexpl(long double value, int *exp);

Chapter 13. <math.h> Mathematics 112

Description

If you have a floating point number, you can break it into its fractional part and exponent part (as a power
of 2).

For example, if you have the number 1234.56, this can be represented as a multiple of a power of 2 like
so:

1234.56 = 0.6028125 x 2!
And you can use this function to get the 0.6028125 and 11 parts of that equation.

As for why, I have a simple answer: I don’t know. I can’t find a use. K&R2 and everyone else I can find
just says how to use it, but not why you might want to.

The C99 Rationale document says:
The functions frexp, ldexp, and modf are primitives used by the remainder of the library.

There was some sentiment for dropping them for the same reasons that ecvt, fcvt, and gcvt
were dropped, but their adherents rescued them for general use. Their use is problematic: on
non-binary architectures, ldexp may lose precision and frexp may be inefficient.

So there you have it. If you need it.

Return Value

frexp() returns the fractional part of value in the range 0.5 (inclusive) to 1 (exclusive), or 0. And it
stores the exponent power-of-2 in the variable pointed to by exp.

If you pass in zero, the return value and the variable exp points to are both zero.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

double frac;

int expt;

frac = frexp(1234.56, &expt);

printf("1234.56 = %.7f x 27%d\n", frac, expt);
}
Output:

1234.56 = 0.6028125 x 2711

See Also
ldexp(), ilogb(), modf()

13.25 ilogb(), ilogbf(), ilogb1()

Return the exponent of a floating point number.

Chapter 13. <math.h> Mathematics 113

Synopsis

#inc lude <math.h>
int ilogb(double x);
int ilogbf(float x);

int ilogbl(long double x);

Description

This gives you the exponent of the given number... it’s a little weird, because the exponent depends on
the value of FLT_RADIX. Now, this is very often 2—but no guarantees!

It actually returns log || where r is FLT_RADIX.

Domain or range errors might occur for invalid values of x, or for return values that are outside the range
of the return type.

Return Value

The exponent of the absolute value of the given number, depending on FLT_RADIX.
Specifically log || where 7 is FLT_RADIX.

If you pass in 0, it’ll return FP_ILOGBO.

If you pass in infinity, it’ll return INT_MAX.

If you pass in NaN, it’ll return FP_ILOGBNAN.

The spec goes on to say that the value of FP_ILOGBO will be either INT_MIN or - INT_MAX. And the value
of FP_ILOGBNAN shall be either INT_MAX or INT_MIN, if that’s useful in any way.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%d\n", ilogb(257)); // 8
printf("%d\n", ilogb(256)); // 8
printf("%d\n", ilogb(255)); // 7

}

See Also

frexp(), Logb()

13.26 1ldexp(), ldexpf(), Ldexpl()

Multiply a number by an integral power of 2.

Synopsis

Chapter 13. <math.h> Mathematics

#include <math.h>
double ldexp(double x, int exp);

float ldexpf(float x, int exp);

long double ldexpl(long double x, int exp);

Description

These functions multiply the given number x by 2 raised to the exp power.

Return Value

Returns x 2¢*P,

Example

#inc lude <stdio.h>
#include <math.h>

int main(void)

{
printf("1 x 2210 = %f\n", ldexp(1, 10));
printf("5.67 x 2A7 = %f\n", ldexp(5.67,
}
Output:

1 X 27A10 = 1024.000000
5.67 x 277 = 725.760000

See Also

exp()

13.27 1log(), logf(), logl()

Compute the natural logarithm.
Synopsis

#include <math.h>

double log(double x);
float logf(float x);

long double logl(long double x);

Description

Natural logarithms! And there was much rejoycing.

These compute the base-e logarithm of a number, log,_ z, In .

114

1

2

3

Chapter 13. <math.h> Mathematics 115
In other words, for a given z, solves = e¥ for y.

Return Value

The base-¢ logarithm of the given value, log_ z, Inx.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
const double e = 2.718281828459045;
printf("%f\n", log(3490.2)); // 8.157714
printf("%f\n", log(e)); // 1.000000

}

See Also

exp(), log10(), logip()

13.28 1log10(), logief(), Loglol()

Compute the log-base-10 of a number.

Synopsis

#inc lude <math.h>
double logl@(double x);
float loglef(float x);

long double log1@1l(long double x);

Description

Just when you thought you might have to use Laws of Logarithms to compute this, here’s a function
coming out of the blue to save you.

These compute the base-10 logarithm of a number, log, , .

In other words, for a given x, solves x = 10Y for y.

Return Value

Returns the log base-10 of x, log, , x.

Example

#include <stdio.h>
#include <math.h>

Chapter 13. <math.h> Mathematics 116

int main(void)

{
printf("%f\n", log10(3490.2)); // 3.542850
printf("%f\n", log10(10)); // 1.000000
}
See Also

pow(), log()

13.29 1log1p(), logipf(), Loglipl()

Compute the natural logarithm of a number plus 1.

Synopsis

#inc lude <math.h>
double loglp(double x);
float logilpf(float x);

long double logipl(long double x);

Description

This computes log_(1 4), In(1 +).

This works just like calling:

log(1 + x)

except it could be more accurate for small values of x.

So if your x is small magnitude, use this.

Return Value

Returns log_(1 +), In(1 + x).

Example

Compute some big and small logarithm values to see the difference between log1p() and log():

#include <stdio.h>
#include <float.h> // for LDBL_DECIMAL_DIG
#include <math.h>

int main(void)

printf("Big logilp() : %.*Lf\n", LDBL_DECIMAL_DIG-1, loglpl(9));
printf("Big log() : %.*Lf\n", LDBL_DECIMAL_DIG-1, logl(1 + 9));

printf("Small loglp(): %.*Lf\n", LDBL_DECIMAL_DIG-1, loglpl(0.01));
printf("Small log() : %.*Lf\n", LDBL_DECIMAL_DIG-1, logl(1 + 0.01));

Chapter 13. <math.h> Mathematics

Output on my system:

Big loglp() : 2.30258509299404568403
Big log() : 2.30258509299404568403
Small logip(): 0.00995033085316808305
Small log() : 0.00995033085316809164

See Also

Log()

13.30 1log2(), log2f(), log21()
Compute the base-2 logarithm of a number.
Synopsis

#include <math.h>

double log2(double x);

float log2f(float x);

long double log2l(long double x);

Description
Wow! Were you thinking we were done with the logarithm functions? We’re only getting started!
This one computes log, . That is, computes y that satisfies z = 2Y.

Love me those powers of 2!

Return Value

Returns the base-2 logarithm of the given value, log, .

Example

#inc lude <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", log2(3490.2)); // 11.769094
printf("%f\n", log2(256)); // 8.000000
}
See Also

log()

117

Chapter 13. <math.h> Mathematics 118

13.31 Tlogh(), logbf(), Logbl()

Extract the exponent of a number given FLT_RADIX.

Synopsis

#include <math.h>
double logb(double x);
float logbf(float x);

long double logbl(long double x);

Description

This function returns the whole number portion of the exponent of the number with radix FLT_RADIX,
namely the whole number portion log . || where 7 is FLT_RADIX. Fractional numbers are truncated.

If the number is subnormal®, logb() treats it as if it were normalized.

If x is 0, there could be a domain error or pole error.

Return Value

This function returns the whole number portion of log || where 7 is FLT_RADIX.

Example

#include <stdio.h>
#include <float.h> // For FLT_RADIX
#include <math.h>

int main(void)

{
printf("FLT_RADIX = %d\n", FLT_RADIX);
printf("%f\n", logb(3490.2));
printf("%f\n", logb(256));

}

Output:

FLT_RADIX = 2
11.000000
8.000000

See Also
ilogb()

13.32 modf (), modff(), modf1()

Extract the integral and fractional parts of a number.

Shitps://en.wikipedia.org/wiki/Denormal_number

https://en.wikipedia.org/wiki/Denormal_number

Chapter 13. <math.h> Mathematics 119

Synopsis

#inc lude <math.h>

double modf(double value, double *iptr);
float modff(float value, float *iptr);

long double modfl(long double value, long double *iptr);

Description

If you have a floating point number, like 123. 456, this function will extract the integral part (123.0) and
the fractional part (0. 456). It’s total coincidence that this is exactly the plot for the latest Jason Statham
action spectacular.

Both the integral part and fractional parts keep the sign of the passed in value.
The integral part is stored in the address pointed to by iptr.

See the note in frexp() regarding why this is in the library.

Return Value

These functions return the fractional part of the number. The integral part is stored in the address pointed
to by iptr. Both the integral and fractional parts preserve the sign of the passed-in value.

Example

#include <stdio.h>
#include <math.h>

void print_parts(double x)

{
double i, f;
f = modf(x, &i);
printf("Entire number : %f\n", Xx);
printf("Integral part : %f\n", i);
printf("Fractional part: %f\n\n", f);
}
int main(void)
{
print_parts(123.456);
print_parts(-123.456);
}
Output:

Entire number : 123.456000
Integral part : 123.000000
Fractional part: 0.456000

Entire number : -123.456000
Integral part : -123.000000
Fractional part: -0.456000

Chapter 13. <math.h> Mathematics

See Also
frexp()

120

13.33 scalbn(), scalbnf(), scalbnl() scalbln(), scalblnf(),

scalblnl()

Efficiently compute x X r", where 7 is FLT_RADIX.
Synopsis

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);

long double scalblnl(long double x, long int n);

Description

These functions efficiently compute = X ™, where 7 is FLT_RADIX.

If FLT_RADIX happens to be 2 (no guarantees!), then this works like exp2().

The name of this function should have an obvious meaning to you. Clearly they all start with the prefix

“scalb” which means...
...OK, I confess! I have no idea what it means. My searches are futile!

But let’s look at the suffixes:

Suffix Meaning

n scalbn()—exponent n is an int

nf scalbnf()—float version of scalbn()

nl scalbnl()—1long double version of scalbn()
1n scalbln()—exponent nisa long int

Inf scalblnf()—float version of scalbln()

1nl scalblnl()—1long double version of scalbln()

So while I’'m still in the dark about “scalb”, at least I have that part down.

A range error might occur for large values.

Return Value

Returns X r", where r is FLT_RADIX.

Chapter 13. <math.h> Mathematics

Example

#include <stdio.h>
#include <math.h>
#include <float.h>

int main(void)

{
printf("FLT_RADIX = %d\n\n", FLT_RADIX);
printf("scalbn(3, 8) = %f\n", scalbn(2, 8));
printf("scalbnf(10.2, 20) = %f\n", scalbnf(10.2, 20));
}

Output on my system:
FLT_RADIX = 2

scalbn(3, 8) 512.000000
scalbn(10.2, 20.7) = 10695475.200000

See Also

exp2(), pow()

13.34 cbrt(), cbrtf(), cbrtl()

Compute the cube root.
Synopsis

#include <math.h>
double cbrt(double x);
float cbrtf(float x);

long double cbrtl(long double Xx);

Description

Conunnesthecuberootofx,19/3,{75.

Return Value

RBUHnsthecuberootofx,x1/3,{75.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{

printf("cbrt(1729.03) = %f\n", cbrt(1729.03));

121

Chapter 13. <math.h> Mathematics 122

Output:
cbrt(1729.03) = 12.002384

See Also

sqre(), pow()

13.35 fabs(), fabsf(), fabsl()

Compute the absolute value.
Synopsis

#include <math.h>
double fabs(double x);
float fabsf(float x);

long double fabs1l(long double x);

Description
These functions straightforwardly return the absolute value of x, that is |z|.

If you’re rusty on your absolute values, all it means is that the result will be positive, even if x is negative.
It’s just strips negative signs off.

Return Value

Returns the absolute value of x, |x|.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("fabs(3490.0) = %f\n", fabs(3490.0)); // 3490.000000
printf("fabs(-3490.0) = %f\n", fabs(3490.0)); // 3490.0600000
}
See Also

abs(), copysign(), imaxabs()

13.36 hypot(), hypotf(), hypot1()

Compute the length of the hypotenuse of a triangle.

Chapter 13. <math.h> Mathematics 123
Synopsis

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

long double hypotl(long double x, long double y);

Description
Pythagorean Theorem® fans rejoice! This is the function you’ve been waiting for!

If you know the lengths of the two sides of a right triangle, x and y, you can compute the length of the
hypotenuse (the longest, diagonal side) with this function.

In particular, it computes the square root of the sum of the squares of the sides: y/x2 + 12.

Return Value

Returns the lenght of the hypotenuse of a right triangle with side lengths x and y: /22 + 2.

Example

printf("%f\n", hypot(3, 4)); // 5.000000

See Also

sqrt()

13.37 pow(), powf (), powl()

Compute a value raised to a power.
Synopsis

#inc lude <math.h>

double pow(double x, double y);
float powf(float x, float y);

long double powl(long double x, long double y);

Description
Computes x raised to the yth power: x¥.

These arguments can be fractional.

Shttps://en.wikipedia.org/wiki/Pythagorean_theorem

https://en.wikipedia.org/wiki/Pythagorean_theorem

Chapter 13. <math.h> Mathematics 124

Return Value
Returns x raised to the yth power: xY.
A domain error can occur if:

* x is a finite negative number and y is a finite non-integer
* x is zero and y is zero.

A domain error or pole error can occur if x is zero and y is negative.

A range error can occur for large values.

Example
printf("%f\n", pow(3, 4)); // 34 = 81.000000
printf("%f\n", pow(2, ©.5)); // sqrt 2 = 1.414214

See Also

exp(), exp2(), sqrt(), cbrt()

13.38 sqrt()

Calculate the square root of a number.

Synopsis

#1include <math.h>
double sqrt(double x);
float sqrtf(float x);

long double sqgrtl(long double Xx);

Description

Computes the square root of a number: /. To those of you who don’t know what a square root is, I'm
not going to explain. Suffice it to say, the square root of a number delivers a value that when squared
(multiplied by itself) results in the original number.

Ok, fine—I did explain it after all, but only because I wanted to show off. It’s not like I’'m giving you
examples or anything, such as the square root of nine is three, because when you multiply three by three
you get nine, or anything like that. No examples. I hate examples!

And I suppose you wanted some actual practical information here as well. You can see the usual trio of
functions here—they all compute square root, but they take different types as arguments. Pretty straight-
forward, really.

A domain error occurs if x is negative.

Return Value

Returns (and I know this must be something of a surprise to you) the square root of x: /.

1

2

Chapter 13. <math.h> Mathematics 125

Example
// example usage of sqrt()
float something = 10;

double x1 = 8.2, y1

double x2 = 3.8, y2
double dx, dy;

1 nu
w
A~ O
© b

printf("square root of 10 is %.2f\n", sqrtf(something));

dx = x2 - x1;

dy = y2 - y1;
printf("distance between points (x1, y1) and (x2, y2): %.2f\n",
sgrt(dx*dx + dy*dy));

And the output is:

square root of 10 is 3.16
distance between points (x1, y1) and (x2, y2): 40.54

See Also

hypot (), pow()

13.39 erf(),erff(),erfl()

Compute the error function of the given value.
Synopsis

#include <math.h>

double erfc(double x);

float erfcf(float x);

long double erfcl(long double Xx);

Description

These functions compute the error function’” of a value.

Return Value

Returns the error function of x:

2 /z e
— e dt
VT Uy

Example

for (float i = -2; i <= 2; i += 0.5)
printf ("% .1f: %f\n", i, erf(i));

"https://en.wikipedia.org/wiki/Error_function

https://en.wikipedia.org/wiki/Error_function

Chapter 13. <math.h> Mathematics 126

Output:

-2.0: -0.995322
-1.5: -0.966105
-1.0: -0.842701
-0.5: -0.520500
0.0: 0.000000
0.5: 0.520500
1.0: 0.842701
1.5: 0.966105
2.0: 0.995322
See Also

erfc()

13.40 erfc(),erfcf(),erfcl()

Compute the complementary error function of a value.

Synopsis

#inc lude <math.h>
double erfc(double x);
float erfcf(float x);

long double erfcl(long double Xx);

Description
These functions compute the complementary error function® of a value.

This is the same as:
1 - erf(x)

A range error can occur if x is too large.

Return Value

Returns 1 - erf(x), namely:

2 [
— 0 dt
ﬁr/x ‘

Example

for (float i = -2; 1 <= 2; i += 0.5)
printf("% .1f: %f\n", i, erfc(i));

Output:

8https://en.wikipedia.org/wiki/Error_function

https://en.wikipedia.org/wiki/Error_function

Chapter 13. <math.h> Mathematics 127

-2.0: 1.995322
-1.5: 1.966105
-1.0: 1.842701
-0.5: 1.520500
0.0: 1.000000
0.5: 0.479500
1.0: 0.157299
1.5: 0.033895
2.0: 0.004678
See Also

erf()

13.41 1gamma(), lgammaf(), Llgammal()

Compute the natural logarithm of the absolute value of I'(x).

Synopsis

#1include <math.h>
double lgamma(double x);
float lgammaf(float x);

long double lgammal(long double x);

Description
Compute the natural log of the absolute value of gamma® x, log_ |I'(z)|.
A range error can occur if x is too large.

A pole error can occur is x is non-positive.

Return Value

Returns log_ |I'(x)|.

Example

for (float i = 0.5; 1 <= 4; i += 0.5)
printf("%.1f: %f\n", i, lgamma(i));

Output:

1 0.572365
0: 0.000000
5: -0.120782
0: 0.000000
.5: 0.284683
0: 0.693147
5: 1

0: 1

a1

.200974
. 791759

A WWDNDNRE RO

https://en.wikipedia.org/wiki/Gamma_function

https://en.wikipedia.org/wiki/Gamma_function

Chapter 13. <math.h> Mathematics

See Also

tgamma()

13.42 tgamma(), tgammaf(), tgammal()
Compute the gamma function, I'(x).

Synopsis

#1inc lude <math.h>

double tgamma(double x);

float tgammaf(float x);

long double tgammal(long double x);

Description
Computes the gamma function' of x, I'(x).
A domain or pole error might occur if x is non-positive.

A range error might occur if x is too large or too small.

Return Value

Returns the gamma function of x, I'(x).

Example

for (float i = 0.5; 1 <= 4; i += 0.5)
printf("%.1f: %f\n", i, tgamma(i));

Output:

0.5: 1.772454
1.0: 1.000000
1.5: 0.886227
2.0: 1.000000
2.5: 1.329340
3.0: 2.000000
3.5: 3.323351
4.0: 6.000000
See Also
lgamma()

13.43 ceil(), ceilf(), ceill()

Ceiling—return the next whole number not smaller than the given number.

Ohttps://en.wikipedia.org/wiki/Gamma_function

128

https://en.wikipedia.org/wiki/Gamma_function

Chapter 13. <math.h> Mathematics
Synopsis

#include <math.h>

double ceil(double x);

float ceilf(float x);

long double ceill(long double Xx);

Description

Returns the ceiling of the x: [z].

This is the next whole number not smaller than x.

129

Beware this minor dragon: it’s not just “rounding up”. Well, it is for positive numbers, but negative
numbers effectively round toward zero. (Because the ceiling function is headed for the next largest whole

number and —4 is larger than —5.)

Return Value

Returns the next largest whole number larger than x.

Example

Notice for the negative numbers it heads toward zero, i.e. toward the next largest whole number—ijust like

the positives head toward the next largest whole number.

printf("%f\n", ceil(4.0));
printf("%f\n", ceil(4.1));
printf("%f\n", ceil(-2.0));
printf("%f\n", ceil(-2.1));
printf("%f\n", ceil(-3.1));

See Also
floor(), round()

// 4.000000
// 5.000000
// -2.000000
// -2.000000
// -3.000000

13.44 floor(), floorf(), floorl()

Compute the largest whole number not larger than the given value.

Synopsis

#include <math.h>
double floor(double x);
float floorf(float x);

long double floorl(long double Xx);

Description

Returns the floor of the value: | |. This is the opposite of ceil().
This is the largest whole number that is not greater than x.

For positive numbers, this is like rounding down: 4.5 becomes 4. 0.

Chapter 13. <math.h> Mathematics 130

For negative numbers, it’s like rounding up: -3.6 becomes -4.0.

In both cases, those results are the largest whole number not bigger than the given number.

Return Value

Returns the largest whole number not greater than x: |z .

Example

Note how the negative numbers effectively round away from zero, unlike the positives.
printf("%f\n", floor(4.0)); // 4.000000
printf("%f\n", floor(4.1)); // 4.000000
printf("%f\n", floor(-2.0)); // -2.000000
printf("%f\n", floor(-2.1)); // -3.000000
printf("%f\n", floor(-3.1)); // -4.000000

See Also

ceil(), round()

13.45 nearbyint(), nearbyintf(), nearbyint1()

Rounds a value in the current rounding direction.

Synopsis

#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);

long double nearbyintl(long double x);

Description
This function rounds x to the nearest integer in the current rounding direction.
The rounding direction can be set with fesetround() in <fenv.h>.

nearbyint () won’t raise the “inexact” floating point exception.

Return Value

Returns x rounded in the current rounding direction.

Example

#include <stdio.h>
#include <math.h>
#include <fenv.h>

int main(void)

{
#pragma STDC FENV_ACCESS ON // If supported

Chapter 13. <math.h> Mathematics

fesetround(FE_TONEAREST) ; // round to nearest

printf("%f\n", nearbyint(3.14)); // 3.000000
printf("%f\n", nearbyint(3.74)); // 4.000000

fesetround(FE_TOWARDZERO) ; // round toward zero

printf("%f\n", nearbyint(1.99)); // 1.000000
printf("%f\n", nearbyint(-1.99)); // -1.000000

See Also

rint(), lrint(), round(), fesetround(), fegetround()

13.46 rint(), rintf(), rintl()

Rounds a value in the current rounding direction.
Synopsis

#include <math.h>

double rint(double x);

float rintf(float x);

long double rintl(long double Xx);

Description

This works just like nearbyint () except that is can raise the “inexact” floating point exception.

Return Value

Returns x rounded in the current rounding direction.

Example

#include <stdio.h>
#include <math.h>
#include <fenv.h>

int main(void)
{
#pragma STDC FENV_ACCESS ON

fesetround(FE_TONEAREST) ;

printf("%f\n", rint(3.14)); // 3.000000
printf("%f\n", rint(3.74)); // 4.000000

fesetround(FE_TOWARDZERO) ;

131

Chapter 13. <math.h> Mathematics 132

printf("%f\n", rint(1.99)); // 1.000000
printf("%f\n", rint(-1.99)); // -1.000000

See Also

nearbyint(), lrint(), round(), fesetround(), fegetround()

13.47 1lrint(), lrintf(), lrint1l(), 1lrint(), 1lrintf(),
1lrint1()

Returns x rounded in the current rounding direction as an integer.

Synopsis
#include <math.h>
long int lrint(double x);

long int lrintf(float x);
long int lrint1(long double Xx);

long long int 1llrint(double x);
long long int 1llrintf(float x);
long long int 1lrint1(long double x);

Description

Round a floating point number in the current rounding direction, but this time return an integer intead of
a float. You know, just to mix it up.

These come in two variants:

e lrint()—returns long int
* 1lrint()—returns long long int

If the result doesn’t fit in the return type, a domain or range error might occur.

Return Value
The value of x rounded to an integer in the current rounding direction.
Example
#include <stdio.h>
#include <math.h>
#include <fenv.h>
int main(void)
{
#pragma STDC FENV_ACCESS ON

fesetround(FE_TONEAREST) ;

printf("%ld\n", 1lrint(3.14)); // 3

Chapter 13. <math.h> Mathematics

printf("%ld\n", 1lrint(3.74)); // 4
fesetround(FE_TOWARDZERO) ;

printf("%ld\n", 1lrint(1.99)); // 1
printf("%ld\n", lrint(-1.99)); // -1

See Also

nearbyint(), rint(), round(), fesetround(), fegetround()

13.48 round(), roundf(), roundl()

Round a number in the good old-fashioned way.
Synopsis

#include <math.h>

double round(double x);

float roundf(float x);

long double roundl(long double x);

Description
Rounds a number to the nearest whole value.

In case of halfsies, rounds away from zero (i.e. “round up” in magnitude).

The current rounding direction’s Jedi mind tricks don’t work on this function.

Return Value

The rounded value of x.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", round(3.14)); // 3.000000
printf("%f\n", round(3.5)); // 4.000000
printf("%f\n", round(-1.5)); // -2.000000
printf("%f\n", round(-1.14)); // -1.000000

}

See Also

lround(), nearbyint (), rint(), lrint(), trunc()

133

Chapter 13. <math.h> Mathematics

134

13.49 1lround(), lroundf(), lroundl() 1lround(), 1lroundf(),

1lroundl()

Round a number in the good old-fashioned way, returning an integer.

Synopsis
#include <math.h>

long int 1lround(double x);
long int lroundf(float x);
long int 1lroundl(long double x);

long long int 1lround(double x);
long long int 1lroundf(float x);
long long int 1lroundl(long double x);

Description

These are just like round() except they return integers.

Halfway values round away from zero, e.g. 1.5 rounds to 2 and —1.5 rounds to —2.

The functions are grouped by return type:

* lround()—returns a long int
* 1lround()—returns a long long int

If the rounded value can’t fit in the return type, a domain or range error can occur.

Return Value
Returns the rounded value of x as an integer.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%ld\n", lround(3.14)); // 3
printf("%ld\n", lround(3.5)); // 4
printf("%ld\n", lround(-1.5)); // -2
printf("%ld\n", 1lround(-1.14)); // -1

}

See Also

round(), nearbyint(), rint(), lrint(), trunc()

Chapter 13. <math.h> Mathematics 135

13.50 trunc(), truncf(), truncl()

Truncate the fractional part off a floating point value.
Synopsis

#include <math.h>

double trunc(double x);

float truncf(float x);

long double truncl(long double x);

Description
These functions just drop the fractional part of a floating point number. Boom.

In other words, they always round toward zero.

Return Value

Returns the truncated floating point number.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", trunc(3.14)); // 3.000000
printf("%f\n", trunc(3.8)); // 3.000000
printf("%f\n", trunc(-1.5)); // -1.000000
printf("%f\n", trunc(-1.14)); // -1.000000

}

See Also

round(), lround(), nearbyint(), rint(), lrint()

13.51 fmod(), fmodf (), fmod1()

Compute the floating point remainder.
Synopsis

#include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);

long double fmodl(long double x, long double y);

Chapter 13. <math.h> Mathematics 136

Description
Returns the remainder of % The result will have the same sign as x.

Under the hood, the computation performed is:

X - trunc(x / y) *vy

But it might be easier just to think of the remainder.
Return Value

Returns the remainder of % with the same sign as x.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", fmod(-9.2, 5.1)); // -4.100000
printf("%f\n", fmod(9.2, 5.1)); // 4.100000
}
See Also

remainder ()

13.52 remainder(), remainderf(), remainder()

Compute the remainder IEC 60559-style.

Synopsis

#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);

long double remainderl(long double x, long double y);

Description

This is similar to fmod (), but not quite the same. fmod () is probably what you’re after if you’re expecting
remainders to wrap around like an odometer.

The C spec quotes IEC 60559 on how this works:

When y # 0, the remainder » = x REM y is defined regardless of the rounding mode by
the mathematical relation » = x — ny, where n is the integer nearest the exact value of x /y;
whenever [n — x/y| = 1/2, then n is even. If » = 0, its sign shall be that of x.

Hope that clears it up!

OK, maybe not. Here’s the upshot:

Chapter 13. <math.h> Mathematics 137

You know how if you fmod () something by, say 2.0 you get a result that is somewhere between 0.0 and
2.0? And how if you just increase the number that you’re modding by 2.0, you can see the result climb
up to 2.0 and then wrap around to 0.0 like your car’s odometer?

remainder () works just like that, except if y is 2.0, it wraps from -1.0 to 1.0 instead of from 0.0 to
2.0.

In other words, the range of the function runs from -y/2 to y/2. Contrasted to fmod () that runs from
0.0toy, remainder()’s output is just shifted down half a y.

And zero-remainder-anything is ©.

Except if y is zero, the function might return zero or a domain error might occur.

Return Value
The IEC 60559 result of x-remainder-y.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", remainder(3.7, 4)); // -0.300000
printf("%f\n", remainder (4.3, 4)); // 0.300000
}
See Also

fmod (), remquo()

13.53 remquo(), remquof (), remquol()

Compute the remainder and (some of the) quotient.

Synopsis

#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);

long double remquol(long double x, long double y, int *quo);

Description

This is a funky little thing.

First of all, the return value is the remainder, the same as the remainder () function, so check that out.
And the quotient comes back in the quo pointer.

Or at least some of it does. You’ll get at least 3 bits worth of the quotient.

But why?

Chapter 13. <math.h> Mathematics 138

So a couple things.

One is that the quotient of some very large floating point numbers can easily be far too gigantic to fit in
even a long long unsigned int. So some of it might very well need to be lopped off, anyway.

But at 3 bits? How’s that even useful? That only gets you from 0 to 7!
The C99 Rationale document states:

The remquo functions are intended for implementing argument reductions which can exploit
a few low-order bits of the quotient. Note that may be so large in magnitude relative to y
that an exact representation of the quotient is not practical.

So... implementing argument reductions... which can exploit a few low-order bits... Ooookay.
CPPReference has this to say'' on the matter, which is spoken so well, I will quote wholesale:

This function is useful when implementing periodic functions with the period exactly repre-
sentable as a floating-point value: when calculating sin(7x) for a very large x, calling sin
directly may result in a large error, but if the function argument is first reduced with remquo,
the low-order bits of the quotient may be used to determine the sign and the octant of the
result within the period, while the remainder may be used to calculate the value with high
precision.

And there you have it. If you have another example that works for you... congratulations! :)

Return Value
Returns the same as remainder: The IEC 60559 result of x-remainder-y.

In addition, at least the lowest 3 bits of the quotient will be stored in quo with the same sign as x/y.

Example
There’s a great cos () example at CPPReference!? that covers a genuine use case.

But instead of stealing it, I’ll just post a simple example here and you can visit their site for a real one.

#include <stdio.h>
#include <math.h>

int main(void)

{

int quo;

double rem;

rem = remquo(12.75, 2.25, &quo);

printf("%d remainder %f\n", quo, rem); // 6 remainder -0.750000
}
See Also

remainder (), imaxdiv()

13.54 copysign(), copysignf(), copysignl()

Copy the sign of one value into another.

https://en.cppreference.com/w/c/numeric/math/remquo
12https://en.cppreference.com/w/c/numeric/math/remquo

https://en.cppreference.com/w/c/numeric/math/remquo
https://en.cppreference.com/w/c/numeric/math/remquo

Chapter 13. <math.h> Mathematics 139
Synopsis

#inc lude <math.h>

double copysign(double x, double y);

float copysignf(float x, float y);

long double copysignl(long double x, long double y);

Description

These functions return a number that has the magnitude of x and the sign of y. You can use them to coerce
the sign to that of another value.

Neither x nor y are modified, of course. The return value holds the result.

Return Value

Returns a value with the magnitude of x and the sign of y.

Example

#inc lude <stdio.h>
#include <math.h>

int main(void)

{
double x = 34.9;
double y = -999.9;
double z = 123.4;
printf("%f\n", copysign(x, y)); // -34.900000
printf("%f\n", copysign(x, z)); // 34.900000
}
See Also
signbit()

13.55 nan(), nanf(), nanl()

Return NAN.

Synopsis

#include <math.h>

double nan(const char *tagp);
float nanf(const char *tagp);

long double nanl(const char *tagp);

Chapter 13. <math.h> Mathematics 140

Description

These functions return a quiet NaN'3. It is produced as if calling strtod() with "NAN" (or a variant
thereof) as an argument.

tagp points to a string which could be several things, including empty. The contents of the string deter-
mine which variant of NaN might get returned depending on the implementation.

Which version of NaN? Did you even know it was possible to get this far into the weeds with something
that wasn’t a number?

Case 1 in which you pass in an empty string, in which case these are the same:

nan(lln);

strtod("NAN()", NULL);

Case 2 in which the string contains only digits 0-9, letters a-z, letters A-Z, and/or underscore:

nan('"goats");
strtod("NAN(goats)", NULL);

And Case 3, in which the string contains anything else and is ignored:

nan("!");
strtod("NAN", NULL);

As for what strtod() does with those values in parens, see the [strtod()] reference page. Spoiler: it’s
implementation-defined.

Return Value
Returns the requested quiet NaN, or 0 if such things aren’t supported by your system.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", nan("")); // nan
printf("%f\n", nan("goats")); // nan
printf("%f\n", nan("!")); // nan

}

See Also

strtod()

13.56 nextafter(), nextafterf(), nextafterl()

Get the next (or previous) representable floating point value.

137 quiet NaN is one that doesn’t raise any exceptions.

Chapter 13. <math.h> Mathematics 141

Synopsis

#inc lude <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);

long double nextafterl(long double x, long double y);

Description

As you probably know, floating point numbers can’t represent every possible real number. There are
limits.

And, as such, there exists a “next” and “previous” number after or before any floating point number.

These functions return the next (or previous) representable number. That is, no floating point numbers
exist between the given number and the next one.

The way it figures it out is it works from x in the direction of y, answering the question of “what is the
next representable number from x as we head toward y.

Return Value
Returns the next representable floating point value from x in the direction of y.

If x equals y, returns y. And also x, I suppose.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%.*f\n", DBL_DECIMAL_DIG, nextafter(0.5, 1.0));
printf("%.*f\n", DBL_DECIMAL_DIG, nextafter(0.349, 0.0));

}

Output on my system:

0.50000000000000011
0.34899999999999992

See Also

nexttoward()

13.57 nexttoward(), nexttowardf(), nexttowardl()
Get the next (or previous) representable floating point value.

Synopsis

include <math.h>

double nexttoward(double x, long double y);

Chapter 13. <math.h> Mathematics 142

float nexttowardf(float x, long double y);

long double nexttowardl(long double x, long double y);

Description

These functions are the same as nextafter () except the second parameter is always long double.

Return Value

Returns the same as nextafter () except if x equals y, returns y cast to the function’s return type.

Example

#include <stdio.h>
#include <float.h>
#include <math.h>

int main(void)

{
printf("%.*f\n", DBL_DECIMAL_DIG, nexttoward(©.5, 1.0));

printf("%.*f\n", DBL_DECIMAL_DIG, nexttoward(©.349, 0.0));
}

Output on my system:

0.50000000000000011
0.34899999999999992

See Also

nextafter()

13.58 fdim(), fdimf (), fdiml()

Return the positive difference between two numbers clamped at 0.
Synopsis

#1include <math.h>

double fdim(double x, double y);

float fdimf(float x, float y);

long double fdiml(long double x, long double y);

Description

The positive difference between x and y is the difference... except if the difference is less than 0, it’s
clamped to 0.

These functions might throw a range error.

Chapter 13. <math.h> Mathematics 143

Return Value

Returns the difference of x -y if the difference is greater than 0. Otherwise it returns 0.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", fdim(10.0, 3.0)); // 7.000000
printf("%f\n", fdim(3.0, 10.0)); // 0.000000, clamped

13.59 fmax(), fmaxf(), fmax1(), fmin(), fminf (), fminl()

Return the maximum or minimum of two numbers.
Synopsis

#include <math.h>

double fmax(double x, double y);

float fmaxf(float x, float y);

long double fmaxl(long double x, long double y);
double fmin(double x, double y);

float fminf(float x, float y);

long double fminl(long double x, long double y);

Description
Straightforwardly, these functions return the minimum or maximum of two given numbers.

If one of the numbers is NaN, the functions return the non-NaN number. If both arguments are NaN, the
functions return NaN.

Return Value

Returns the minimum or maximum values, with NaN handled as mentioned above.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%f\n", fmin(10.0, 3.0)); // 3.000000

Chapter 13. <math.h> Mathematics 144

printf("%f\n", fmax(3.0, 10.0)); // 10.000000

13.60 fma(), fmaf(), fmal()

Floating (AKA “Fast”) multiply and add.

Synopsis

#1include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);

long double fmal(long double x, long double y, long double z);

Description

This performs the operation (z X y) + z, but does so in a nifty way. It does the computation as if it had
infinite precision, and then rounds the final result to the final data type according to the current rounding
mode.

Contrast to if you’d do the math yourself, where it would have rounded each step of the way, potentially.

Also some architectures have a CPU instruction to do exactly this calculation, so it can do it super quick.
(If it doesn’t, it’s considerably slower.)

You can tell if your CPU supports the fast version by checking that the macro FP_FAST_FMA is set to 1.
(The float and long variants of fma() can be tested with FP_FAST_FMAF and FP_FAST_FMAL, respec-
tively.)

These functions might cause a range error to occur.

Return Value

Returns (x * y) + z.

Example

printf("%f\n", fma(1.0, 2.0, 3.0)); // 5.000000

13.61 isgreater(), isgreaterequal(), isless(), islesse-
qual()

Floating point comparison macros.

Synopsis
#include <math.h>

int isgreater(any_floating_type x, any_floating_type y);

Chapter 13. <math.h> Mathematics 145

int isgreaterequal(any_floating_type x, any_floating_type y);
int isless(any_floating_type x, any_floating_type y);

int islessequal(any_floating_type x, any_floating_type y);

Description
These macros compare floating point numbers. Being macros, we can pass in any floating point type.
You might think you can already do that with just regular comparison operators—and you’d be right!

One one exception: the comparison operators raise the “invalid” floating exception if one or more of the
operands is NaN. These macros do not.

Note that you must only pass floating point types into these functions. Passing an integer or any other
type is undefined behavior.

Return Value

isgreater() returns the result of x > vy.
isgreaterequal() returns the result of x >= vy.
isless() returns the result of x < vy.

islessequal() returns the result of x <= y.

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%d\n", isgreater(10.0, 3.0)); // 1
printf("%d\n", isgreaterequal(10.0, 10.0)); // 1
printf("%d\n", isless(10.0, 3.0)); // 0
printf("%d\n", islessequal(10.0, 3.0)); // 0

}

See Also

islessgreater(), isunordered()

13.62 islessgreater()

Test if a floating point number is less than or greater than another.

Synopsis
#1include <math.h>

int islessgreater(any_floating_type X, any_floating_type y);

Chapter 13. <math.h> Mathematics 146

Description

This macro is similar to isgreater () and all those, except it made the section name too long if I included
it up there. So it gets its own spot.

This returns true if z < y or x > .
Even though it’s a macro, we can rest assured that x and y are only evaluated once.

And even if x or y are NaN, this will not throw an “invalid” exception, unlike the normal comparison
operators.

If you pass in a non-floating type, the behavior is undefined.

Return Value

Returns (x < y) || (x > vy).

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%d\n", islessgreater(10.0, 3.0)); // 1
printf("%d\n", islessgreater(10.0, 30.0)); // 1
printf("%d\n", islessgreater(10.0, 10.0)); // 0

}

See Also

isgreater(), isgreaterequal(), isless(), islessequal(), isunordered()

13.63 isunordered()

Macro returns true if either floating point argument is NaN.

Synopsis
#inc lude <math.h>

int isunordered(any_floating_type x, any_floating_type y);

Description
The spec writes:

The isunordered macro determines whether its arguments are unordered.
See? Told you C was easy!

It does also elaborate that the arguments are unordered if one or both of them are NaN.

Return Value

This macro returns true if one or both of the arguments are NaN.

Chapter 13. <math.h> Mathematics

Example

#include <stdio.h>
#include <math.h>

int main(void)

{
printf("%d\n", isunordered(1.0, 2.0)); // 0
printf("%d\n", isunordered(1.0, sqrt(-1))); // 1
printf("%d\n", isunordered(NAN, 30.0)); // 1
printf("%d\n", isunordered(NAN, NAN)); // 1

}

See Also

isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater()

147

Chapter 14

<setjmp.h> Non-local Goto

These functions enable you to rewind the call stack to an earlier point, with a bunch of gotchas. It is rarely
used.

Function Description

longjmp() Return to the previously-placed bookmark
setjmp() Bookmark this place to return to later

There’s also a new opaque type, jmp_buf, that holds all the information needed to pull off this magic
trick.

If you want your automatic local variables to be correct after a call to longjmp(). declare them as
volatile where you called setjmp().

14.1 setjmp()

Save this location as one to return to later

Synopsis
#include <setjmp.h>

int setjmp(jmp_buf env);

Description

This is how you save your position so you can Longjmp () back it, later. Think of it as setting up a warp
destination for later use.

Basically, you call this, giving it an env it can fill in with all the information it needs to come back here
later. This env is one you’ll pass to longjmp () later when you want to teleport back here.

And the really funky part is this can return two different ways:

1. It can return 0 from the call where you set up the jump destination.

2. If can return non-zero when you actually warp back here as the result of a call to Tongjmp().
What you can do is check the return value to see which case has occurred.

You’re only allowed to call setjmp() in a limited number of circumstances.

148

Chapter 14. <setjmp.h> Non-local Goto 149

1. As a standalone expression:

setjmp(env);

You can also cast it to (void) if you really wanted to do such a thing.
2. As the complete controlling expression in an if or switch.

if (setjmp(env)) { ... }

switch (setjmp(env)) { ... }

But not this as it’s not the complete controlling expression in this case:
if (x == 2 && setjmp()) { ... } // Undefined behavior

3. The same as (2), above, except with a comparison to an integer constant:
if (setjmp(env) ==0) { ... }

if (setjmp(env) > 2) { ... }

4. As the operand to the not (!) operator:
if (!'setjmp(env)) { ... }
Anything else is (you guessed it) undefined behavior!

This can be a macro or a function, but you’ll treat it the same way in any case.

Return Value
This one is funky. It returns one of two things:
Returns 0 if this was the call to setjmp() to set it up.

Returns non-zero if being here was the result of a call to Longjmp (). (Namely, it returns the value passed
into the longjmp () function.)

Example

Here’s a function that calls setjmp() to set things up (where it returns 0), then calls a couple levels
deep into functions, and finally short-circuits the return path by Longjmp()ing back to the place where
setjmp() was called, earlier. This time, it passes 3490 as a value, which setjmp() returns.

#include <stdio.h>
#include <setjmp.h>

jmp_buf env;

void depth2(void)

{
printf("Entering depth 2\n");
longjmp(env, 3490); // Jump back to setjmp()!!
printf("Leaving depth 2\n"); // This won't happen
}
void depthi(void)
{
printf("Entering depth 1\n");
depth2();
printf("Leaving depth 1\n"); // This won't happen
}

int main(void)

21

22

23

24

25

26

27

28

29

30

31

32

33

Chapter 14. <setjmp.h> Non-local Goto 150

}

Whe

switch (setjmp(env)) {
case 0O:
printf("Calling into functions, setjmp() returned 0\n");
depthi();
printf("Returned from functions\n"); // This won't happen
break;

case 3490:

printf("Bailed back to main, setjmp() returned 3490\n");
break;

n run, this outputs:

Calling into functions, setjmp() returned 0
Entering depth 1
Entering depth 2
Bailed back to main, setjmp() returned 3490

Notice that the second printf() in case 0 didn’t run; it got jumped over by Longjmp()!

See

Also

longjmp()

14.

2 longjmp()

Return to the previous setjmp() location

Synopsis

#include <setjmp.h>

_Noreturn void longjmp(jmp_buf env, int val);

Description

This
into

The

returns to a previous call to setjmp () back in the call history. setjmp() will return the val passed
longjmp().

env passed to setjmp () should be the same one you pass into longjmp().

There are a bunch of potential issues with doing this, so you’ll want to be careful that you avoid undefined
behavior by not doing the following:

1

2
3.
4

. Don’t call longjmp() if the corresponding setjmp() was in a different thread.
. Don’t call longjmp() if you didn’t call setjmp() first.
Don’t call longjmp () if the function that called setjmp() has completed.

. Don’t call tongjmp () if the call to setjmp() had a variable length array (VLA) in scope and the
scope has ended.

Don’t call longjmp() if there are any VLAs in any active scopes between the setjmp() and the
longjmp(). A good rule of thumb here is to not mix VLAs and longjmp().

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Chapter 14. <setjmp.h> Non-local Goto 151

Though longjmp() attempts to restore the machine to the state at the setjmp (), including local variables,
there are some things that aren’t brought back to life:

* Non-volatile local variables that might have changed
+ Floating point status flags

* Open files

 Any other component of the abstract machine

Return Value

This one is also funky in that it is one of the few functions in C that never returns!

Example

Here’s a function that calls setjmp() to set things up (where it returns 0), then calls a couple levels
deep into functions, and finally short-circuits the return path by Longjmp()ing back to the place where
setjmp() was called, earlier. This time, it passes 3490 as a value, which setjmp() returns.

#include <stdio.h>
#include <setjmp.h>

jmp_buf env;

void depth2(void)

{
printf("Entering depth 2\n");
longjmp(env, 3490); // Jump back to setjmp()!!
printf("Leaving depth 2\n"); // This won't happen
}
void depthi(void)
{
printf("Entering depth 1\n");
depth2();
printf("Leaving depth 1\n"); // This won't happen
}
int main(void)
{
switch (setjmp(env)) {
case 0:
printf("Calling into functions, setjmp() returned 0\n");
depthi();
printf("Returned from functions\n"); // This won't happen
break;
case 3490:
printf("Bailed back to main, setjmp() returned 3490\n");
break;
}
}

When run, this outputs:

Calling into functions, setjmp() returned ©
Entering depth 1
Entering depth 2
Bailed back to main, setjmp() returned 3490

Notice that the second printf() in case 0 didn’t run; it got jumped over by longjmp()!

Chapter 14. <setjmp.h> Non-local Goto 152

See Also

setjmp()

Chapter 15

<signal.h> signal handling

Function Description

signal() Set a signal handler for a given signal
raise() Cause a signal to be raised

Handle signals in a portable way, kind of!

These signals get raised for a variety of reasons such as CTRL-C being hit, requests to terminate for
external programs, memory access violations, and so on.

Your OS likely defines a plethora of other signals, as well.

This system is pretty limited, as seen below. If you’re on Unix, it’s almost certain your OS has far superior
signal handling capabilities than the C standard library. Check out sigaction®.

15.1 signal()

Set a signal handler for a given signal

Synopsis
#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

Description
How’s that for a function declaration?
Let’s ignore it for a moment and just talk about what this function does.

When a signal is raised, something is going to happen. This function lets you decide to do one of these
things when the signal is raised:

* Ignore the signal
* Perform the default action
+ Have a specific function called

!https://man.archlinux.org/man/sigaction.2.en

153

https://man.archlinux.org/man/sigaction.2.en

Chapter 15. <signal. h> signal handling 154

The signal() function takes two arguments. The first, sig, is the name of the signal to handle.

Signal Description

SIGABRT Raised when abort() is called

SIGFPE Floating-point arithmetic exception

SIGILL CPU tried to execute an illegal instruction

SIGINT Interrupt signal, as if CTRL-C were pressed

SIGSEGV Segmention Violation: attempted to access restricted memory
SIGTERM Termination request?

So that’s the first bit when you call signal()—tell it the signal in question:
signal(SIGINT,

But what’s that func parameter?

For spoilers, it’s a pointer to a function that takes an int argument and returns void. We can use this to
call an arbitrary function when the signal occurs.

Before we do that, though, let’s look at the easy ones: telling the system to ignore the signal or perform
the default action (which it does by default if you never call signal()).

You can set func to one of two special values to make this happen:

func Description

SIG_DFL Perform the default action on this signal
SIG_IGN Ignore this signal

For example:

signal(SIGTERM, SIG_DFL); // Default action on SIGTERM
signal(SIGINT, SIG_IGN); // Ignore SIGINT

But what if you want to have your own handler do something instead of the default or ignoring it? You
can pass in your own function to be called. That’s what the crazy function signature is partially about. It’s
saying that the argument can be a pointer to a function that takes an int argument and returns void.

So if you wanted to call your handler, you could have code like this:

int handler(int sig)

{
// Handle the signal

int main(void)

{
signal(SIGINT, handler);

What can you do in the signal handler? Not much.
If the signal is due to abort () or raise(), the handler can’t call raise().

If the signal is not due to abort() or raise(), you’re only allowed to call these functions from the
standard library (though the spec doesn’t prohibit calling other non-library functions):

e abort()

. _Exit()

* quick_exit()

* Functions in <stdatomic.h> when the atomic arguments are lock-free

2Asif might be sent from Unix’s kill command.]

Chapter 15. <signal. h> signal handling 155

» signal() with a first argument equivalent to the argument that was passed into the handler

In addition, if the signal was not due to abort () or raise(), the handler can’t access any object with
static or thread-storage duration unless it’s lock-free.

An exception is that you can assign to (but not read from!) a variable of type volatile sig_atomic_t.

It’s up to the implementation, but the signal handler might be reset to SIG_DFL just before the handler is
called.

It’s undefined behavior to call signal() in a multithreaded program.

It’s undefined behavior to return from the handler for SIGFPE, SIGILL, SIGSEGV, or any implementation-
defined value. You must exit.

The implementation might or might not prevent other signals from arising while in the signal handler.

Return Value

On success, signal() returns a pointer to the previous signal handler set by a call to signal() for that
particular signal number. If you haven’t called it set, returns SIG_DFL.

On failure, SIG_ERR is returned and errno is set to a positive value.

Example

Here’s a program that causes SIGINT to be ignored. Commonly you trigger this signal by hitting CTRL-C.

#include <stdio.h>
#include <signal.h>

int main(void)

{
signal(SIGINT, SIG_IGN);
printf("You can't hit CTRL-C to exit this program. Try it!\n\n");
printf("Press return to exit, instead.");
fflush(stdout);
getchar();
}
Output:

You can't hit CTRL-C to exit this program. Try it!
Press return to exit, instead.ACACACACACACACACACACAC

This program sets the signal handler, then raises the signal. The signal handler fires.

#include <stdio.h>
#inc lude <signal.h>

void handler(int sig)

{
// Undefined behavior to call printf() if this handler was not

// as the result of a raise(), i.e. if you hit CTRL-C.
printf("Got signal %d!\n", sig);

// Common to reset the handler just in case the implementation set
// it to SIG_DFL when the signal occurred.

signal(sig, handler);

20

21

22

23

24

Chapter 15. <signal. h> signal handling 156

int main(void)

{
signal(SIGINT, handler);
raise(SIGINT);
raise(SIGINT);
raise(SIGINT);

}

Output:

Got signal 2!
Got signal 2!
Got signal 2!

This example catches SIGINT but then sets a flag to 1. Then the main loop sees the flag and exits.

#include <stdio.h>
#include <signal.h>

volatile sig_atomic_t x;

void handler(int sig)

{
X =1;

}

int main(void)

{
signal(SIGINT, handler);
printf("Hit CTRL-C to exit\n");
while (x != 1);

}

See Also

raise(), abort()

15.2 raise()

Cause a signal to be raised

Synopsis
#include <signal.h>

int raise(int sig);

Description

Causes the signal handler for the signal sig to be called. If the handler is SIG_DFL or SIG_IGN, then the
default action or no action happens.

raise() returns after the signal handler has finished running.

20

21

22

23

24

Chapter 15. <signal. h> signal handling 157

Interestingly, if you cause a signal to happen with raise(), you can call library functions from within
the signal handler without causing undefined behavior. I’'m not sure how this fact is practically useful,
though.

Return Value

Returns 0 on success. Nonzero otherwise.

Example

This program sets the signal handler, then raises the signal. The signal handler fires.

#include <stdio.h>
#include <signal.h>

void handler(int sig)

{
// Undefined behavior to call printf() if this handler was not
// as the result of a raise(), i.e. if you hit CTRL-C.
printf("Got signal %d!\n", sig);
// Common to reset the handler just in case the implementation set
// it to SIG_DFL when the signal occurred.
signal(sig, handler);
}
int main(void)
{
signal(SIGINT, handler);
raise(SIGINT);
raise(SIGINT);
raise(SIGINT);
}
Output:

Got signal 2!
Got signal 2!
Got signal 2!

See Also

signal()

Chapter 16

<stdalign.h> Macros for Alignment

If you’re coding up something low-level like a memory allocator that interfaces with your OS, you might
need this header file. But most C devs go their careers without using it.

Alignment! is all about multiples of addresses on which objects can be stored. Can you store this at any
address? Or must it be a starting address that’s divisible by 2? Or 8? Or 16?

Name Description

alignas() Specify alignment, expands to _Alignas
alignof() Getalignment, expands to _Alignof

These two additional macros are defined to be 1:

__alignas_is_defined
__alignof_is_defined

Quick note: alignments greater than that of max_align_t are known as overalignments and are
implementation-defined.
16.1 alignas() _Alignas()

Force a variable to have a certain alignment

Synopsis
#1include <stdalign.h>

alignas(type-name)
alignas(constant-expression)

_Alignas(type-name)
_Alignas(constant-expression)

Description

Use this alignment specifier to force the alignment of particular variables. For instance, we can declare c
to be char, but aligned as if it were an int:

char alignas(int) c;

Uhttps://en.wikipedia.org/wiki/Data_structure_alignment

158

https://en.wikipedia.org/wiki/Data_structure_alignment

Chapter 16. <stdalign.h> Macros for Alignment 159

You can put a constant integer expression in there, as well. The compiler will probably impose limits on
what these values can be. Small powers of 2 (1, 2, 4, 8, and 16) are generally safe bets.

char alignas(8) c; // align on 8-byte boundaries

For convenience, you can also specify 0 if you want the default alignment (as if you hadn’t said alignas()
at all):

char alignas(0) c; // use default alignment for this type

Example

#include <stdalign.h>
#include <stdio.h> // for printf()
#include <stddef.h> // for max_align_t

int main(void)

{
int i, j;
char alignas(max_align_t) a, b;
char alignas(int) c, d;
char e, f;
printf("i: %p\n", (void *)&i);
printf("j: %p\n\n", (void *)&j);
printf("a: %p\n", (void *)&a);
printf("b: %p\n\n", (void *)&b);
printf("c: %p\n", (void *)&c);
printf("d: %p\n\n", (void *)&d);
printf("e: %p\n", (void *)&e);
printf("f: %p\n", (void *)&f);

}

Output on my system follows. Notice the difference between the pairs of values.

* iand j, both ints, are aligned on 4-byte boundaries.
+ aand b have been forced to the boundary of the type max_align_t, which is every 16 bytes on my
system.
+ ¢ and d have been forced to the same alignment as int, which is 4 bytes, just like with i and j.
» e and f do not have an alignment specified, so they were stored with their default alignment of 1
byte.
i: ox7ffee7dfb4cc <-- difference of 4 bytes
j: Ox7ffee7dfb4c8

a: Ox7ffee7dfb4co <-- difference of 16 bytes
b: 0x7ffee7dfb4bo

c: Ox7ffee7dfb4ac <-- difference of 4 bytes
d: 0x7ffee7dfb4a8

e: Ox7ffee7dfb4a7 <-- difference of 1 byte
f: Ox7ffee7dfb4a6

See Also

alignof, max_align_t

Chapter 16. <stdalign.h> Macros for Alignment 160

16.2 alignof() _Alignof()

Get the alignment of a type

Synopsis
#include <stdalign.h>

alignof(type-name)

_Alignof (type-name)

Description

This evaluates to a value of type size_t that gives the alignment of a particular type on your system.

Return Value

Returns the alignment value, i.e. the address of the beginning of the given type of object must begin on
an address boundary divisible by this number.

Example

Print out the alignments of a variety of different types.

#include <stdalign.h>
#include <stdio.h> // for printf()
#include <stddef.h> // for max_align_t

struct t {
int a;
char b;
float c;

};

int main(void)

{
printf("char : %zu\n'", alignof(char));
printf("short : %zu\n'", alignof(short));
printf("int : %zu\n'", alignof(int));
printf("long : %zu\n'", alignof(long));
printf("long long : %zu\n", alignof(long long));
printf("double : %zu\n'", alignof(double));
printf("long double: %zu\n", alignof(long double));
printf("struct t : %zu\n'", alignof(struct t));
printf("max_align_t: %zu\n", alignof(max_align_t));

}

Output on my system:

char 1

short 2

int i

long 1 8

long long 8

double 8

long double: 16

struct t : 16

max_align_t: 16

Chapter 16. <stdalign.h> Macros for Alignment 161

See Also

alignas, max_align_t

Chapter 17

<stdarg.h> Variable Arguments

Macro Description

va_arg() Get the next variable argument

va_copy() Copy a va_list and the work done so far

va_end() Signify we’re done processing variable arguments
va_start() Initialize a va_1list to start variable argument processing

This header file is what allows you to write functions that take a variable number of arguments.

In addition to the macros, you get a new type that helps C keep track of where it is in the variable-number-
of-arguments-processing: va_list. This type is opaque, and you’ll be passing it around to the various
macros to help get at the arguments.

Note that every variadic function requires at least one non-variable parameter. You need this to kick off
processing with va_start().

17.1 va_arg()

Get the next variable argument
Synopsis

#inc lude <stdarg.h>

type va_arg(va_list ap, type);

Description

If you have a variable argument list you’ve initialized with va_start (), pass it to this one along with the
type of argument you’re trying to get, e.g.

int X = va_arg(args, int);
float y = va_arg(args, float);

Return Value

Evaluates to the value and type of the next variable argument.

162

20

21

22

23

24

25

26

Chapter 17. <stdarg.h> Variable Arguments 163

Example

Here’s a demo that adds together an arbitrary number of integers. The first argument is the number of
integers to add together. We’ll make use of that to figure out how many times we have to call va_arg().

#include <stdio.h>
#include <stdarg.h>

int add(int count, ...)
{
int total = O;
va_list va;

va_start(va, count); // Start with arguments after "count"

for (int i = 0; i < count; i++) {
int n = va_arg(va, int); // Get the next int

total += n;

va_end(va); // All done

return total;

}

int main(void)

{
printf("%d\n", add(4, 6, 2, -4, 17)); // 6 + 2 - 4 + 17 = 21
printf("%d\n", add(2, 22, 44)); // 22 + 44 = 66

}

See Also

va_start(), va_end()

17.2 va_copy()

Copy a va_list and the work done so far

Synopsis
#inc lude <stdarg.h>

void va_copy(va_list dest, va_list src);

Description

The main intended use of this is to save your state partway through processing variable arguments so you
can scan ahead and then rewind back to the save point.

You pass in a src va_list and it copies it to dest.

If you’ve already called this once for a particular dest, you can’t call it (or va_start()) again with the
same dest unless you call va_end() on that dest first.

20

21

22

23

24

25

26

Chapter 17. <stdarg.h> Variable Arguments 164

va_copy(dest, src);
va_copy(dest, src2); // BAD!

va_copy(dest, src);
va_start(dest, var); // BAD!

va_copy(dest, src);
va_end(dest);
va_copy(dest, src2); // OK!

va_copy(dest, src);
va_end(dest);
va_start(dest, var); // OK!

Return Value

Returns nothing.

Example

Here’s an example where we’re adding together all the variable arguments, but then we want to go back
and add on all the numbers past the first two, for example if the arguments are:

10 20 30 40

First we add them all for 100, and then we add on everything from the third number on, so add on 30+40
for a total of 170.

We’ll do this by saving our place in the variable argument processing with va_copy and then using that
later to reprocess the trailing arguments.

(And yes, I know there’s a mathematical way to do this without all the rewinding, but I’m having an heck
of a time coming up with a good example!)

#inc lude <stdio.h>
#inc lude <stdarg.h>

// Add all the numbers together, but then add on all the numbers

// past the second one again.
int contrived_adder(int count, ...)

' if (count < 3) return 0; // OK, I'm being lazy. You got me.
int total = 0;
va_list args, mid_args;
va_start(args, count);

for (int 1 = 0; i < count; i++) {

// If we're at the second number, save our place 1in
// mid_args:

if (i == 2)
va_copy(mid_args, args);

total += va_arg(args, int);

27

28

29

30

31

33

34

35

36

37

38

39

40

41

2

43

45

Chapter 17. <stdarg.h> Variable Arguments 165

va_end(args); // Done with this
// But now let's start with mid_args and add all those on:
for (int i = 0; i < count - 2; i++)

total += va_arg(mid_args, int);

va_end(mid_args); // Done with this, too

return total;

}
int main(void)
{
// 10+20+30 + 30 == 90
printf("%d\n", contrived_adder (3, 10, 20, 30));
// 10+20+30+40+50 + 30+40+50 == 270
printf("%d\n", contrived_adder(5, 10, 20, 30, 40, 50));
}
See Also

va_start(), va_arg(), va_end()

17.3 va_end()

Signify we’re done processing variable arguments

Synopsis
#include <stdarg.h>

void va_end(va_list ap);

Description

After you’ve va_start()ed or va_copy’d a new va_list, you must call va_end() with it before it
goes out of scope.

You also have to do this if you’re going to call va_start() or va_copy() again on a variable you’ve
already done that to.

Them’s the rules if you want to avoid undefined behavior.

But just think of it as cleanup. You called va_start (), so you’ll call va_end () when you’re done.

Return Value

Returns nothing.

Example

Here’s a demo that adds together an arbitrary number of integers. The first argument is the number of
integers to add together. We’ll make use of that to figure out how many times we have to call va_arg().

20

21

22

23

24

25

26

Chapter 17. <stdarg.h> Variable Arguments 166

#include <stdio.h>
#include <stdarg.h>

int add(int count, ...)
{
int total = 0;
va_list va;

va_start(va, count); // Start with arguments after "count"

for (int i = 0; i < count; i++) {
int n = va_arg(va, int); // Get the next int

total += n;

va_end(va); // All done

return total;

}

int main(void)

{
printf("%d\n", add(4, 6, 2, -4, 17)); // 6 + 2 - 4 + 17 = 21
printf("%d\n", add(2, 22, 44)); // 22 + 44 = 66

}

See Also

va_start(), va_copy()

17.4 va_start()

Initialize a va_1list to start variable argument processing

Synopsis
#inc lude <stdarg.h>

void va_start(va_list ap, parmN);

Description

You’ve declared a variable of type va_1list to keep track of the variable argument processing... now how
to initialize it so you can start calling va_arg() to get those arguments?

va_start() to the rescue!
What you do is pass in your va_list, here shown as parameter ap. Just pass the list, not a pointer to it.

Then for the second argument to va_start (), you give the name of the parameter that you want to start
processing arguments after. This must be the parameter right before the . .. in the argument list.

If you’ve already called va_start() on a particular va_1list and you want to call va_start() on it
again, you must call va_end () first!

20

21

22

23

24

25

26

Chapter 17. <stdarg.h> Variable Arguments 167

Return Value

Returns nothing!

Example

Here’s a demo that adds together an arbitrary number of integers. The first argument is the number of
integers to add together. We’ll make use of that to figure out how many times we have to call va_arg().

#include <stdio.h>
#include <stdarg.h>

int add(int count, ...)
{
int total = 0;
va_list va;

va_start(va, count); // Start with arguments after "count"

for (int i = 0; i < count; i++) {
int n = va_arg(va, int); // Get the next int

total += n;

va_end(va); // All done

return total;

}

int main(void)

{
printf("%d\n", add(4, 6, 2, -4, 17)); // 6 + 2 - 4 + 17 = 21
printf("%d\n", add(2, 22, 44)); // 22 + 44 = 66

}

See Also

va_arg(), va_end()

Chapter 18

<stdatomic.h> Atomic-Related

Functions

Function

Description

atomic_compare_exchange_strong_explicit () Atomic compare and exchange, strong, explicit

atomic_compare_exchange_strong()
atomic_compare_exchange_weak_explicit()
atomic_compare_exchange_weak()
atomic_exchange_explicit()
atomic_exchange()
atomic_fetch_add_explicit()
atomic_fetch_add()
atomic_fetch_and_explicit()

atomic_fetch_and()
atomic_fetch_or_explicit()
atomic_fetch_or()
atomic_fetch_sub_explicit()

atomic_fetch_sub()
atomic_fetch_xor_explicit()

atomic_fetch_xor ()
atomic_flag_clear_explicit()
atomic_flag_clear()
atomic_flag_test_and_set_explicit()
atomic_flag_test_and_set()
atomic_init()
atomic_is_lock_free()
atomic_load_explicit()
atomic_load()
atomic_signal_fence()
atomic_store_explicit()
atomic_store()
atomic_thread_fence()
ATOMIC_VAR_INIT()
kill_dependency()

Atomic compare and exchange, strong
Atomic compare and exchange, weak, explicit
Atomic compare and exchange, weak
Replace a value in an atomic object, explicit
Replace a value in an atomic object
Atomically add to an atomic integer, explicit
Atomically add to an atomic integer
Atomically bitwise-AND an atomic integer,
explicit

Atomically bitwise-AND an atomic integer
Atomically bitwise-OR an atomic integer, explicit
Atomically bitwise-OR an atomic integer
Atomically subtract from an atomic integer,
explicit

Atomically subtract from an atomic integer
Atomically bitwise-XOR an atomic integer,
explicit

Atomically bitwise-XOR an atomic integer
Clear an atomic flag, explicit

Clear an atomic flag

Test and set an atomic flag, explicit

Test and set an atomic flag

Initialize an atomic variable

Determine if an atomic type is lock free
Return a value from an atomic variable, explicit
Return a value from an atomic variable
Fence for intra-thread signal handlers

Store a value in an atomic variable, explicit
Store a value in an atomic variable

Set up a fence

Create an initializer for an atomic variable
End a dependency chain

You might need to add - latomic to your compilation command line on Unix-like operating systems.

168

Chapter 18. <stdatomic.h> Atomic-Related Functions

18.1 Atomic Types

A bunch of types are predefined by this header:

169

Atomic type Longhand equivalent
atomic_bool _Atomic _Bool
atomic_char _Atomic char
atomic_schar _Atomic signed char
atomic_uchar _Atomic unsigned char
atomic_short _Atomic short
atomic_ushort _Atomic unsigned short
atomic_int _Atomic int
atomic_uint _Atomic unsigned int
atomic_1long _Atomic long
atomic_ulong _Atomic unsigned long
atomic_1llong _Atomic long long
atomic_ullong _Atomic unsigned long long
atomic_chari16_t _Atomic chari16_t
atomic_char32_t _Atomic char32_t
atomic_wchar_t _Atomic wchar_t
atomic_int_least8_t _Atomic int_least8_t
atomic_uint_least8_t _Atomic uint_least8_t
atomic_int_least16_t _Atomic int_least16_t
atomic_uint_least16_t _Atomic uint_least16_t
atomic_int_least32_t _Atomic int_least32_t
atomic_uint_least32_t _Atomic uint_least32_t
atomic_int_least64_t _Atomic int_least64_t
atomic_uint_least64_t _Atomic uint_least64_t
atomic_int_fast8_t _Atomic int_fast8_t
atomic_uint_fast8_t _Atomic uint_fast8_t
atomic_int_fast16_t _Atomic int_fasti16_t
atomic_uint_fasti16_t _Atomic uint_fast16_t
atomic_int_fast32_t _Atomic int_fast32_t
atomic_uint_fast32_t _Atomic uint_fast32_t
atomic_int_fast64_t _Atomic int_fast64_t
atomic_uint_fast64_t _Atomic uint_fast64_t
atomic_intptr_t _Atomic intptr_t
atomic_uintptr_t _Atomic uintptr_t
atomic_size_t _Atomic size_t
atomic_ptrdiff_t _Atomic ptrdiff_t
atomic_intmax_t _Atomic intmax_t
atomic_uintmax_t _Atomic uintmax_t

You can make your own additional types with the _Atomic type qualifier:

_Atomic double x;

or the _Atomic () type specifier:

_Atomic(double) x;

18.2 Lock-free Macros

These macros let you know if a type is lock-free or not. Maybe.

They can be used at compile time with #if. They apply to both signed and unsigned types.

Chapter 18. <stdatomic.h> Atomic-Related Functions 170

Atomic Type Lock Free Macro

atomic_bool ATOMIC_BOOL_LOCK_FREE
atomic_char ATOMIC_CHAR_LOCK_FREE
atomic_char16_t ATOMIC_CHAR16_T_LOCK_FREE
atomic_char32_t ATOMIC_CHAR32_T_LOCK_FREE
atomic_wchar_t ATOMIC_WCHAR_T_LOCK_FREE
atomic_short ATOMIC_SHORT_LOCK_FREE
atomic_int ATOMIC_INT_LOCK_FREE
atomic_long ATOMIC_LONG_LOCK_FREE
atomic_1llong ATOMIC_LLONG_LOCK_FREE
atomic_intptr_t ATOMIC_POINTER_LOCK_FREE

These macros can interestingly have three different values:

Value Meaning

0 Never lock-free.
1 Sometimes lock-free’.
2 Always lock-free.

18.3 Atomic Flag

The atomic_flag opaque type is the only time guaranteed to be lock-free. Though your PC implemen-
tation probably does a lot more.

It is accessed through the atomic_flag_test_and_set() and atomic_flag_clear () functions.

Before use, it can be initialized to a clear state with:
atomic_flag f = ATOMIC_FLAG_INIT;

18.4 Memory Order

This header introduces a new enum type called memory_order. This is used by a bunch of the functions
to specify memory orders other than sequential consistency.

memory_order Description
memory_order_seq_cst Sequential Consistency
memory_order_acqg_rel Acquire/Release
memory_order_release Release
memory_order_acquire Acquire
memory_order_consume Consume
memory_order_relaxed Relaxed

You can feed these into atomic functions with the _explicit suffix.

The non-_explcit versions of the functions are the same as if you’d called the _explicit counterpart
with memory_order_seq_cst.

18.5 ATOMIC_VAR_INIT()

Create an initializer for an atomic variable

Maybe it depends on the run-time environment and can’t be known at compile-time.

Chapter 18. <stdatomic.h> Atomic-Related Functions 171

Synopsis
#include <stdatomic.h>

#define ATOMIC VAR _INIT(C value) // Deprecated

Description

This macro expands to an initializer, so you can use it when a variable is defined.
The type of the value should be the base type of the atomic variable.

The initialization itself is not an atomic operation, ironically.

CPPReference says this is deprecated? and likely to be removed. Standards document p1138r03 elaborates
that the macro is limited in that it can’t properly initialize atomic structs, and its original raison d’étre
turned out to not be useful.

Just initialize the variable straight-up, instead.

Return Value

Expands to an initializer suitable for this atomic variable.

Example

#include <stdio.h>
#include <stdatomic.h>

int main(void)

{
atomic_int x = ATOMIC_VAR_INIT(3490); // Deprecated
printf("%d\n", x);

}

See Also

atomic_init()

18.6 atomic_init()

Initialize an atomic variable
Synopsis
#inc lude <stdatomic.h>

void atomic_init(volatile A *obj, C value);

Description
You can use this to initialize an atomic variable.

The type of the value should be the base type of the atomic variable.

2https://en.cppreference.com/w/cpp/atomic/ATOMIC_VAR_INIT
Shttp://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1138r0.pdf

https://en.cppreference.com/w/cpp/atomic/ATOMIC_VAR_INIT
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1138r0.pdf

1

2

3

Chapter 18. <stdatomic.h> Atomic-Related Functions 172

The initialization itself is not an atomic operation, ironically.

As far as I can tell, there’s no difference between this and assigning directly to the atomic variable. The
spec says it’s there to allow the compiler to inject any additional initialization that needs doing, but every-
thing seems fine without it. If anyone has more info, send it my way.

Return Value
Returns nothing!

Example

#include <stdio.h>
#include <stdatomic.h>

int main(void)

{
atomic_int x;
atomic_init(&x, 3490);
printf("%d\n", x);

}

See Also

ATOMIC_VAR_INIT(), atomic_store(), atomic_store_explicit()

18.7 kill_dependency()

End a dependency chain

Synopsis
#inc lude <stdatomic.h>

type kill_dependency(type y);

Description
This is potentially useful for optimizing if you’re using memory_order_consume anywhere.

And if you know what you’re doing. If unsure, learn more before trying to use this.

Return Value

Returns the value passed in.

Example
In this example, i carries a dependency into x. And would do into y, except for the call to
kill_dependency().

#include <stdio.h>
#include <stdatomic.h>

Chapter 18. <stdatomic.h> Atomic-Related Functions

int main(void)

atomic_store_explicit(&a, 3490, memory_order_release);

atomic_load_explicit(&a, memory_order_consume);

printf("%d %d\n", x, y); // 3490 and either 3490 or 10

{

atomic_int a;

int 1 = 10, X, y;

i =

X = 1ij;

y = kill_dependency(i);
}

18.8 atomic_thread_fence()

Set up a fence

Synopsis

#include <stdatomic.h>

void atomic_thread_fence(memory_order order);

Description

This sets up a memory fence with the specified order.

order

Description

memory_order_seq_cst
memory_order_acqg_rel
memory_order_release
memory_order_acquire
memory_order_consume
memory_order_relaxed

Sequentially consistency acquire/release fence
Acquire/release dence

Release fence

Acquire fence

Acquire fence (again)

No fence at all—no point in calling with this

173

You might try to avoid using these and just stick with the different modes with atomic_store_explicit()

and atomic_load_explicit(). Or not.

Return Value

Returns nothing!

Example

#include <stdio.h>
#include <threads.h>
#inc lude <stdatomic.h>

atomic_int shared_1
atomic_int shared_2

In
N
~s ~-

int thread_1(void *arg)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Chapter 18. <stdatomic.h> Atomic-Related Functions

{
(void)arg;
atomic_store_explicit(&shared_1, 10, memory_order_relaxed);
atomic_thread_fence(memory_order_release);
atomic_store_explicit(&shared_2, 20, memory_order_relaxed);
return 0;
}
int thread_2(void *arg)
{
(void)arg;
// If this fence runs after the release fence, we're
// guaranteed to see thread_1's changes to the shared
// varaibles.
atomic_thread_fence(memory_order_acquire);
if (shared_2 == 20) {
printf("Shared_1 better be 10 and it's %d\n", shared_1);
} else {
printf("Anything's possible: %d %d\n'", shared_1, shared_2);
}
return O;
}
int main(void)
{
thrd_t t1, t2;
thrd_create(&t2, thread_2, NULL);
thrd_create(&tl, thread_1, NULL);
thrd_join(t1, NULL);
thrd_join(t2, NULL);
}
See Also

atomic_store_explicit(), atomic_load_explicit(), atomic_signal_fence()

18.9 atomic_signal_fence()

Fence for intra-thread signal handlers

Synopsis

#include <stdatomic.h>

void atomic_signal_fence(memory_order order);

174

20

21

22

23

24

25

26

27

28

29

30

31

Chapter 18. <stdatomic.h> Atomic-Related Functions 175

Description

This works like atomic_thread_fence() except its purpose is within in a single thread; notably for use
in a signal handler in that thread.

Since signals can happen at any time, we might need a way to be certain that any writes by the thread that
happened before the signal handler be visible within that signal handler.

Return Value

Returns nothing!

Example

Partial demo. (Note that it’s technically undefined behavior to call printf() in a signal handler.)
#include <stdio.h>

#include <signal.h>

#include <stdatomic.h>

int global;

void handler(int sig)

{
(void)sig;
// If this runs before the release, the handler will
// potentially see global ==
//
// Otherwise, it will definitely see global == 10.
atomic_signal_fence(memory_order_acquire);
printf("%d\n", global);
}
int main(void)
{
signal(SIGINT, handler);
global = 10;
atomic_signal_fence(memory_order_release);
// If the signal handler runs after the release
// it will definitely see the value 10 in global.
}
See Also

atomic_thread_fence(), signal()

18.10 atomic_is_lock_free()

Determine if an atomic type is lock free

Chapter 18. <stdatomic.h> Atomic-Related Functions 176

Synopsis
#include <stdatomic.h>

_Bool atomic_is_lock_free(const volatile A *obj);

Description
Determines if the variable obj of type A is lock-free. Can be used with any type.

Unlike the lock-free macros which can be used at compile-time, this is strictly a run-time function. So
in places where the macros say “maybe”, this function will definitely tell you one way or another if the
atomic variable is lock-free.

This is useful when you’re defining your own atomic variables and want to know their lock-free status.

Return Value

True if the variable is lock-free, false otherwise.

Example

Test if a couple structs and an atomic double are lock-free. On my system, the larger struct is too
big to be lock-free, but the other two are OK.

#include <stdio.h>
#include <stdatomic.h>

int main(void)
{
struct foo {
int x, y;

};

struct bar {
int x, vy, z;

};

_Atomic(double) a;
struct foo b;
struct bar c;

printf("a is lock-free: %d\n", atomic_is_lock_free(&a));
printf("b is lock-free: %d\n", atomic_is_lock_free(&b));
printf("c is lock-free: %d\n", atomic_is_lock_free(&c));

}

Output on my system (YMMV):

a is lock-free: 1
b is lock-free: 1
c is lock-free: 0

See Also

Lock-free Macros

Chapter 18. <stdatomic.h> Atomic-Related Functions 177

18.11 atomic_store()

Store a value in an atomic variable

Synopsis
#include <stdatomic.h>
void atomic_store(volatile A *object, C desired);

void atomic_store_explicit(volatile A *object,
C desired, memory_order order);

Description
Store a value in an atomic variable, possible synchronized.
This is like a plain assignment, but with more flexibility.

These have the same storage effect for an atomic_int x:

X = 10;

atomic_store(&x, 10);

atomic_store_explicit(&x, 10, memory_order_seq_cst);

But the last function, atomic_store_explicit(), lets you specify the memory order.

Since this is a “release-y” operation, none of the “acquire-y” memory orders are legal. order can be only
be memory_order_seq_cst, memory_order_release, or memory_order_relaxed.

order cannot be memory_order_acq_rel, memory_order_acquire, or memory_order_consume.

Return Value

Returns nothing!

Example

#include <stdio.h>
#inc lude <stdatomic.h>

int main(void)

{
atomic_int x = 0;
atomic_int y = 0;
atomic_store(&x, 10);
atomic_store_explicit(&y, 20, memory_order_relaxed);
// Will print either "10 20" or "10 0":
printf("%d %d\n", x, y);
}
See Also

atomic_init(), atomic_load(), atomic_load_explicit(), atomic_exchange(),
atomic_exchange_explicit(), atomic_compare_exchange_strong(),
atomic_compare_exchange_strong_explicit(), atomic_compare_exchange_weak(),
atomic_compare_exchange_weak_explicit(), atomic_fetch_*()

Chapter 18. <stdatomic.h> Atomic-Related Functions 178

18.12 atomic_load()

Return a value from an atomic variable

Synopsis
#include <stdatomic.h>
C atomic_load(const volatile A *object);

C atomic_load_explicit(const volatile A *object, memory_order order);

Description

For a pointer to an object of type A, atomically returns its value C. This is a generic function that can be
used with any type.

The function atomic_load_explicit() lets you specify the memory order.

Since this is an “acquire-y” operation, none of the “release-y” memory orders are legal. order
can be only be memory_order_seq_cst, memory_order_acquire, memory_order_consume, or
memory_order_relaxed.

order cannot be memory_order_acq_rel or memory_order_release.

Return Value
Returns the value stored in object.

Example

#include <stdio.h>
#include <stdatomic.h>

int main(void)

{
atomic_int x = 10;
int v = atomic_load(&x);
printf("%d\n", v); // 10
}
See Also

atomic_store(), atomic_store_explicit()

18.13 atomic_exchange()

Replace a value in an atomic object

Chapter 18. <stdatomic.h> Atomic-Related Functions

Synopsis

#include <stdatomic.h>

C atomic_exchange(volatile A *object, C desired);

C atomic_exchange_explicit(volatile A *object, C desired,

memory_order order);

Description

Sets the value in object to desired.

object is type A, some atomic type.

desired is type C, the respective non-atomic type to A.

This is very similar to atomic_store(), except the previous value is atomically returned.

Return Value

Returns the previous value of object.

Example

#include <stdio.h>
#include <stdatomic.h>

int main(void)

{
atomic_int x = 10;
int previous = atomic_exchange(&x, 20);
printf("x is %d\n", x);
printf("x was %d\n", previous);
}
Output:
X is 20
X was 10
See Also

atomic_init(), atomic_load(), atomic_load_explicit(), atomic_store(),
atomic_store_explicit() atomic_compare_exchange_strong(),
atomic_compare_exchange_strong_explicit(), atomic_compare_exchange_weak(),
atomic_compare_exchange_weak_explicit()

18.14 atomic_compare_exchange_*()

Atomic compare and exchange

Synopsis

179

Chapter 18. <stdatomic.h> Atomic-Related Functions 180

#include <stdatomic.h>

_Bool atomic_compare_exchange_strong(volatile A *object,
C *expected, C desired);

_Bool atomic_compare_exchange_strong_explicit(volatile A *object,
C *expected, C desired,
memory_order success,
memory_order failure);

_Bool atomic_compare_exchange_weak(volatile A *object,
C *expected, C desired);

_Bool atomic_compare_exchange_weak_explicit(volatile A *object,
C *expected, C desired,
memory_order success,
memory_order failure);

Description

The venerable basis for some many things lock-free: compare and exchange.

In the above prototypes, A is the type of the atomic object, and C is the equivalent base type.
Ignoring the _explicit versions for a moment, what these do is:

« If the value pointed to by object is equal to the value pointed to by expected, then the value
pointed to by object is set to desired. And the function returns true indicating the exchange did
take place.

+ Else the value pointed to by expected (yes, expected) is set to desired and the function returns
false indicating the exchange did not take place.
Pseudocode for the exchange would look like this*:

bool compare_exchange(atomic_A *object, C *expected, C desired)

{

if (*object is the same as *expected) {
*object = desired
return true

*expected = desired
return false

}

The _weak variants might spontaneously fail, so even if *object == *desired, it might not change the
value and will return false. So you’ll want that in a loop if you use it°.

The _explicit variants have two memory orders: success if *object is set to desired, and failure
if it is not.

These are test-and-set functions, so you can use memory_order_acq_rel with the _explicit variants.

Return Value

Returns true if *object was *expected. Otherwise, false.

“This effectively does the same thing, but it’s clearly not atomic.

5The spec says, “This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g. load-
locked store-conditional machines.” And adds, “When a compare-and-exchange is in a loop, the weak version will yield better
performance on some platforms. When a weak compare-and-exchange would require a loop and a strong one would not, the strong
one is preferable.”

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Chapter 18. <stdatomic.h> Atomic-Related Functions 181

Example
A contrived example where multiple threads add 2 to a shared value in a lock-free way.

(It would be better to use += 2 to get this done in real life unless you were using some _explicit
wizardry.)

#include <stdio.h>
#include <threads.h>
#include <stdatomic.h>

#define LOOP_COUNT 10000
atomic_int value;
int run(void *arg)
{
(void)arg;

for(int i = ©; i < LOOP_COUNT; i++) {

int cur = value;
int next;

do {
next = cur + 2;
} while ('atomic_compare_exchange_strong(&value, &cur, next));

return O;

int main(void)

{
thrd_t ti1, t2;

thrd_create(&tl1, run, NULL);
thrd_create(&t2, run, NULL);

thrd_join(tl, NULL);
thrd_join(t2, NULL);

printf("%d should equal %d\n", value, LOOP_COUNT * 4);
}

Just replacing this with value = value + 2 causes data trampling.

See Also

atomic_load(), atomic_load_explicit(), atomic_store(), atomic_store_explicit(),
atomic_exchange(), atomic_exchange_explicit(), atomic_fetch_*()

18.15 atomic_fetch_*()

Atomically modify atomic variables

Chapter 18. <stdatomic.h> Atomic-Related Functions 182

Synopsis
#include <stdatomic.h>
C atomic_fetch_KEY(volatile A *object, M operand);

C atomic_fetch_KEY_explicit(volatile A *object, M operand,
memory_order order);

Description

These are actually a group of 10 functions. You substitute one of the following for KEY to perform that
operation:

* add
* sub
* or

* xor
* and

So these functions can add or subtract values to or from an atomic variable, or can perform bitwise-OR,
XOR, or AND on them.

Use it with integer or pointer types. Though the spec is a little vague on the matter, other types make C
unhappy. It goes out of its way to avoid undefined behavior with signed integers, as well:

C18 §7.17.7.5 93:

For signed integer types, arithmetic is defined to use two’s complement representation with
silent wrap-around on overflow; there are no undefined results.

In the synopsis, above, Ais an atomic type, and M is the corresponding non-atomic type for A (or ptrdiff_t
for atomic pointers), and C is the corresponding non-atomic type for A.
For example, here are some operations on an atomic_int.

atomic_fetch_add(&x, 20);
atomic_fetch_sub(&x, 37);
atomic_fetch_xor(&x, 3490);

They are the same as +=, -=, |=, A= and &=, except the return value is the previous value of the atomic
object. (With the assignment operators, the value of the expression is that after its evaluation.)

atomic_int x = 10;
int prev = atomic_fetch_add(&x, 20);
printf("%d %d\n", prev, x); // 10 30

versus:

atomic_int x = 10;
int prev = (x += 20);
printf("%d %d\n", prev, x); // 30 30

And, of course, the _explicit version allows you to specify a memory order and all the assignment
operators are memory_order_seq_cst.

Return Value

Returns the previous value of the atomic object before the modification.

Example

Chapter 18. <stdatomic.h> Atomic-Related Functions 183

#include <stdio.h>
#inc lude <stdatomic.h>

int main(void)

{
atomic_int x = 0;
int prev;
atomic_fetch_add(&x, 3490);
atomic_fetch_sub(&x, 12);
atomic_fetch_xor(&x, 444);
atomic_fetch_or(&x, 12);
prev = atomic_fetch_and(&x, 42);
printf("%d %d\n'", prev, x); // 3118 42
}
See Also

atomic_exchange(), atomic_exchange_explicit(), atomic_compare_exchange_strong(),
atomic_compare_exchange_strong_explicit(), atomic_compare_exchange_weak(),
atomic_compare_exchange_weak_explicit()

18.16 atomic_flag_test_and_set()

Test and set an atomic flag

Synopsis
#include <stdatomic.h>
_Bool atomic_flag_test_and_set(volatile atomic_flag *object);

_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,
memory_order order);

Description

One of the venerable old functions of lock-free programming, this function sets the given atomic flag in
object, and returns the previous value of the flag.

As usual, the _explicit allows you to specify an alternate memory order.

Return Value

Returns true if the flag was set previously, and false if it wasn’t.

Example

Using test-and-set to implement a spin lock®:

5Don’t use this unless you know what you’re doing—use the thread mutex functionality instead. It’ll let your blocked thread
sleep and stop chewing up CPU.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chapter 18. <stdatomic.h> Atomic-Related Functions

#include <stdio.h>
#include <threads.h>
#include <stdatomic.h>

// Shared non-atomic struct
struct {
int x, vy, z;
}s=1{1, 2, 3};
atomic_flag f = ATOMIC_FLAG_INIT;

int run(void *arg)

{
int tid = *(int*)arg;
printf("Thread %d: waiting for lock...\n", tid);
while (atomic_flag_test_and_set(&f));
printf("Thread %d: got lock, s is {%d, %d, %d}\n",
s.x = (tid + 1) * 5 + 0;
s.y = (tid + 1) * 5 + 1;
s.z = (tid + 1) * 5 + 2;
printf("Thread %d: set s to {%d, %d, %d}\n",
printf("Thread %d: releasing lock...\n",
atomic_flag_clear (&f);
return O;

}

int main(void)

{
thrd_t t1, t2;
int tid[] = {0, 1},
thrd_create(&tl1, run, tid+0);
thrd_create(&t2, run, tid+1);
thrd_join(tl, NULL);
thrd_join(t2, NULL);

}

Example output (varies run to run):

Thread 0: waiting for lock...

Thread 0: got lock, s is {1, 2, 3}
Thread 1: waiting for lock...
Thread 0: set s to {5, 6, 7}
Thread 0: releasing lock...

Thread 1: got lock, s is {5, 6, 7}
Thread 1: set s to {10, 11, 12}
Thread 1: releasing lock...

See Also

atomic_flag_clear()

tid,
S.X,

X,

S.y,

s.y,

S.z2);

s.z2);

184

20

21

22

23

24

25

26

Chapter 18. <stdatomic.h> Atomic-Related Functions

185

18.17 atomic_flag_clear()

Clear an atomic flag

Synopsis

#include <stdatomic.h>

void atomic_flag_clear(volatile atomic_flag *object);

void atomic_flag_clear_explicit(volatile atomic_flag *object,

memory_order order);

Description

Clears an atomic flag.

As usual, the _explicit allows you to specify an alternate memory order.

Return Value

Returns nothing!

Example

Using test-and-set to implement a spin lock”:

#include <stdio.h>
#include <threads.h>
#include <stdatomic.h>

// Shared non-atomic struct
struct {

int x, vy, z;
}s={1, 2, 3};

atomic_flag f = ATOMIC_FLAG_INIT;
int run(void *arg)

{

int tid = *(int*)arg;

printf("Thread %d: waiting for lock...\n", tid);

while (atomic_flag_test_and_set(&f));

printf("Thread %d: got lock, s is {%d, %d, %d}\n",

S.X (tid + 1) * 5 + 0;
s.y = (tid + 1) * 5 + 1;
s.z = (tid + 1) * 5 + 2;

tid,
S.X, S.Y, s.z);

printf("Thread %d: set s to {%d, %d, %d}\n", tid, s.x, s.y, s.z);

"Don’t use this unless you know what you’re doing—use the thread mutex functionality instead. It’ll let your blocked thread

sleep and stop chewing up CPU.

27

28

29

30

31

33

34

35

36

37

38

39

40

41

2

43

Chapter 18. <stdatomic.h> Atomic-Related Functions

printf("Thread %d: releasing lock...\n", tid);
atomic_flag_clear (&f);

return 0;

int main(void)

{

thrd_t t1, t2;
int tid[] = {0, 1};

thrd_create(&tl, run, tid+0);
thrd_create(&t2, run, tid+1);

thrd_join(t1, NULL);
thrd_join(t2, NULL);

}

Example output (varies run to run):

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

See Also

0:

PR R OOR O

waiting for lock...

got lock, s is {1, 2, 3}
waiting for lock...

set s to {5, 6, 7}
releasing lock...

got lock, s is {5, 6, 7}
set s to {10, 11, 12}
releasing lock. ..

atomic_flag_test_and_set()

186

Chapter 19

<stdbool.h> Boolean Types

This is a small header file that defines a number of convenient Boolean macros. If you really need that
kind of thing.

Macro Description

bool Type for Boolean, expands to _Bool
true True value, expands to 1

false False value, expands to 0

There’s one more macro that I’m not putting in the table because it’s such a long name it’ll blow up the
table alignment:

_ bool_true_false_are_defined

which expands to 1.

19.1 Example

Here’s a lame example that shows off these macros.

#include <stdio.h>
#include <stdbool.h>

int main(void)

{
bool x;
X = (3 >2);
if (x == true)
printf("The universe still makes sense.\n");
x = false;
printf("x is now %d\n", x); // 0
}
Output:

The universe still makes sense.
X 1s now O

187

Chapter 19. <stdbool. h> Boolean Types 188

19.2 _Bool?

What’s the deal with _Bool? Why didn’t they just make it boo1?

Well, there was a lot of C code out there where people had defined their own boo1l type and adding an
official boo1 would have broken those typedefs.

But C has already reserved all identifiers that start with an underscore followed by a capital letter, so it
was clear to make up a new _Boo'l type and go with that.

And, if you know your code can handle it, you can include this header to get all this juicy syntax.

One more note on conversions: unlike converting to int, the only thing that converts to false ina _Bool
is a scalar zero value. Anything at all that’s not zero, like -3490, 6.12, or NaN, converts to true.

Chapter 20

<stddef.h> A Few Standard
Definitions

Despite its name, I’ve haven’t seen this frequently included.

It includes several types and macros.

Name Description

ptrdiff_t Signed integer difference between two pointers
size_t Unsigned integer type returned by sizeof
max_align_t Declare a type with the biggest possible alignment
wchar_t Wide character type

NULL NULL pointer, as defined a number of places
offsetof Get the byte offsets of struct or union fields

20.1 ptrdiff_t

This holds the different between two pointers. You could store this in another type, but the result
of a pointer subtraction is an implementation-defined type; you can be maximally portable by using
ptrdiff_t.

#inc lude <stdio.h>

#include <stddef.h>

int main(void)
{
int cats[100];

int *f cats + 20;
int *g = cats + 60;

ptrdiff_t d = g - f; // difference is 40

And you can print it by prefixing the integer format specifier with t:

printf("%td\n", d); // Print decimal: 40
printf("%tx\n", d); // Print hex: 28

20.2 size t

This is the type returned by sizeof and used in a few other places. It’s an unsigned integer.

189

Chapter 20. <stddef.h> A Few Standard Definitions

You can print it using the z prefix in printf():
<stdio.h>

<uchar.h>

<string.h>

<stddef.h>

#inc lude
#inc lude
#inc lude
#1inc lude

int main(void)
{
size_t Xx;

X = sizeof(int);

printf("%zu\n", x);

190

Some functions return negative numbers cast to size_t as error values (such as mbrtoc16()). If you
want to print these as negative values, you can do it with %zd:

chari16_t a;
mbstate_t mbs;
memset (&mbs, 0, sizeof mbs);

x = mbrtocl6(&a, "b", 8, &mbs);

printf("%zd\n", x);

20.3 max_align_t

As far as I can tell, this exists to allow the runtime computation of the maximum fundamental alignment!
on the current platform. Someone please mail me if there’s another use.

Maybe you need this if you’re writing your own memory allocator or somesuch.

#include <stddef.h>
#include <stdio.h>
#include <stdalign.h>

// For printf()
// For alignof

int main(void)
{

int max = alignof(max_align_t);

printf("Maximum fundamental alignment:

}

On my system, this prints:

Maximum fundamental alignment: 16

See also alignas, alignof.

20.4 wchar_t

%d\n", max);

This is analogous to char, except it’s for wide characters.

It’s an integer type that has enough range to hold unique values for all characters in all supported locales.

The value 0 is the wide NUL character.

Ihttps://en.wikipedia.org/wiki/Data_structure_alignment

https://en.wikipedia.org/wiki/Data_structure_alignment

Chapter 20. <stddef.h> A Few Standard Definitions 191

Finally, the values of character constants from the basic character set will be the same as their correspond-
ing wchar_t values... unless __STDC_MB_MIGHT_NEQ_WC__ is defined.

20.5 offsetof

If you have a struct or union, you can use this to get the byte offset of fields within that type.
Usage is:

offsetof(type, fieldname);

The resulting value has type size_t.

Here’s an example that prints the field offsets of a struct:

#include <stdio.h>
#include <stddef.h>

struct foo {

int a;
char b;
char c;
float d;
};
int main(void)
{
printf("a: %zu\n", offsetof(struct foo, a));
printf("b: %zu\n", offsetof(struct foo, b));
printf("c: %zu\n", offsetof(struct foo, c));
printf("d: %zu\n", offsetof(struct foo, d));
}
On my system, this outputs:
a: 0
b: 4
c: 5
d: 8

And you can’t use offsetof on a bitfield, so don’t get your hopes up.

Chapter 21

<stdint.h> More Integer Types

This header gives us access to (potentially) types of a fixed number of bits, or, at the very least, types that
are at least that many bits.

It also gives us handy macros to use.

21.1 Specific-Width Integers

There are three main classes of types defined here, signed and unsigned:

* Integers of exactly a certain size (intN_t, uintN_t)
* Integers that are at least a certain size (int_leastN_t, uint_leastN_t)
« Integers that are at least a certain size and are as fast as possible (int_fastN_t, uint_fastN_t)

Where the N occurs, you substitute the number of bits, commonly multiples of 8, e.g. uint16_t.

The following types are guaranteed to be defined:

int_least8_t uint_least8_t
int_least16_t uint_leasti16_t
int_least32_t uint_least32_t
int_least64_t uint_least64_t
int_fast8_t uint_fast8_t

int_fastl6_t uint_fasti16_t
int_fast32_t uint_fast32_t
int_fast64_t uint_fast64_t

Everything else is optional, but you’ll probably also have the following, which are required when a system
has integers of these sizes with no padding and two’s-complement representation... which is the case for
Macs and PCs and a lot of other systems. In short, you very likely have these:

int8_t uint8_t

intl6_t uinti6_t
int32_t uint32_t
int64_t uint64_t

Other numbers of bits can also be supported by an implementation if it wants to go all crazy with it.

Examples:

#inc lude <stdint.h>

int main(void)

{
int16_t x = 32;
int_fast32_t y = 3490;

192

Chapter 21. <stdint.h> More Integer Types 193
/Y o

21.2 Other Integer Types

There are a couple optional types that are integers capable of holding pointer types.

intptr_t

uintptr_t

You can convert a void* to one of these types, and back again. And the void*s will compare equal.
The use case is any place you need an integer that represents a pointer for some reason.

Also, there are a couple types that are just there to be the biggest possible integers your system supports:

intmax_t
uintmax_t

Fun fact: you can print these types with the "%jd" and "%ju" printf() format specifiers.

There are also a bunch of macros in <inttypes. h>(#inttypes) that you can use to print any of the types
mentioned, above.

21.3 Macros

The following macros define the minimum and maximum values for these types:
INT8_MAX INT8_MIN UINT8_MAX

INT16_MAX INT16_MIN UINT16_MAX

INT32_MAX INT32_MIN UINT32_MAX

INT64_MAX INT64_MIN UINT64_MAX

INT_LEAST8_MAX

INT_LEAST16_MAX
INT_LEAST32_MAX
INT_LEAST64_MAX

INT_FAST8_MAX
INT_FAST16_MAX
INT_FAST32_MAX
INT_FAST64_MAX
INTMAX_MAX

INTPTR_MAX

INT_LEAST8_MIN

INT_LEAST16_MIN
INT_LEAST32_MIN
INT_LEAST64_MIN

INT_FAST8_MIN
INT_FAST16_MIN
INT_FAST32_MIN
INT_FAST64_MIN
INTMAX_MIN

INTPTR_MIN

UINT_LEAST8_MAX

UINT_LEAST16_MAX
UINT_LEAST32_MAX
UINT_LEAST64_MAX

UINT_FAST8_MAX
UINT_FAST16_MAX
UINT_FAST32_MAX
UINT_FAST64_MAX
UINTMAX_MAX

UINTPTR_MAX

For the exact-bit-size signed types, the minimum is exactly — (2N ’1) and the maximum is exactly 2V =1 —

1. And for the exact-bit-size unsigned types, the max is exactly 2V — 1.

For the signed “least” and “fast” variants, the magnitude and sign of the minimum is at least —(2N - 1)
and the maximum is at least 2V~! — 1. And for unsigned it’s at least 2%V — 1.

INTMAX_MAX is at least 263 — 1, INTMAX_MIN is at least —(2%% — 1) in sign and magnitude. And UINT-
MAX_MAX is at least 264 — 1.

Finally, INTPTR_MAX is at least 2'° — 1, INTPTR_MIN is at least —(2'® — 1) in sign and magnitude. And
UINTPTR_MAX is at least 216 — 1.

Chapter 21. <stdint.h> More Integer Types 194

21.4 Other Limits

There are a bunch of types in <inttypes.h>(#inttypes) that have their limits defined here.
(<inttypes.h> includes <stdint.h>.)

Macro Description

PTRDIFF_MIN Minimum ptrdiff_t value
PTRDIFF_MAX Maximum ptrdiff_t value
SIG_ATOMIC_MIN Minimum sig_atomic_t value
SIG_ATOMIC_MAX Maximum sig_atomic_t value
SIZE_MAX Maximum size_t value
WCHAR_MIN Minimum wchar_t value
WCHAR_MAX Maximum wchar_t value
WINT_MIN Minimum wint_t value
WINT_MAX Maximum wint_t value

The spec says that PTRDIFF_MIN will be at least -65535 in magnitude. And PTRDIFF_MAX and SIZE_MAX
will be at least 65535.

SIG_ATOMIC_MIN and MAX will be either -127 and 127 (if it’s signed) or 0 and 255 (if it’s unsigned).
Same for WCHAR_MIN and MAX.

WINT_MIN and MAX will be either -32767 and 32767 (if it’s signed) or 0 and 65535 (if it’s unsigned).

21.5 Macros for Declaring Constants

If you recall, you can specify a type for integer constants:
int x = 12;

long int y = 12L;

unsigned long long int z = 12ULL;

You can use the macros INTN_C() and UINTN () where N is 8, 16, 32 or 64.

uint_least16_t x = INT16_C(3490);
uint_Tleast64_t y = INT64_C(1122334455);

A variant on these is INTMAX_C() and UINTMAX_C(). They will make a constant suitable for storing in
an intmax_t or uintmax_t.

intmax_t x = INTMAX_C(3490);
uintmax_t x = UINTMAX_C(1122334455);

Chapter 22

<stdio.h> Standard I/O Library

Function

Description

clearerr()
fclose()
feof()
ferror()
fflush()
fgetc()
fgetpos()
fgets()
fopen()
fprintf()
fputc()
fputs()
fread()
freopen()
fscanf ()
fseek()
fsetpos()
ftell()
fwrite()

getc()
getchar ()

gets()
perror()
printf()
putc()
putchar ()
puts()
remove()
rename()
rewind()
scanf ()
setbuf()
setvbuf()
snprintf()
sprintf()
sscanf()
tmpfile()
tmpnam()
ungetc()

Clear the feof and ferror status flags
Close an open file

Return the file end-of-file status

Return the file error status

Flush all buffered output to a file

Read a character in a file

Get the file I/O position

Read a line from a file

Open a file

Print formatted output to a file

Print a character to a file

Print a string to a file

Read binary data from a file

Change file associated with a stream

Read formatted input from a file

Set the file I/O position

Set the file I/O position

Get the file I/0O position

Write binary data to a file

Get a character from stdin

Get a character from stdin

Get a string from stdin (removed in C11)
Print a human-formatted error message
Print formatted output to stdout

Print a character to stdout

Print a character to stdout

Print a string to stdout

Delete a file from disk

Rename or move a file on disk

Set the I/0O position to the beginning of a file
Read formatted input from stdin
Configure buffering for I/O operations
Configure buffering for I/O operations
Print length-limited formatted output to a string
Print formatted output to a string

Read formatted input from a string

Create a temporary file

Generate a unique name for a temporary file
Push a character back on the input stream

195

Chapter 22. <stdio.h> Standard I/O Library 196

Function Description

vfprintf() Variadic print formatted output to a file

vfscanf() Variadic read formatted input from a file

vprintf() Variadic print formatted output to stdout

vscanf() Variadic read formatted input from stdin

vsnprintf() Variadic length-limited print formatted output to a
string

vsprintf() Variadic print formatted output to a string

vsscanf() Variadic read formatted input to a string

The most basic of all libraries in the whole of the standard C library is the standard I/O library. It’s used
for reading from and writing to files. I can see you’re very excited about this.

So I’ll continue. It’s also used for reading and writing to the console, as we’ve already often seen with the
printf() function.

(A little secret here—many many things in various operating systems are secretly files deep down, and
the console is no exception. “Everything in Unix is a file!” : -))

You’ll probably want some prototypes of the functions you can use, right? To get your grubby little mittens
on those, you’ll want to include stdio.h.

Anyway, so we can do all kinds of cool stuff in terms of file I/O. LIE DETECTED. Ok, ok. We can do all
kinds of stuff in terms of file I/O. Basically, the strategy is this:

1. Use fopen() to get a pointer to a file structure of type FILE*. This pointer is what you’ll be passing
to many of the other file I/O calls.

2. Use some of the other file calls, like fscanf(), fgets(), fprintf(), or etc. using the FILE*
returned from fopen().

3. When done, call fclose() with the FILE*. This let’s the operating system know that you’re truly
done with the file, no take-backs.

What’s in the FILE*? Well, as you might guess, it points to a struct that contains all kinds of information
about the current read and write position in the file, how the file was opened, and other stuff like that. But,
honestly, who cares. No one, that’s who. The FILE structure is opaque to you as a programmer; that is,
you don’t need to know what’s in it, and you don’t even want to know what’s in it. You just pass it to the
other standard I/O functions and they know what to do.

This is actually pretty important: try to not muck around in the FILE structure. It’s not even the same
from system to system, and you’ll end up writing some really non-portable code.

One more thing to mention about the standard I/O library: a lot of the functions that operate on files use
an “f” prefix on the function name. The same function that is operating on the console will leave the “f”
off. For instance, if you want to print to the console, you use printf(), but if you want to print to a file,
use fprintf (), see?

Wait a moment! If writing to the console is, deep down, just like writing to a file, since everything in Unix
is a file, why are there two functions? Answer: it’s more convenient. But, more importantly, is there a
FILE* associated with the console that you can use? Answer: YES!

There are, in fact, three (count ’em!) special FILE*s you have at your disposal merely for just including
stdio.h. There is one for input, and two for output.

That hardly seems fair—why does output get two files, and input only get one?

That’s jumping the gun a bit—let’s just look at them:

Stream Description

stdin Input from the console.
stdout Output to the console.

Chapter 22. <stdio.h> Standard I/O Library 197

Stream Description

stderr Output to the console on the error file stream.

So standard input (stdin) is by default just what you type at the keyboard. You can use that in fscanf()
if you want, just like this:

/* this line: */

scanf("%d", &x);

/* 1is just like this line: */
fscanf(stdin, "%d", &x);

And stdout works the same way:

printf("Hello, world!\n");
fprintf(stdout, "Hello, world!\n"); /* same as previous line! */

So what is this stderr thing? What happens when you output to that? Well, generally it goes to the
console just like stdout, but people use it for error messages, specifically. Why? On many systems
you can redirect the output from the program into a file from the command line...and sometimes you’re
interested in getting just the error output. So if the program is good and writes all its errors to stderr, a
user can redirect just stderr into a file, and just see that. It’s just a nice thing you, as a programmer, can
do.

Finally, a lot of these functions return int where you might expect char. This is because the function can
return a character or end-of-file (EOF), and EOF is potentially an integer. If you don’t get EOF as a return
value, you can safely store the result in a char.

22.1 remove()

Delete a file

Synopsis
#include <stdio.h>

int remove(const char *filename);

Description

Removes the specified file from the filesystem. It just deletes it. Nothing magical. Simply call this
function and sacrifice a small chicken and the requested file will be deleted.

Return Value

Returns zero on success, and -1 on error, setting errno.

Example

#include <stdio.h>

int main(void)

{

char *filename = "evidence.txt";

Chapter 22. <stdio.h> Standard I/O Library 198

remove(filename);

See Also

rename()

22.2 rename()

Renames a file and optionally moves it to a new location

Synopsis
#include <stdio.h>

int rename(const char *old, const char *new);

Description

Renames the file old to name new. Use this function if you’re tired of the old name of the file, and you
are ready for a change. Sometimes simply renaming your files makes them feel new again, and could save
you money over just getting all new files!

One other cool thing you can do with this function is actually move a file from one directory to another
by specifying a different path for the new name.

Return Value

Returns zero on success, and -1 on error, setting errno.

Example

#include <stdio.h>

int main(void)

{
// Rename a file
rename("foo", "bar");
// Rename and move to another directory:
rename("/home/beej/evidence. txt", "/tmp/nothing.txt");
}
See Also
remove()

22.3 tmpfile()

Create a temporary file

Chapter 22. <stdio.h> Standard I/O Library 199

Synopsis
#include <stdio.h>

FILE *tmpfile(void);

Description

This is a nifty little function that will create and open a temporary file for you, and will return a FILE* to
it that you can use. The file is opened with mode “r+b”, so it’s suitable for reading, writing, and binary
data.

By using a little magic, the temp file is automatically deleted when it is c lose()’d or when your program
exits. (Specifically, in Unix terms, tmpfile() unlinks' the file right after it opens it. This means that
it’s primed to be deleted from disk, but still exists because your process still has it open. As soon as your
process exits, all open files are closed, and the temp file vanishes into the ether.)

Return Value

This function returns an open FILE* on success, or NULL on failure.

Example

#include <stdio.h>

int main(void)

' FILE *temp;
char s[128];
temp = tmpfile();
fprintf(temp, "What is the frequency, Alexander?\n");
rewind(temp); // back to the beginning
fscanf(temp, "%s", s); // read it back out
fclose(temp); // close (and magically delete)

}

See Also

fopen(), fclose(), tmpnam()

22.4 tmpnam()

Generate a unique name for a temporary file
Synopsis

#include <stdio.h>

char *tmpnam(char *s);

Thttps://man.archlinux.org/man/unlinkat.2.en#DESCRIPTION

https://man.archlinux.org/man/unlinkat.2.en#DESCRIPTION

Chapter 22. <stdio.h> Standard I/O Library 200

Description

This function takes a good hard look at the existing files on your system, and comes up with a unique
name for a new file that is suitable for temporary file usage.

Let’s say you have a program that needs to store off some data for a short time so you create a temporary
file for the data, to be deleted when the program is done running. Now imagine that you called this file
foo.txt. This is all well and good, except what if a user already has a file called foo. txt in the directory
that you ran your program from? You’d overwrite their file, and they’d be unhappy and stalk you forever.
And you wouldn’t want that, now would you?

Ok, so you get wise, and you decide to put the file in /tmp so that it won’t overwrite any important content.
But wait! What if some other user is running your program at the same time and they both want to use
that filename? Or what if some other program has already created that file?

See, all of these scary problems can be completely avoided if you just use tmpnam() to get a safe-ready-
to-use filename.

So how do you use it? There are two amazing ways. One, you can declare an array (or malloc() it—
whatever) that is big enough to hold the temporary file name. How big is that? Fortunately there has been
a macro defined for you, L_tmpnam, which is how big the array must be.

And the second way: just pass NULL for the filename. tmpnam() will store the temporary name in a static
array and return a pointer to that. Subsequent calls with a NULL argument will overwrite the static array,
so be sure you’re done using it before you call tmpnam() again.

Again, this function just makes a file name for you. It’s up to you to later fopen() the file and use it.

One more note: some compilers warn against using tmpnam() since some systems have better functions
(like the Unix function mkstemp().) You might want to check your local documentation to see if there’s
a better option. Linux documentation goes so far as to say, “Never use this function. Use mkstemp()
instead.”

I, however, am going to be a jerk and not talk about mkstemp()? because it’s not in the standard I’'m
writing about. Nyaah.

The macro TMP_MAX holds the number of unique filenames that can be generated by tmpnam(). Ironically,
it is the minimum number of such filenames.

Return Value

Returns a pointer to the temporary file name. This is either a pointer to the string you passed in, or a
pointer to internal static storage if you passed in NULL. On error (like it can’t find any temporary name
that is unique), tmpnam() returns NULL.

Example

#include <stdio.h>

int main(void)

{
char filename[L_tmpnam];
char *another_filename;

if (tmpnam(filename) != NULL)

printf("we got a temp file name: \"%s\"\n", filename);
else

printf("Something went wrong, and we got nothing!\n");

another_filename = tmpnam(NULL);

Zhttps://man.archlinux.org/man/mkstemp.3.en

https://man.archlinux.org/man/mkstemp.3.en

Chapter 22. <stdio.h> Standard I/O Library

printf("wWe got another temp file name: \"%s\"\n", another_filename);
printf("And we didn't error check it because we're too lazy!\n");

}

On my Linux system, this generates the following output:

We got a temp file name: "/tmp/filew9PMuz"
We got another temp file name: "/tmp/fileOwrgP0"
And we didn't error check it because we're too lazy!

See Also

fopen(), tmpfile()

22,5 fclose()

The opposite of fopen()—closes a file when you’re done with it so that it frees system resources

Synopsis
#include <stdio.h>

int fclose(FILE *stream);

Description

201

When you open a file, the system sets aside some resources to maintain information about that open file.
Usually it can only open so many files at once. In any case, the Right Thing to do is to close your files

when you’re done using them so that the system resources are freed.

Also, you might not find that all the information that you’ve written to the file has actually been written

to disk until the file is closed. (You can force this with a call to fflush().)

When your program exits normally, it closes all open files for you. Lots of times, though, you’ll have
a long-running program, and it’d be better to close the files before then. In any case, not closing a file

you’ve opened makes you look bad. So, remember to fclose() your file when you’re done with it!

Return Value

On success, 0 is returned. Typically no one checks for this. On error EOF is returned. Typically no one

checks for this, either.

Example

#include <stdio.h>

int main(void)

{
FILE *fp;

fp = fopen("spoon.txt", "r");

if (fp == NULL) {
printf("Error opening file\n");
} else {
printf("Opened file just fine!\n");

Chapter 22. <stdio.h> Standard I/O Library 202

fclose(fp); // All done!

See Also
fopen()

22.6 fflush()

Process all buffered I/O for a stream right now

Synopsis
#include <stdio.h>

int fflush(FILE *stream);

Description

When you do standard 1/0, as mentioned in the section on the setvbuf () function, it is usually stored
in a buffer until a line has been entered or the buffer is full or the file is closed. Sometimes, though, you
really want the output to happen right this second, and not wait around in the buffer. You can force this
to happen by calling fflush().

The advantage to buffering is that the OS doesn’t need to hit the disk every time you call fprintf().
The disadvantage is that if you look at the file on the disk after the fprintf() call, it might not have
actually been written to yet. (“I called fputs(), but the file is still zero bytes long! Why?!”) In virtually
all circumstances, the advantages of buffering outweigh the disadvantages; for those other circumstances,
however, use fflush().

Note that fflush() is only designed to work on output streams according to the spec. What will happen
if you try it on an input stream? Use your spooky voice: who knooooows!

Return Value

On success, fflush() returns zero. If there’s an error, it returns EOF and sets the error condition for the
stream (see ferror().)

Example

In this example, we’re going to use the carriage return, which is '\r'. This is like newline (' \n"), except
that it doesn’t move to the next line. It just returns to the front of the current line.

What we’re going to do is a little text-based status bar like so many command line programs implement.
It’ll do a countdown from 10 to O printing over itself on the same line.

What is the catch and what does this have to do with fflush()? The catch is that the terminal is most
likely “line buffered” (see the section on setvbuf () for more info), meaning that it won’t actually display
anything until it prints a newline. But we’re not printing newlines; we’re just printing carriage returns, so
we need a way to force the output to occur even though we’re on the same line. Yes, it’s fflush()!

#include <stdio.h>
#include <threads.h>

void sleep_seconds(int s)

{

20

21

22

23

24

25

Chapter 22. <stdio.h> Standard I/O Library

203

thrd_sleep(&(struct timespec){.tv_sec=s}, NULL);

"), // lead with a CR

}
int main(void)
{
int count;
for(count = 10; count >= 0; count--) {
printf("\rSeconds until launch:
if (count > 0)
printf("%2d", count);
else
printf("blastoff!\n");
// force output now!!
fflush(stdout);
sleep_seconds(1);
}
}
See Also

setbuf (), setvbuf()

22.7 fopen()

Opens a file for reading or writing

Synopsis

#inc lude <stdio.h>

FILE *fopen(const char *path, const char *mode);

Description

The fopen () opens a file for reading or writing.

Parameter path can be a relative or fully-qualified path and file name to the file in question.

Parameter mode tells fopen () how to open the file (reading, writing, or both), and whether or not it’s a

binary file. Possible modes are:

Mode Description

r Open the file for reading (read-only).
Open the file for writing (write-only). The file is
created if it doesn’t exist.

r+ Open the file for reading and writing. The file has
to already exist.

w+ Open the file for writing and reading. The file is

created if it doesn’t already exist.

Chapter 22. <stdio.h> Standard I/O Library 204

Mode Description

a Open the file for append. This is just like opening
a file for writing, but it positions the file pointer at
the end of the file, so the next write appends to the
end. The file is created if it doesn’t exist.

a+ Open the file for reading and appending. The file
is created if it doesn’t exist.

Any of the modes can have the letter “b” appended to the end, as is “wb” (“write binary™), to signify
that the file in question is a binary file. (“Binary” in this case generally means that the file contains
non-alphanumeric characters that look like garbage to human eyes.) Many systems (like Unix) don’t
differentiate between binary and non-binary files, so the “b” is extraneous. But if your data is binary, it
doesn’t hurt to throw the “b” in there, and it might help someone who is trying to port your code to another
system.

The macro FOPEN_MAX tells you how many streams (at least) you can have open at once.

The macro FILENAME_MAX tells you what the longest valid filename can be. Don’t go crazy, now.

Return Value
fopen() returns a FILE* that can be used in subsequent file-related calls.

If something goes wrong (e.g. you tried to open a file for read that didn’t exist), fopen () will return NULL.

Example

#include <stdio.h>

int main(void)

{
FILE *fp;
fp = fopen("spoon.txt", "r");
if (fp == NULL) {
printf("Error opening file\n");
} else {
printf("Opened file just fine!\n");
fclose(fp); // All done!
}
}
See Also

fclose(), freopen()

22.8 freopen()

Reopen an existing FILE*, associating it with a new path

Synopsis

20

21

22

23

Chapter 22. <stdio.h> Standard I/O Library 205

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

Description

Let’s say you have an existing FILE* stream that’s already open, but you want it to suddenly use a different
file than the one it’s using. You can use freopen() to “re-open” the stream with a new file.

Why on Earth would you ever want to do that? Well, the most common reason would be if you had a
program that normally would read from stdin, but instead you wanted it to read from a file. Instead of
changing all your scanf ()sto fscanf()s, you could simply reopen stdin on the file you wanted to read
from.

Another usage that is allowed on some systems is that you can pass NULL for filename, and specify a new
mode for stream. So you could change a file from “r+” (read and write) to just “r” (read), for instance.
It’s implementation dependent which modes can be changed.

When you call freopen(), the old stream is closed. Otherwise, the function behaves just like the stan-
dard fopen().

Return Value
freopen() returns streanm if all goes well.

If something goes wrong (e.g. you tried to open a file for read that didn’t exist), freopen() will return
NULL.

Example

#include <stdio.h>

int main(void)

{
int i, i2;
scanf("%d", &i); // read i from stdin
// now change stdin to refer to a file instead of the keyboard
freopen("someints.txt", "r'", stdin);
scanf("%d", &i2); // now this reads from the file "someints.txt"
printf("Hello, world!\n"); // print to the screen
// change stdout to go to a file instead of the terminal:
freopen("output.txt", "w", stdout);
printf("This goes to the file \"output.txt\"\n");
// this is allowed on some systems--you can change the mode of a file:
freopen(NULL, "wb", stdout); // change to "wb" instead of "w"

}

See Also

fclose(), fopen()

Chapter 22. <stdio.h> Standard I/O Library 206

22,9 setbuf(), setvbuf()

Configure buffering for standard I/O operations

Synopsis
#include <stdio.h>
void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int mode, size t size);

Description

Now brace yourself because this might come as a bit of a surprise to you: when you printf() or
fprintf() or use any I/O functions like that, it does not normally work immediately. For the sake of
efficiency, and to irritate you, the I/O on a FILE* stream is buffered away safely until certain conditions
are met, and only then is the actual I/O performed. The functions setbuf() and setvbuf() allow you
to change those conditions and the buffering behavior.

So what are the different buffering behaviors? The biggest is called “full buffering”, wherein all I/O is
stored in a big buffer until it is full, and then it is dumped out to disk (or whatever the file is). The next
biggest is called “line buffering”; with line buffering, I/O is stored up a line at a time (until a newline
('\n') character is encountered) and then that line is processed. Finally, we have “unbuffered”, which
means I/O is processed immediately with every standard I/O call.

You might have seen and wondered why you could call putchar () time and time again and not see any
output until you called putchar ('\n"); that’s right—stdout is line-buffered!

Since setbuf() is just a simplified version of setvbuf (), we’ll talk about setvbuf () first.

The stream is the FILE* you wish to modify. The standard says you must make your call to setvbuf()
before any 1/0 operation is performed on the stream, or else by then it might be too late.

The next argument, buf allows you to make your own buffer space (using malloc() orjust a char array)
to use for buffering. If you don’t care to do this, just set buf to NULL.

Now we get to the real meat of the function: mode allows you to choose what kind of buffering you want
to use on this stream. Set it to one of the following:

Mode Description

_IOFBF stream will be fully buffered.
_IOLBF stream will be line buffered.
_IONBF stream will be unbuffered.

Finally, the size argument is the size of the array you passed in for buf...unless you passed NULL for
buf, in which case it will resize the existing buffer to the size you specify.

Now what about this lesser function setbuf()? It’s just like calling setvbuf() with some specific
parameters, except setbuf () doesn’t return a value. The following example shows the equivalency:

// these are the same:
setbuf(stream, buf);
setvbuf(stream, buf, _IOFBF, BUFSIZ); // fully buffered

// and these are the same:
setbuf(stream, NULL);
setvbuf(stream, NULL, _IONBF, BUFSIZ); // unbuffered

Chapter 22. <stdio.h> Standard I/O Library

Return Value

setvbuf () returns zero on success, and nonzero on failure. setbuf () has no return value.

Example

#include <stdio.h>

int main(void)

{
FILE *fp;
char 1ineBuf[1024];
fp = fopen("somefile.txt", "w");
setvbuf(fp, lineBuf, _IOLBF, 1024); // set to line buffering
fprintf(fp, "You won't see this in the file yet. ");
fprintf(fp, "But now you will because of this newline.\n");
fclose(fp);
fp = fopen("anotherfile.txt", "w");
setbuf(fp, NULL); // set to unbuffered
fprintf(fp, "You will see this in the file now.");
fclose(fp);

}

See Also

fflush()

22.10 printf(), fprintf(), sprintf(), snprintf()

Print a formatted string to the console or to a file

Synopsis

#include <stdio.h>

int printf(const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);
int sprintf(char * restrict s, const char * restrict format, ...);

int snprintf(char * restrict s, size_t n, const char * restrict format,

Description

These functions print formatted output to a variety of destinations.

Function Output Destination

printf() Print to console (screen by default, typically).
fprintf() Print to a file.

sprintf() Print to a string.

snprintf() Print to a string (safely).

-);

207

Chapter 22. <stdio.h> Standard I/O Library 208

The only differences between these is are the leading parameters that you pass to them before the format
string.

Function What you pass before format

printf() Nothing comes before format.

fprintf() Pass a FILE*.

sprintf() Pass a char* to a buffer to print into.

snprintf() Passa char* to the buffer and a maximum buffer length.

The printf() function is legendary as being one of the most flexible outputting systems ever devised. It
can also get a bit freaky here or there, most notably in the format string. We’ll take it a step at a time
here.

The easiest way to look at the format string is that it will print everything in the string as-is, unless a
character has a percent sign (%) in front of it. That’s when the magic happens: the next argument in the
printf() argument list is printed in the way described by the percent code. These percent codes are
called format specifiers.

Here are the most common format specifiers.

Specifier Description

%d Print the next argument as a signed decimal number, like 3496. The argument printed
this way should be an int, or something that gets promoted to int.

%f Print the next argument as a signed floating point number, like 3.14159. The argument
printed this way should be a double, or something that gets promoted to a double.

%C Print the next argument as a character, like 'B'. The argument printed this way should
be a char variant.

%S Print the next argument as a string, like "Did you remember your mittens?". The
argument printed this way should be a char* or char[].

%% No arguments are converted, and a plain old run-of-the-mill percent sign is printed.

This is how you print a ‘%’ using printf().

So those are the basics. I’ll give you some more of the format specifiers in a bit, but let’s get some more
breadth before then. There’s actually a lot more that you can specify in there after the percent sign.

For one thing, you can put a field width in there—this is a number that tells printf () how many spaces
to put on one side or the other of the value you’re printing. That helps you line things up in nice columns.
If the number is negative, the result becomes left-justified instead of right-justified. Example:

printf("%10d", x); /* prints X on the right side of the 10-space field */
printf("%-10d", x); /* prints X on the left side of the 10-space field */

If you don’t know the field width in advance, you can use a little kung-foo to get it from the argument list
just before the argument itself. Do this by placing your seat and tray tables in the fully upright position.
The seatbelt is fastened by placing the—cough. I seem to have been doing way too much flying lately.
Ignoring that useless fact completely, you can specify a dynamic field width by putting a * in for the width.
If you are not willing or able to perform this task, please notify a flight attendant and we will reseat you.

int width = 12;

int value = 3490;

printf("%*d\n", width, value);

You can also put a “0” in front of the number if you want it to be padded with zeros:
int x = 17;
printf("%05d", x); /* "00017" */

Chapter 22. <stdio.h> Standard I/O Library 209

When it comes to floating point, you can also specify how many decimal places to print by making a field
width of the form “x.y” where x is the field width (you can leave this off if you want it to be just wide
enough) and y is the number of digits past the decimal point to print:

float f = 3.1415926535;

printf("%.2f", f), /* "3.14" */
printf("%7.3f", f); /* " 3.141" <-- 7 spaces across */

Ok, those above are definitely the most common uses of printf (), but let’s get total coverage.

22.10.0.1 Format Specifier Layout
Technically, the layout of the format specifier is these things in this order:

1. %, followed by...

Optional: zero or more flags, left justify, leading zeros, etc.

Optional: Field width, how wide the output field should be.

Optional: Precision, or how many decimal places to print.

Optional: Length modifier, for printing things bigger than int or double.
6. Conversion specifier, like d, f, etc.

s WN

In short, the whole format specifier is laid out like this:
%[flags][fieldwidth][.precision][lengthmodifier]Jconversionspecifier

What could be easier?

22.10.0.2 Conversion Specifiers

Let’s talk conversion specifiers first. Each of the following specifies what type it can print, but it can also
print anything that gets promoted to that type. For example, %d can print int, short, and char.

Conversion
Specifier Description

d Print an int argument as a decimal number.

Identical to d.

Print an unsigned int in octal (base 8).

Print an unsigned int in decimal.

Print an unsigned int in hexadecimal with lowercase letters.

Print an unsigned int in hexadecimal with uppercase letters.

Print a double in decimal notation. Infinity is printed as infinity or inf, and NaN is
printed as nan, any of which could have a leading minus sign.

Same as f, except it prints out INFINITY, INF, or NAN in all caps.

Print a number in scientific notation, e.g. 1.234e56. Does infinity and NaN like f.
Just like e, except prints the exponent E (and infinity and NaN) in uppercase.

Print small numbers like f and large numbers like e. See note below.

Print small numbers like F and large numbers like E. See note below.

Print a double in hexadecimal form 0xh.hhhhpd where h is a lowercase hex digit and
d is a decimal exponent of 2. Infinity and NaN in the form of f. More below.

Like a except everything’s uppercase.

Convert int argument to unsigned char and print as a character.

Print a string starting at the given char*.

Print a void* out as a number, probably the numeric address, possibly in hex.

Store the number of characters written so far in the given int*. Doesn’t print anything.
See below.

% Print a literal percent sign.

-+ X X ©€ O -

O Q@ m o T

ST n 0 >

22.10.0.2.1 Noteon%aand%A When printing floating point numbers in hex form, there is one number
before the decimal point, and the rest of are out to the precision.

Chapter 22. <stdio.h> Standard I/O Library 210

double pi = 3.14159265358979;
printf("%.3a\n", pi); // 0x1.922p+1

C can choose the leading number in such a way to ensure subsequent digits align to 4-bit boundaries.

If the precision is left out and the macro FLT_RADIX is a power of 2, enough precision is used to represent
the number exactly. If FLT_RADIX is not a power of two, enough precision is used to be able to tell any
two floating values apart.

If the precision is @ and the # flag isn’t specified, the decimal point is omitted.

22.10.0.2.2 Note on %g and %G The gist of this is to use scientific notation when the number gets too
“extreme”, and regular decimal notation otherwise.

The exact behavior for whether these print as %f or %e depends on a number of factors:

If the number’s exponent is greater than or equal to -4 and the precision is greater than the exponent, we
use %f. In this case, the precision is converted according to p = p — (x + 1), where p is the specified
precision and x is the exponent.

Otherwise we use %e, and the precision becomes p — 1.

Trailing zeros in the decimal portion are removed. And if there are none left, the decimal point is removed,
too. All this unless the # flag is specified.

22.10.0.2.3 Note on%n This specifier is cool and different, and rarely needed. It doesn’t actually print
anything, but stores the number of characters printed so far in the next pointer argument in the list.

int numChars;
float a = 3.14159;
int b = 3490;

printf("%f %d%n\n", a, b, &numChars);
printf("The above line contains %d characters.\n", numChars);

The above example will print out the values of a and b, and then store the number of characters printed
so far into the variable numChars. The next call to printf () prints out that result.

3.141590 3490
The above line contains 13 characters

22.10.0.3 Length Modifiers

You can stick a length modifier in front of each of the conversion specifiers, if you want. most of those
format specifiers work on int or double types, but what if you want larger or smaller types? That’s what
these are good for.

For example, you could print out a long long int with the 11 modifier:

long long int x = 3490;

printf("%lld\n", x); // 3490

Length
Modifier Conversion Specifier ~ Description
hh d, i, 0,u, x, X Convert argument to char (signed or unsigned as
appropriate) before printing.
h d, i, o, u, x, X Convert argument to short int (signed or unsigned as
appropriate) before printing.
1 d, i, 0, u, x, X Argument is a long int (signed or unsigned as appropriate).
11 d, i, 0,u, x, X Argument is a long long int (signed or unsigned as

appropriate).

Chapter 22. <stdio.h> Standard I/O Library 211

Length
Modifier Conversion Specifier ~ Description
j d, i, 0, u, x, X Argument is a intmax_t or uintmax_t (as appropriate).
z d, i, 0,u,x, X Argument is a size_t.
t d, i, o,u, x, X Argument is a ptrdiff_t.
L a,A e Ef,Fg,G Argument is a long double.
1 c Argument is in awint_t, a wide character.
1 s Argument is in a wchar_t*, a wide character string.
hh n Store result in signed char* argument.
h n Store result in short int* argument.
1 n Store result in long int* argument.
11 n Store result in long long int* argument.
J n Store result in intmax_t* argument.
z n Store result in size_t* argument.
t n Store result in ptrdiff_t* argument.

22.10.0.4 Precision

In front of the length modifier, you can put a precision, which generally means how many decimal places

you want on your floating point numbers.

To do this, you put a decimal point (.) and the decimal places afterward.

For example, we could print m rounded to two decimal places like this:

double pi = 3.14159265358979;

printf("%.2f\n", pi);

Conversion Specifier

Precision Value Meaning

d, i, o, u, x, X

a,e, T,AEF

9,6

For integer types, minimum number of digits (will pad with leading
For floating types, the precision is the number of digits past the
For floating types, the precision is the number of significant digits

The maximum number of bytes (not multibyte characters!) to be

If no number is specified in the precision after the decimal point, the precision is zero.

If an * is specified after the decimal, something amazing happens! It means the int argument to printf()
before the number to be printed holds the precision. You can use this if you don’t know the precision at

compile time.

int precision;

double pi = 3.14159265358979;

printf("Enter precision:
scanf("%d", &precision);

printf("%.*f\n", precision, pi);

Which gives:

Enter precision: 4
3.1416

"); fflush(stdout);

Chapter 22. <stdio.h> Standard I/O Library 212

22.10.0.5 Field Width

In front of the optional precision, you can indicate a field width. This is a decimal number that indicates
how wide the region should be in which the argument is printed. The region is padding with leading (or
trailing) spaces to make sure it’s wide enough.

If the field width specified is too small to hold the output, it is ignored.
As a preview, you can give a negative field width to justify the item the other direction.

So let’s print a number in a field of width 10. We’ll put some angle brackets around it so we can see the
padding spaces in the output.

printf("<<%10d>>\n", 3490); // right justified

printf("<<%-10d>>\n", 3490); // left justified

<< 3490>>
<<3490 >>

Like with the precision, you can use an asterisk (*) as the field width

int field_width;
int val = 3490;

printf("Enter field width: "); fflush(stdout);
scanf("%d", &field_width);

printf("<<%*d>>\n", field_width, val);

22.10.0.6 Flags

Before the field width, you can put some optional flags that further control the output of the subsequent
fields. We just saw that the - flag can be used to left- or right-justify fields. But there are plenty more!

Flag Description
- For a field width, left justify in the field (right is default).
+ If the number is signed, always prefix a + or - on the front.
[SPACE] If the number is signed, prefix a space for positive, or a - for negative.
0 Pad the right-justified field with leading zeros instead of leading spaces.
Print using an alternate form. See below.

For example, we could pad a hexadecimal number with leading zeros to a field width of 8 with:
printf("%08x\n", 0x1234); // 00001234

The # “alternate form” result depends on the conversion specifier.

Conversion Specifier ~ Alternate Form (#) Meaning

0 Increase precision of a non-zero number just enough to get one leading © on
the octal number.

X Prefix a non-zero number with 0x.
X Same as x, except capital OX.
a, e f Always print a decimal point, even if nothing follows it.
AEF Identical to a, e, f.
g,G Always print a decimal point, even if nothing follows it, and keep trailing zeros.

22.10.0.7 sprintf() and snprintf () Details

Both sprintf() and snprintf() have the quality that if you pass in NULL as the buffer, nothing is
written—but you can still check the return value to see how many characters would have been written.

20

21

22

23

24

25

Chapter 22. <stdio.h> Standard I/O Library

snprintf() always terminates the string with a NUL character. So if you try to write out more than the

maximum specified characters, the universe ends.

Just kidding. If you do, snprintf() will write n — 1 characters so that it has enough room to write the

terminator at the end.

Return Value

Returns the number of characters outputted, or a negative number on error.

Example

#include <stdio.h>

int main(void)

{
int a = 100;
float b = 2.717;
char *c = "beej!";
char d = 'X';
int e = 5;
printf("%d\n", a); /* "100" */
printf("%f\n", b); /* "2.717000" */
printf("%s\n", c); /* "beej!" */
printf("%c\n", d); /* "X" */
printf("110%%\n"); /* "110%" 2y
printf("%10d\n", a); VA 100"
printf("%-10d\n", a); /* "100
printf("%*d\n", e, a); /* " 100"
printf("%.2f\n", b); /* "2, 72"
printf("%hhd\n", d); /* "88" <-- ASCII code for 'X'
printf("%5d %5.2f %c\n", a, b, d); /* "
}
See Also

sprintf(), vprintf()

*/
*/
*/
*/

100 2.72 X" */

22.11 scanf(), fscanf(), sscanf()

Read formatted string, character, or numeric data from the console or from a file

Synopsis
#include <stdio.h>

int scanf(const char *format,

-);

int fscanf(FILE *stream, const char *format,

int sscanf(const char * restrict s, const char * restrict format,

)

)i

Chapter 22. <stdio.h> Standard I/O Library 214

Description

These functions read formatted output from a variety of sources.

Function Input Source

scanf () Read from the console (keyboard by default, typically).
fscanf() Read from a file.
sscanf() Read from a string.

The only differences between these is are the leading parameters that you pass to them before the format
string.

Function =~ What you pass before format

scanf() Nothing comes before format.
fscanf() PassaFILE*.
sscanf() Passachar* to a buffer to read from.

The scanf () family of functions reads data from the console or from a FILE stream, parses it, and stores
the results away in variables you provide in the argument list.

The format string is very similar to that in printf() in that you can tell it to read a "%d", for instance for
an int. But it also has additional capabilities, most notably that it can eat up other characters in the input
that you specify in the format string.

But let’s start simple, and look at the most basic usage first before plunging into the depths of the function.
We’ll start by reading an int from the keyboard:

int a;
scanf("%d", &a);

scanf () obviously needs a pointer to the variable if it is going to change the variable itself, so we use the
address-of operator to get the pointer.

In this case, scanf () walks down the format string, finds a “%d”, and then knows it needs to read an
integer and store it in the next variable in the argument list, a.

Here are some of the other format specifiers you can put in the format string:

Format Specifier Description

%d Reads an integer to be stored in an int. This
integer can be signed.

%u Reads an integer to be stored in an unsigned int.

%f Reads a floating point number, to be stored in a
float.

%S Reads a string up to the first whitespace character.

%C Reads a char.

And that’s the end of the story!

Ha! Just kidding. If you’ve just arrived from the printf () page, you know there’s a near-infinite amount
of additional material.

22.11.0.1 Consuming Other Characters

scanf () will move along the format string matching any characters you include.

For example, you could read a hyphenated date like so:

Chapter 22. <stdio.h> Standard I/O Library 215

scanf ("%u-%u-%u'", &yyyy, &mm, &dd);
In that case, scanf () will attempt to consume an unsigned decimal number, then a hyphen, then another
unsigned number, then another hypen, then another unsigned number.

If it fails to match at any point (e.g. the user entered “foo”), scanf () will bail without consuming the
offending characters.

And it will return the number of variables successfully converted. In the example above, if the user entered
a valid string, scanf () would return 3, one for each variable successfully read.

22.11.0.2 Problems with scanf()

I (and the C FAQ and a lot of people) recommend against using scanf () to read directly from the key-
board. It’s too easy for it to stop consuming characters when the user enters some bad data.

If you have data in a file and you’re confident it’s in good shape, fscanf () can be really useful.

But in the case of the keyboard or file, you can always use fgets() to read a complete line into a buffer,
and then use sscanf () to scan things out of the buffer. This gives you the best of both worlds.

22.11.0.3 Problems with sscanf()

A while back, a third-party programmer rose to fame for figuring out how to cut GTA Online load times
by 70%3.

What they’d discovered was that the implementation of sscanf () first effectively calls strilen()... so
even if you’re just using sscanf () to peel the first few characters off the string, it still runs all the way
out to the end of the string first.

On small strings, no big deal, but on large strings with repeated calls (which is what was happening in
GTA) it got sloooooooooowwwww...

So if you’re just converting a string to a number, consider atoi(), atof(), or the strtol() and str-
tod() families of functions, instead.

(The programmer collected a $10,000 bug bounty for the effort.)

22.11.0.4 The Deep Details
Let’s check out what a scanf()

And here are some more codes, except these don’t tend to be used as often. You, of course, may use them
as often as you wish!

First, the format string. Like we mentioned, it can hold ordinary characters as well as % format specifiers.
And whitespace characters.

Whitespace characters have a special role: a whitespace character will cause scanf() to consume as
many whitespace characters as it can up to the next non-whitespace character. You can use this to ignore
all leading or trailing whitespace.

Also, all format specifiers except for s, ¢, and [automatically consume leading whitespace.

But I know what you’re thinking: the meat of this function is in the format specifiers. What do those look
like?

These consist of the following, in sequence:

1. A %sign

2. Optional: an * to suppress assignment—more later

3. Optional: a field width—max characters to read

4. Optional: length modifier, for specifying longer or shorter types
5. A conversion specifier, like d or f indicating the type to read

Shttps://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/
https://www.polygon.com/2021/3/16/22334214/gta-online-loading-times-t0st-update-bug-bounty

Chapter 22. <stdio.h> Standard I/O Library 216

22.11.0.5 The Conversion Specifier
Let’s start with the best and last: the conversion specifier.

This is the part of the format specifier that tells us what type of variable scanf () should be reading into,
like %d or %f.

Conversion
Specifier Description

d Matches a decimal int. Can have a leading sign.

i Like d, except will handle it if you put a leading 0x (hex) or 0 (octal) on the number.

o) Matches an octal (base 8) unsigned int. Leading zeros are ignored.

u Matches a decimal unsigned int.

X Matches a hex (base 16) unsigned int.

f Match a floating point number (or scientific notation, or anything strtod() can
handle).

c Match a char, or mutiple chars if a field width is given.

s Match a sequence of non-whitespace chars.

[Match a sequence of characters from a set. The set ends with]. More below.

p Match a pointer, the opposite of %p for printf().

n Store the number of characters written so far in the given int*. Doesn’t consume
anything.

% Match a literal percent sign.

All of the following are equivalent to the f specifier: a, e, g, A, E, F, G.

And capital X is equivalent to lowercase x.

22.11.0.5.1 The Scanset %[] Conversion Specifier This is about the weirdest format specifier there
is. It allows you to specify a set of characters (the scanset) to be stored away (likely in an array of chars).
Conversion stops when a character that is not in the set is matched.

For example, %[0-9] means “match all numbers zero through nine.” And %[AD-G34] means “match A,
D through G, 3, or 4”.

Now, to convolute matters, you can tell scanf () to match characters that are not in the set by putting a
caret (©) directly after the %[and following it with the set, like this: %[AA-C], which means “match all
characters that are not A through C.”

To match a close square bracket, make it the first character in the set, like this: %[JA-C] or %[A]A-C]. (I
added the “A-C” just so it was clear that the “]” was first in the set.)

To match a hyphen, make it the last character in the set, e.g. to match A-through-C or hyphen: %[A-C-1].

So if we wanted to match all letters except “%”, “A”, “]”, “B”, “C”, “D”, “E”, and “-”, we could use this
format string: %[A]%"B-E-].

Got it? Now we can go onto the next func—no wait! There’s more! Yes, still more to know about
scanf (). Does it never end? Try to imagine how I feel writing about it!

22.11.0.6 The Length Modifier

So you know that “%d” stores into an int. But how do you store into a long, short, or double?

Well, like in printf (), you can add a modifier before the type specifier to tell scanf () that you have a
longer or shorter type. The following is a table of the possible modifiers:

Length
Modifier Conversion Specifier ~ Description
hh d, i, 0, u, x, X Convert input to char (signed or unsigned as appropriate)

before printing.

Chapter 22. <stdio.h> Standard I/O Library 217

Length
Modifier Conversion Specifier ~ Description

h d, i, o,u, x, X Convert input to short int (signed or unsigned as
appropriate) before printing.

1 d, i, 0, u, X, X Convert input to long int (signed or unsigned as
appropriate).

11 d, i, o,u, x, X Convert input to long long int (signed or unsigned as
appropriate).

J d, i, 0,u,x, X Convert input to intmax_t or uintmax_t (as appropriate).

z d, i, o,u, x, X Convert input to size_t.

t d, i, o,u, x, X Convert input to ptrdiff_t.

L a,A e, Ef,F0,G Convert input to long double.

1 c,s,[Convert input to wchar_t, a wide character.

1 s Argument is in a wchar_t*, a wide character string.

hh n Store result in signed char* argument.

h n Store result in short int* argument.

1 n Store result in long int* argument.

11 n Store result in long long int* argument.

J n Store result in intmax_t* argument.

z n Store result in size_t* argument.

t n Store result in ptrdiff_t* argument.

22.11.0.7 Field Widths

The field width generally allows you to specify a maximum number of characters to consume. If the thing
you’re trying to match is shorter than the field width, that input will stop being processed before the field
width is reached.

So a string will stop being consumed when whitespace is found, even if fewer than the field width char-
acters are matched.

And a float will stop being consumed at the end of the number, even if fewer characters than the field
width are matched.

But %c is an interesting one—it doesn’t stop consuming characters on anything. So it’ll go exactly to the
field width. (Or 1 character if no field width is given.)
22.11.0.8 Skip Input with *

If you put an * in the format specifier, it tells scanf() do to the conversion specified, but not store it
anywhere. It simply discards the data as it reads it. This is what you use if you want scanf () to eat some
data but you don’t want to store it anywhere; you don’t give scanf () an argument for this conversion.

// Read 3 ints, but discard the middle one
scanf("%d %*d %d", &intl, &int3);

Return Value

scanf () returns the number of items assigned into variables. Since assignment into variables stops when
given invalid input for a certain format specifier, this can tell you if you’ve input all your data correctly.

Also, scanf () returns EOF on end-of-file.

Example

#include <stdio.h>

int main(void)

{

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Chapter 22. <stdio.h> Standard I/O Library

int a;

long int b;
unsigned int c;
float d;

double e;

long double f;
char s[100];

scanf("%d", &a); // store an int

scanf(" %d", &a); // eat any whitespace, then store an int
scanf("%s", s); // store a string

scanf("%Lf", &f); // store a long double

// store an unsigned, read all whitespace, then store a long int:
scanf("%u %1d", &c, &b);

// store an int, read whitespace, read "blendo", read whitespace,
// and store a float:
scanf("%d blendo %f", &a, &d);

// read all whitespace, then store all characters up to a newline
scanf(" %[A\n]", s);

// store a float, read (and ignore) an int, then store a double:
scanf("%f %*d %1lf", &d, &e);

// store 10 characters:
scanf("%10c", s);

See Also

sscanf (), vscanf (), vsscanf(), vfscanf()

22.12 vprintf(), vfprintf (), vsprintf(), vsnprintf()
printf() variants using variable argument lists (va_list)

Synopsis

#include <stdio.h>
#1include <stdarg.h>

int vprintf(const char * restrict format, va_list arg);

int vfprintf(FILE * restrict stream, const char * restrict format,
va_list arg);

int vsprintf(char * restrict s, const char * restrict format, va_list arg);

int vsnprintf(char * restrict s, size_t n, const char * restrict format,
va_list arg);

218

Chapter 22. <stdio.h> Standard I/O Library 219

Description

These are just like the printf () variants except instead of taking an actual variable number of arguments,
they take a fixed number—the last of which is a va_1list that refers to the variable arguments.

Like with printf(), the different variants send output different places.

Function Output Destination

vprintf() Print to console (screen by default, typically).
vfprintf() Print to a file.

vsprintf() Print to a string.

vsnprintf() Print to a string (safely).

Both vsprintf() and vsnprintf() have the quality that if you pass in NULL as the buffer, nothing is
written—but you can still check the return value to see how many characters would have been written.

If you try to write out more than the maximum number of characters, vsnprintf() will graciously write
only n — 1 characters so that it has enough room to write the terminator at the end.

As for why in the heck would you ever want to do this, the most common reason is to create your own
specialized versions of printf ()-type functions, piggybacking on all that printf () functionality good-
ness.

See the example for an example, predictably.

Return Value
vprintf() and vfprintf() return the number of characters printed, or a negative value on error.

vsprintf () returns the number of characters printed to the buffer, not counting the NUL terminator, or
a negative value if an error occurred.

vnsprintf () returns the number of characters printed to the buffer. Or the number that would have been
printed if the buffer had been large enough.

Example

In this example, we make our own version of printf () called logger () that timestamps output. Notice
how the calls to logger () have all the bells and whistles of printf().

#include <stdio.h>
#inc lude <stdarg.h>
#include <time.h>

int logger(char *format, ...)

{
va_list va;
time_t now_secs = time(NULL);
struct tm *now = gmtime(&now_secs);

// Output timestamp in format "YYYY-MM-DD hh:mm:ss : "

printf("%04d-%02d-%02d %02d:%02d:%02d : ",
now->tm_year + 1900, now->tm_mon + 1, now->tm_mday,
now->tm_hour, now->tm_min, now->tm_sec);

va_start(va, format);
int result = vprintf(format, va);

va_end(va);

printf("\n");

22

23

24

25

26

27

28

29

30

31

32

Chapter 22. <stdio.h> Standard I/O Library 220

return result;

}
int main(void)
{
int x = 12;
float y = 3.2;
logger("Hello!");
logger("x = %d and y = %.2f", X, y);
}
Output:

2021-03-30 04:25:49 : Hello!
2021-03-30 04:25:49 : x = 12 and y = 3.20

See Also
printf()

22.13 vscanf(), vfscanf(), vsscanf ()

scanf () variants using variable argument lists (va_list)

Synopsis

#include <stdio.h>
#include <stdarg.h>

int vscanf(const char * restrict format, va_list arg);

int vfscanf(FILE * restrict stream, const char * restrict format,
va_list arg);

int vsscanf(const char * restrict s, const char * restrict format,
va_list arg);

Description

These are just like the scanf () variants except instead of taking an actual variable number of arguments,
they take a fixed number—the last of which is a va_1list that refers to the variable arguments.

Function Input Source

vscanf () Read from the console (keyboard by default, typically).
vfscanf() Read from a file.
vsscanf() Read from a string.

Like with the vprintf() functions, this would be a good way to add additional functionality that took
advantage of the power scanf () has to offer.

Return Value

Returns the number of items successfully scanned, or EOF on end-of-file or error.

20

21

22

23

24

25

26

Chapter 22. <stdio.h> Standard I/O Library 221

Example

I have to admit I was wracking my brain to think of when you’d ever want to use this. The best example
I could find was one on Stack Overflow* that error-checks the return value from scanf() against the
expected. A variant of that is shown below.

#include <stdio.h>
#inc lude <stdarg.h>
#include <assert.h>

int error_check_scanf(int expected_count, char *format, ...)

{

va_list va;
va_start(va, format);
int count = vscanf(format, va);

va_end(va);

// This line will crash the program if the condition is false:
assert(count == expected_count);

return count;

}
int main(void)
{
int a, b;
float c;
error_check_scanf(3, "%d, %d/%f'", &a, &b, &c);
error_check_scanf(2, "%d", &a);
}
See Also
scanf()

22.14 getc(), fgetc(), getchar()

Get a single character from the console or from a file
Synopsis

#include <stdio.h>

int getc(FILE *stream);

int fgetc(FILE *stream);

int getchar(void);

Description

All of these functions in one way or another, read a single character from the console or from a FILE. The
differences are fairly minor, and here are the descriptions:

“https://stackoverflow.com/questions/17017331/c99-vscanf-for-dummies/17018046#17018046

https://stackoverflow.com/questions/17017331/c99-vscanf-for-dummies/17018046#17018046

Chapter 22. <stdio.h> Standard I/O Library 222

getc() returns a character from the specified FILE. From a usage standpoint, it’s equivalent to the same
fgetc() call, and fgetc() is a little more common to see. Only the implementation of the two functions
differs.

fgetc () returns a character from the specified FILE. From a usage standpoint, it’s equivalent to the same
getc() call, except that fgetc() is a little more common to see. Only the implementation of the two
functions differs.

Yes, I cheated and used cut-n-paste to do that last paragraph.

getchar () returns a character from stdin. In fact, it’s the same as calling getc(stdin).

Return Value
All three functions return the unsigned char that they read, except it’s cast to an int.

If end-of-file or an error is encountered, all three functions return EOF.

Example

This example reads all the characters from a file, outputting only the letter *b’s it finds..

#include <stdio.h>
int main(void)
{
FILE *fp;
int c;
fp = fopen("spoon.txt", "r"); // error check this!
// this while-statement assigns into c, and then checks against EOF:
while((c = fgetc(fp)) != EOF) {

if (c == 'b") {
putchar(c);

putchar('\n');

fclose(fp);

See Also

22.15 gets(), fgets()

Read a string from console or file
Synopsis
#1include <stdio.h>

char *fgets(char *s, int size, FILE *stream);
char *gets(char *s);

Chapter 22. <stdio.h> Standard I/O Library 223

Description

These are functions that will retrieve a newline-terminated string from the console or a file. In other
normal words, it reads a line of text. The behavior is slightly different, and, as such, so is the usage. For
instance, here is the usage of gets():

Don’t use gets(). In fact, as of C11, it ceases to exist! This is one of the rare cases of a function being
removed from the standard.

Admittedly, rationale would be useful, yes? For one thing, gets () doesn’t allow you to specify the length
of the buffer to store the string in. This would allow people to keep entering data past the end of your
buffer, and believe me, this would be Bad News.

And that’s what the size parameter in fgets() is for. fgets() will read at most size-1 characters and
then stick a NUL terminator on after that.

I was going to add another reason, but that’s basically the primary and only reason not to use gets(). As
you might suspect, fgets() allows you to specify a maximum string length.

One difference here between the two functions: gets() will devour and throw away the newline at the
end of the line, while fgets () will store it at the end of your string (space permitting).

Here’s an example of using fgets() from the console, making it behave more like gets() (with the
exception of the newline inclusion):

char s[100];
gets(s); // don't use this--read a line (from stdin)
fgets(s, sizeof(s), stdin); // read a line from stdin

In this case, the sizeof () operator gives us the total size of the array in bytes, and since a char is a byte,
it conveniently gives us the total size of the array.

Of course, like I keep saying, the string returned from fgets() probably has a newline at the end that you
might not want. You can write a short function to chop the newline off—in fact, let’s just roll that into our
own version of gets()

#include <stdio.h>
#include <string.h>

char *ngets(char *s, int size)

{
char *rv = fgets(s, size, stdin);
if (rv == NULL)
return NULL;
char *p = strchr(s, '\n'); // Find a newline
if (p !'= NULL) // if there's a newline
*p = '\0'; // truncate the string there
return s;
}

So, in summary, use fgets() to read a line of text from the keyboard or a file, and don’t use gets().

Return Value
Both gets() and fgets() return a pointer to the string passed.

On error or end-of-file, the functions return NULL.

Chapter 22. <stdio.h> Standard I/O Library 224

Example

#include <stdio.h>

int main(void)

{
FILE *fp;
char s[100];
gets(s); // read from standard input (don't use this--use fgets()!)
fgets(s, sizeof s, stdin); // read 100 bytes from standard input
fp = fopen("spoon.txt", "r"); // (you should error-check this)
fgets(s, 100, fp); // read 100 bytes from the file datafile.dat
fclose(fp);
fgets(s, 20, stdin); // read a maximum of 20 bytes from stdin

}

See Also

getc(), fgetc(), getchar(), puts(), fputs(), ungetc()

22.16 putc(), fputc(), putchar()

Write a single character to the console or to a file
Synopsis

#1include <stdio.h>

int putc(int c, FILE *stream);

int fputc(int c, FILE *stream);

int putchar(int c);

Description
All three functions output a single character, either to the console or to a FILE.

putc() takes a character argument, and outputs it to the specified FILE. fputc() does exactly the same
thing, and differs from putc() in implementation only. Most people use fputc().

putchar () writes the character to the console, and is the same as calling putc(c, stdout).

Return Value

All three functions return the character written on success, or EOF on error.

Example

Print the alphabet:

Chapter 22. <stdio.h> Standard I/O Library 225

#include <stdio.h>

int main(void)

{
char 1i;
for(i = 'A'; 1 <= 'Z'; i++)
putchar(1i);
putchar('\n'); // put a newline at the end to make it pretty
}
See Also

22.17 puts(), fputs()

Write a string to the console or to a file

Synopsis
#include <stdio.h>
int puts(const char *s);

int fputs(const char *s, FILE *stream);

Description

Both these functions output a NUL-terminated string. puts() outputs to the console, while fputs()
allows you to specify the file for output.

Return Value

Both functions return non-negative on success, or EOF on error.

Example

Read strings from the console and save them in a file:

#include <stdio.h>

int main(void)

{
FILE *fp;
char s[100];

fp = fopen("somefile.txt", "w"); // error check this!
while(fgets(s, sizeof(s), stdin) != NULL) { // read a string

fputs(s, fp); // write it to the file we opened
}

fclose(fp);

Chapter 22. <stdio.h> Standard I/O Library 226

See Also

22.18 ungetc()

Pushes a character back into the input stream

Synopsis
#include <stdio.h>

int ungetc(int ¢, FILE *stream);

Description

You know how getc () reads the next character from a file stream? Well, this is the opposite of that—it
pushes a character back into the file stream so that it will show up again on the very next read from the
stream, as if you’d never gotten it from getc() in the first place.

Why, in the name of all that is holy would you want to do that? Perhaps you have a stream of data that
you’re reading a character at a time, and you won’t know to stop reading until you get a certain character,
but you want to be able to read that character again later. You can read the character, see that it’s what
you’re supposed to stop on, and then ungetc() it so it’ll show up on the next read.

Yeah, that doesn’t happen very often, but there we are.

Here’s the catch: the standard only guarantees that you’ll be able to push back one character. Some
implementations might allow you to push back more, but there’s really no way to tell and still be portable.

Return Value

On success, ungetc() returns the character you passed to it. On failure, it returns EOF.

Example
This example reads a piece of punctuation, then everything after it up to the next piece of punctuation. It
returns the leading punctuation, and stores the rest in a string.

#include <stdio.h>
#include <ctype.h>

int read_punctstring(FILE *fp, char *s)
{
int origpunct, c;

origpunct = fgetc(fp);

if (origpunct == EOF) // return EOF on end-of-file
return EOF;

while (c = fgetc(fp), !ispunct(c) && c !'= EOF)
*s++ = c; // save it in the string

*s = '\0'; // nul-terminate the string

// 1f we read punctuation last, ungetc it so we can fgetc it next
// time:
if (ispunct(c))

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Chapter 22. <stdio.h> Standard I/O Library 227

ungetc(c, fp);

return origpunct;

}
int main(void)
{
char s[128];
char c;
while((c = read_punctstring(stdin, s)) != EOF) {
printf("%c: %s\n", c, s);
}
}

Sample Input:

| foo#bar*baz

Sample output:
1: foo
#: bar
*: baz

See Also
fgetc()

22.19 fread()

Read binary data from a file

Synopsis
#inc lude <stdio.h>

size t fread(void *p, size t size, size t nmemb, FILE *stream);

Description

You might remember that you can call fopen () with the “b” flag in the open mode string to open the file
in “binary” mode. Files open in not-binary (ASCII or text mode) can be read using standard character-
oriented calls like fgetc() or fgets(). Files open in binary mode are typically read using the fread()
function.

All this function does is says, “Hey, read this many things where each thing is a certain number of bytes,
and store the whole mess of them in memory starting at this pointer.”

This can be very useful, believe me, when you want to do something like store 20 ints in a file.

But wait—can’t you use fprintf () with the “%d” format specifier to save the ints to a text file and store
them that way? Yes, sure. That has the advantage that a human can open the file and read the numbers.
It has the disadvantage that it’s slower to convert the numbers from ints to text and that the numbers are
likely to take more space in the file. (Remember, an int is likely 4 bytes, but the string “12345678” is 8
bytes.)

So storing the binary data can certainly be more compact and faster to read.

Chapter 22. <stdio.h> Standard I/O Library 228

Return Value

This function returns the number of items successfully read. If all requested items are read, the return
value will be equal to that of the parameter nmemb. If EOF occurs, the return value will be zero.

To make you confused, it will also return zero if there’s an error. You can use the functions feof () or
ferror () to tell which one really happened.

Example

Read 10 numbers from a file and store them in an array:

#include <stdio.h>

int main(void)

{
int 1i;
int n[10]
FILE *fp;
fp = fopen("numbers.dat", "rb");
fread(n, sizeof(int), 10, fp); // read 10 ints
fclose(fp);
// print them out:
for(i = 0; i < 10; i++)
printf("n[%d] == %d\n", i, n[i]);
}
See Also

fopen(), fwrite(), feof(), ferror()

22.20 fwrite()

Write binary data to a file

Synopsis
#inc lude <stdio.h>

size_ t fwrite(const void *p, size t size, size_t nmemb, FILE *stream);

Description

This is the counterpart to the fread() function. It writes blocks of binary data to disk. For a description
of what this means, see the entry for fread().

Return Value

fwrite() returns the number of items successfully written, which should hopefully be nmemb that you
passed in. It’ll return zero on error.

Example

Save 10 random numbers to a file:

Chapter 22. <stdio.h> Standard I/O Library 229

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int i;
int n[10];
FILE *fp;
// populate the array with random numbers:
for(i =0; i < 10; i++) {
n[i] = rand();
printf("n[%d] = %d\n", i, n[i]);
}
// save the random numbers (10 ints) to the file
fp = fopen("numbers.dat", "wb");
fwrite(n, sizeof(int), 10, fp); // write 10 ints
fclose(fp);
}
See Also

fopen(), fread()

22.21 fgetpos(), fsetpos()

Get the current position in a file, or set the current position in a file. Just like ftel1l() and fseek() for
most systems

Synopsis
#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, fpos_t *pos);

Description

These functions are just like ftell() and fseek(), except instead of counting in bytes, they use an
opaque data structure to hold positional information about the file. (Opaque, in this case, means you’re
not supposed to know what the data type is made up of.)

On virtually every system (and certainly every system that I know of), people don’t use these functions,
using ftell() and fseek() instead. These functions exist just in case your system can’t remember file
positions as a simple byte offset.

Since the pos variable is opaque, you have to assign to it using the fgetpos() call itself. Then you save
the value for later and use it to reset the position using fsetpos().

Return Value

Both functions return zero on success, and -1 on error.

20

21

22

23

24

25

Chapter 22. <stdio.h> Standard I/O Library 230

Example

#include <stdio.h>

int main(void)

{
char s[100];
fpos_t pos;
FILE *fp;
fp = fopen("spoon.txt", "r");
fgets(s, sizeof(s), fp); // read a line from the file
printf("%s", s);
fgetpos(fp, &pos); // save the position after the read
fgets(s, sizeof(s), fp); // read another line from the file
printf("%s", s);
fsetpos(fp, &pos); // now restore the position to where we saved
fgets(s, sizeof(s), fp); // read the earlier line again
printf("%s", s);
fclose(fp);

}

See Also

fseek(), ftell(), rewind()

22.22 fseek(), rewind()

Position the file pointer in anticipition of the next read or write

Synopsis
#include <stdio.h>
int fseek(FILE *stream, long offset, int whence);

void rewind(FILE *stream);

Description

When doing reads and writes to a file, the OS keeps track of where you are in the file using a counter
generically known as the file pointer. You can reposition the file pointer to a different point in the file
using the fseek () call. Think of it as a way to randomly access you file.

The first argument is the file in question, obviously. offset argument is the position that you want to
seek to, and whence is what that offset is relative to.

Of course, you probably like to think of the offset as being from the beginning of the file. I mean, “Seek
to position 3490, that should be 3490 bytes from the beginning of the file.” Well, it can be, but it doesn’t
have to be. Imagine the power you’re wielding here. Try to command your enthusiasm.

20

21

22

23

Chapter 22. <stdio.h> Standard I/O Library 231

You can set the value of whence to one of three things:

whence Description

SEEK_SET offset is relative to the beginning of the file. This is probably what you had in mind
anyway, and is the most commonly used value for whence.

SEEK_CUR offset is relative to the current file pointer position. So, in effect, you can say,
“Move to my current position plus 30 bytes,” or, “move to my current position minus
20 bytes.”

SEEK_END offset is relative to the end of the file. Just like SEEK_SET except from the other end

of the file. Be sure to use negative values for of fset if you want to back up from the
end of the file, instead of going past the end into oblivion.

Speaking of seeking off the end of the file, can you do it? Sure thing. In fact, you can seek way off the
end and then write a character; the file will be expanded to a size big enough to hold a bunch of zeros way
out to that character.

Now that the complicated function is out of the way, what’s this rewind() that I briefly mentioned? It
repositions the file pointer at the beginning of the file:

fseek(fp, ©, SEEK_SET); // same as rewind()
rewind(fp); // same as fseek(fp, 0, SEEK_SET)

Return Value
For fseek(), on success zero is returned; -1 is returned on failure.

The call to rewind() never fails.

Example

#include <stdio.h>
int main(void)
{

FILE *fp;

fp = fopen("spoon.txt", "r");

fseek(fp, 100, SEEK_SET); // seek to the 100th byte of the file
printf("100: %c\n", fgetc(fp));

fseek(fp, -31, SEEK_CUR); // seek backward 30 bytes from the current pos
printf("31 back: %c\n", fgetc(fp));

fseek(fp, -12, SEEK_END); // seek to the 10th byte before the end of file
printf("12 from end: %c\n", fgetc(fp));

fseek(fp, 0, SEEK_SET); // seek to the beginning of the file
rewind(fp); // seek to the beginning of the file, too
printf("Beginning: %c\n", fgetc(fp));

fclose(fp);

See Also

ftell(), fgetpos(), fsetpos()

20

21

22

23

24

25

26

27

28

29

30

Chapter 22. <stdio.h> Standard I/O Library 232

2223 ftell()

Tells you where a particular file is about to read from or write to

Synopsis
#inc lude <stdio.h>

long ftell(FILE *stream);

Description

This function is the opposite of fseek(). It tells you where in the file the next file operation will occur
relative to the beginning of the file.

It’s useful if you want to remember where you are in the file, fseek() somewhere else, and then come
back later. You can take the return value from ftell() and feed it back into fseek() (with whence
parameter set to SEEK_SET) when you want to return to your previous position.

Return Value

Returns the current offset in the file, or -1 on error.

Example

#include <stdio.h>

int main(void)
{
char c[6];
FILE *fp;

fp = fopen("spoon.txt", "r");
long pos;

// seek ahead 10 bytes:
fseek(fp, 10, SEEK_SET);

// store the current position in variable "pos'":
pos = ftell(fp);

// Read some bytes

fread(c, sizeof ¢ - 1, 1, fp);
c[5] = '\0';

printf("Read: \"%s\"\n", c);

// and return to the starting position, stored in "pos":
fseek(fp, pos, SEEK_SET);

// Read the same bytes again
fread(c, sizeof ¢ - 1, 1, fp);
c[5] = '\o0';

printf("Read: \"%s\"\n", c);

31

32

Chapter 22. <stdio.h> Standard I/O Library

fclose(fp);

See Also

fseek(), rewind(), fgetpos(), fsetpos()

22.24 feof(), ferror(), clearerr()

Determine if a file has reached end-of-file or if an error has occurred
Synopsis

#include <stdio.h>

int feof (FILE *stream);

int ferror(FILE *stream);

void clearerr(FILE *stream);

Description

233

Each FILE* that you use to read and write data from and to a file contains flags that the system sets when
certain events occur. If you get an error, it sets the error flag; if you reach the end of the file during a read,

it sets the EOF flag. Pretty simple really.

The functions feof () and ferror() give you a simple way to test these flags: they’ll return non-zero

(true) if they’re set.

Once the flags are set for a particular stream, they stay that way until you call clearerr () to clear them.

Return Value

feof () and ferror() return non-zero (true) if the file has reached EOF or there has been an error, re-

spectively.

Example

Read binary data, checking for EOF or error:

#include <stdio.h>

int main(void)

{
int a;
FILE *fp;

fp = fopen("numbers.dat", "r");

// read single ints at a time, stopping on EOF or error:

while(fread(&a, sizeof(int), 1, fp), !feof(fp) && !ferror(fp)) {

printf("Read %d\n", a);
}

20

21

22

23

Chapter 22. <stdio.h> Standard I/O Library 234

if (feof(fp))
printf("End of file was reached.\n");

if (ferror(fp))
printf("An error occurred.\n");

fclose(fp);

See Also

fopen(), fread()

22.25 perror()

Print the last error message to stderr

Synopsis

#include <stdio.h>
#include <errno.h> // only if you want to directly use the "errno" var

void perror(const char *s);

Description

Many functions, when they encounter an error condition for whatever reason, will set a global variable
called errno (in <errno.h>) for you. errno is just an interger representing a unique error.

But to you, the user, some number isn’t generally very useful. For this reason, you can call perror()
after an error occurs to print what error has actually happened in a nice human-readable string.

And to help you along, you can pass a parameter, s, that will be prepended to the error string for you.

One more clever trick you can do is check the value of the errno (you have to include errno. h to see it)
for specific errors and have your code do different things. Perhaps you want to ignore certain errors but
not others, for instance.

The standard only defines three values for errno, but your system undoubtedly defines more. The three
that are defined are:

errno Description

EDOM Math operation outside domain.
EILSEQ Invalid sequence in multibyte to wide character encoding.
ERANGE Result of operation doesn’t fit in specified type.

The catch is that different systems define different values for errno, so it’s not very portable beyond the
above 3. The good news is that at least the values are largely portable between Unix-like systems, at least.

Return Value

Returns nothing at all! Sorry!

20

21

22

23

Chapter 22. <stdio.h> Standard I/O Library 235

Example

fseek() returns -1 on error, and sets errno, so let’s use it. Seeking on stdin makes no sense, so it
should generate an error:

#include <stdio.h>
#include <errno.h> // must include this to see "errno" in this example

int main(void)

{
if (fseek(stdin, 10L, SEEK _SET) < 0)
perror("fseek");
fclose(stdin); // stop using this stream
if (fseek(stdin, 20L, SEEK_CUR) < 0) {
// specifically check errno to see what kind of
// error happened...this works on Linux, but your
// mileage may vary on other systems!
if (errno == EBADF) {
perror("fseek again, EBADF");
} else {
perror("fseek again");
}
}
}

And the output is:

fseek: Illegal seek
fseek again, EBADF: Bad file descriptor

See Also

feof(), ferror(), strerror()

Chapter 23

<stdlib.h> Standard Library
Functions

Some of the following functions have variants that handle different types: atoi(), strtod(), strtol(),
abs(), and div(). Only a single one is listed here for brevity.

Function Description

_Exit() Exit the currently-running program and don’t look back
abort() Abruptly end program execution

abs() Compute the absolute value of an integer
aligned_alloc() Allocate specifically-aligned memory
at_quick_exit() Set up handlers to run when the program quickly exits
atexit() Set up handlers to run when the program exits

atof () Convert a string to a floating point value

atoi() Convert an integer in a string into a integer type
bsearch() Binary Search (maybe) an array of objects
calloc() Allocate and clear memory for arbitrary use

div() Compute the quotient and remainder of two numbers
exit() Exit the currently-running program

free() Free a memory region

getenv() Get the value of an environment variable

malloc() Allocate memory for arbitrary use

mblen() Return the number of bytes in a multibyte character
mbstowcs () Convert a multibyte string to a wide character string
mbtowc () Convert a multibyte character to a wide character
gsort() Quicksort (maybe) some data

quick_exit() Exit the currently-running program quickly

rand() Return a pseudorandom number

realloc() Resize a previously allocated stretch of memory
srand() Seed the built-in pseudorandom number generator
strtod() Convert a string to a floating point number
strtol() Convert a string to an integer

system() Run an external program

wcstombs() Convert a wide character string to a multibyte string
wctomb () Convert a wide character to a multibyte character

The <stdlib.h> header has all kinds of—dare I say—miscellaneous functions bundled into it. This
functionality includes:

+ Conversions from numbers to strings
+ Conversions from strings to numbers

236

Chapter 23. <stdlib.h> Standard Library Functions 237

+ Pseudorandom number generation

* Dynamic memory allocation

* Various ways to exit the program

+ Ability to run external programs

* Binary search (or some fast search)

* Quicksort (or some fast sort)

* Integer arithmetic functions

+ Multibyte and wide character and string conversions

So, you know... a little of everything.

23.1 <stdlib.h> Types and Macros

A couple new types and macros are introduced, though some of these might also be defined elsewhere:

Type Description

size_t Returned from sizeof and used elsewhere
wchar_t For wide character operations

div_t For the div() function

ldiv_t For the 1div() function

1ldiv_t for the 11div () function

And some macros:

Type

Description

NULL
EXIT_SUCCESS
EXIT_FAILURE

Our good pointer friend
Good exit status when things go well
Good exit status when things go poorly

RAND_MAX The maximum value that can be returned by the
rand() function
MB_CUR_MAX Maximum number of bytes in a multibyte

character in the current locale

And there you have it. Just a lot of fun, useful functions in here. Let’s check ’em out!

23.2 atof()

Convert a string to a floating point value

Synopsis
#include <stdlib.h>

double atof(const char *nptr);

Description

This stood for “ASCII-To-Floating” back in the day, but no one would dare to use such coarse language
now.

But the gist is the same: we’re going to convert a string with numbers and (optionally) a decimal point into
a floating point value. Leading whitespace is ignored, and translation stops at the first invalid character.

Uhttp://man.cat-v.org/unix-1st/3/atof

http://man.cat-v.org/unix-1st/3/atof

Chapter 23. <stdlib.h> Standard Library Functions

If the result doesn’t fit in a double, behavior is undefined.

It generally works as if you’d called strtod():
strtod(nptr, NULL)

So check out that reference page for more info.

In fact, strtod() is just better and you should probably use that.

Return Value

Returns the string converted to a double.

Example

#include <stdio.h>
#inc lude <stdlib.h>

int main(void)

{
double x = atof("3.141593");
printf("%f\n", x); // 3.141593
}
See Also

atoi(), strtod()

23.3 atoi(),atol(),atoll()

Convert an integer in a string into a integer type
Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

long int atol(const char *nptr);

long long int atoll(const char *nptr);

Description

Back in the day, atoi () stood for “ASCII-To_Integer”? but now the spec makes no mention of that.

238

These functions take a string with a number in them and convert it to an integer of the specified return

type. Leading whitespace is ignored. Translation stops at the first invalid character.

If the result doesn’t fit in the return type, behavior is undefined.

It generally works as if you’d called strtol() family of functions:

Zhttp://man.cat-v.org/unix-1st/3/atoi

http://man.cat-v.org/unix-1st/3/atoi

Chapter 23. <stdlib.h> Standard Library Functions 239

atoi(nptr) // 1s basically the same as...
(int)strtol(nptr, NULL, 10)

atol(nptr) // 1is basically the same as...
strtol(nptr, NULL, 10)

atoll(nptr) // 1s basically the same as...
strtoll(nptr, NULL, 10)

Again, the strtol() functions are generally better, so I recommend them instead of these.

Return Value

Returns an integer result corresponding to the return type.

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int x = atoi("3490");
printf("%d\n", x); // 3490
}
See Also

atof (), strtol()

234 strtod(), strtof(), strtold()

Convert a string to a floating point number

Synopsis

#include <stdlib.h>

double strtod(const char * restrict nptr, char ** restrict endptr);
float strtof(const char * restrict nptr, char ** restrict endptr);

long double strtold(const char * restrict nptr, char ** restrict endptr);

Description

These are some neat functions that convert strings to floating point numbers (or even NaN or Infinity) and
provide some error checking, besides.

Firstly, leading whitespace is skipped.

Then the functions attempt to convert characters into the floating point result. Finally, when an invalid
character (or NUL character) is reached, they set endptr to point to the invalid character.

Set endptr to NULL if you don’t care about where the first invalid character is.

Chapter 23. <stdlib.h> Standard Library Functions 240

If you didn’t set endptr to NULL, it will point to a NUL character if the translation didn’t find any bad
characters. That is:

if (*endptr == '\0'") {
printf("what a perfectly-formed number!\n");
} else {

printf("I found badness in your number: \"%s\"\n", endptr);
}
But guess what! You can also translate strings into special values, like NaN and Infinity!

If nptr points to a string containing INF or INFINITY (upper or lowercase), the value for Infinity will be
returned.

If nptr points to a string containing NAN, then (a quiet, non-signalling) NaN will be returned. You can tag
the NAN with a sequence of characters from the set 0-9, a-z, A-Z, and _ by enclosing them in parens:

NAN (foobar_3490)
What your compiler does with this is implementation-defined, but it can be used to specify different kinds
of NaN.

You can also specify a number in hexadecimal with a power-of-two exponent (2%) if you lead with @x (or
0X). For the exponent, use a p followed by a base 10 exponent. (You can’t use e because that’s a valid hex
digit!)

Example:
Oxabc.123p15

Which computes to 0zabc.123 x 215,

You can put in FLT_DECIMAL_DIG, DBL_DECIMAL_DIG, or LDBL_DECIMAL_DIG digits and get a correctly-
rounded result for the type.

Return Value

Returns the converted number. If there was no number, returns 0. endptr is set to point to the first invalid
character, or the NUL terminator if all characters were consumed.

If there’s an overflow, HUGE_VAL, HUGE_VALF, or HUGE_VALL is returned, signed like the input, and errno
is set to ERANGE.

If there’s an underflow, it returns the smallest number closest to zero with the input sign. errno may be
set to ERANGE.

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
char *ipp =" 123.4567beej";
char *badchar;

double val = strtod(inp, &badchar);

printf("Converted string to %f\n", val);
printf("Encountered bad characters: %s\n", badchar);

val = strtod("987.654321beej", NULL);
printf("Ignoring bad chars for result: %f\n", val);

20

21

22

23

Chapter 23. <stdlib.h> Standard Library Functions 241

val = strtod("11.2233", &badchar);

if (*badchar == '\0')
printf("No bad chars: %f\n", val);
else
printf("Found bad chars: %f, %s\n", val, badchar);
}
Output:

Converted string to 123.456700
Encountered bad characters: beej
Ignoring bad chars: 987.654321
No bad chars: 11.223300

See Also

atof (), strtol()

23.5 strtol(), strtoll(), strtoul(), strtoull()

Convert a string to an integer

Synopsis
#1include <stdlib.h>

long int strtol(const char * restrict nptr,
char ** restrict endptr, int base);

long long int strtoll(const char * restrict nptr,
char ** restrict endptr, int base);

unsigned long int strtoul(const char * restrict nptr,
char ** restrict endptr, int base);

unsigned long long int strtoull(const char * restrict nptr,
char ** restrict endptr, int base);

Description
These convert a string to an integer like atoi(), but they have a few more bells and whistles.

Most notable, they can tell you where conversion started going wrong, i.e. where invalid characters, if
any, appear. Leading spaces are ignored. A + or - sign may precede the number.

The basic idea is that if things go well, these functions will return the integer values contained in the
strings. And if you pass in the char** typed endptr, it’ll set it to point at the NUL at the end of the
string.

If things don’t go well, they’ll set endptr to point at the first character where things have gone awry. That
is, if you’re converting a value 103z2! in base 10, they’ll send endptr to point at the z because that’s
the first non-numeric character.

You can pass in NULL for endptr if you don’t care to do any of that kind of error checking.

Chapter 23. <stdlib.h> Standard Library Functions 242

Wait—did I just say we could set the number base for the conversion? Yes! Yes, I did. Now number
bases® are out of scope for this document, but certainly some of the more well-known are binary (base 2),
octal (base 8), decimal (base 10), and hexadecimal (base 16).

You can specify the number base for the conversion as the third parameter. Bases from 2 to 36 are sup-
ported, with case-insensitive digits running from 0 to z.

If you specify a base of 0, the function will make an effort to determine it. It’ll default to base 10 except
for a couple cases:

+ If the number has a leading 0, it will be octal (base 8)
« If the number has a leading 0x or 0X, it will be hex (base 16)

The locale might affect the behavior of these functions.

Return Value

Returns the converted value.

endptr, if not NULL is set to the first invalid character, or to the beginning of the string if no conversion
was performed, or to the string terminal NUL if all characters were valid.

If there’s overflow, one of these values will be returned: LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX,
ULONG_MAX, ULLONG_MAX. And errno is set to ERANGE.

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
// All output in decimal (base 10)
printf("%ld\n", strtol("123", NULL, 0)); // 123
printf("%ld\n", strtol("123", NULL, 10)); // 123
printf("%ld\n", strtol("101010", NULL, 2)); // binary, 42
printf("%ld\n", strtol("123", NULL, 8)); // octal, 83
printf("%ld\n", strtol("123", NULL, 16)); // hex, 291
printf("%ld\n", strtol("0123", NULL, 0)); // octal, 83
printf("%ld\n", strtol("0x123", NULL, 0)); // hex, 291
char *badchar;
long int x = strtol(" 1234beej'", &badchar, 0);
printf("value is %ld\n", Xx); // Value is 1234
printf("Bad chars at \"%s\"\n", badchar); // Bad chars at "beej"

}

Output:

123

123

42

83

291

83

291

3https://en.wikipedia.org/wiki/Radix

https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Radix

Chapter 23. <stdlib.h> Standard Library Functions 243

Value is 1234
Bad chars at "beej"

See Also

atoi(), strtod(), setlocale(), strtoimax(), strtoumax()

23.6 rand()

Return a pseudorandom number

Synopsis
#include <stdlib.h>

int rand(void);

Description

This gives us back a pseudorandom number in the range © to RAND_MAX, inclusive. (RAND_MAX will be at
least 32767.)

If you want to force this to a certain range, the classic way to do this is to force it with the modulo operator
%, although this introduces biases* if RAND_MAX+1 is not a multiple of the number you’re modding by.
Dealing with this is out of scope for this guide.

If you want to to make a floating point number between 0 and 1 inclusive, you can divide the result by
RAND_MAX. Or RAND_MAX+1 if you don’t want to include 1. But of course, there are out-of-scope problems
with this, as well®.

In short, rand() is a great way to get potentially poor random numbers with ease. Probably good enough
for the game you’re writing.

The spec elaborates:

There are no guarantees as to the quality of the random sequence produced and some imple-
mentations are known to produce sequences with distressingly non-random low-order bits.
Applications with particular requirements should use a generator that is known to be suffi-
cient for their needs.

Your system probably has a good random number generator on it if you need a stronger source. Linux
users have getrandom(), for example, and Windows has CryptGenRandom().

For other more demanding random number work, you might find a library like the GNU Scientific Library®
of use.

With most implementations, the numbers produced by rand() will be the same from run to run. To get
around this, you need to start it off in a different place by passing a seed into the random number generator.
You can do this with srand().

Return Value

Returns a random number in the range 6 to RAND_MAX, inclusive.

“https://stackoverflow.com/questions/10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-
generator

Shttps://mumble.net/~campbell/2014/04/28/uniform-random-float

Shttps://www.gnu.org/software/gsl/doc/html/rng html

https://stackoverflow.com/questions/10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-generator
https://mumble.net/~campbell/2014/04/28/uniform-random-float
https://mumble.net/~campbell/2014/04/28/uniform-random-float
https://www.gnu.org/software/gsl/doc/html/rng.html

Chapter 23. <stdlib.h> Standard Library Functions 244

Example

Note that all of these examples don’t produce perfectly uniform distributions. But good enough for the
untrained eye, and really common in general use when mediocre random number quality is acceptable.

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

}

printf("RAND_MAX = %d\n'", RAND_MAX);
printf("0 to 9: %d\n", rand() % 10);
printf("10 to 44: %d\n", rand() % 35 + 10);

printf ("0 to 0.99999: %f\n", rand() / ((float)RAND_MAX + 1));
printf("10.5 to 15.7: %f\n", 10.5 + 5.2 * rand() / (float)RAND_MAX);

Output on my system:

RAND_MAX = 2147483647

0 to 9: 3

10 to 44: 21

0 to 0.99999: 0.783099
10.5 to 15.7: 14.651888

Example of seeding the RNG with the time:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)

{
// time(NULL) very likely returns the number of seconds since
// January 1, 1970:
srand(time(NULL));
for (int i = 0; i < 5; i++)
printf("%d\n", rand());
}
See Also
srand()

23.7 srand()

Seed the built-in pseudorandom number generator

Synopsis

#include <stdlib.h>

void srand(unsigned int seed);

Chapter 23. <stdlib.h> Standard Library Functions 245

Description

The dirty little secret of pseudorandom number generation is that they’re completely deterministic. There’s
nothing random about them. They just look random.

If you use rand() and run your program several times, you might notice something fishy: they produce
the same random numbers over and over again.

To mix it up, we need to give the pseudorandom number generator a new “starting point”, if you will. We
call that the seed. It’s just a number, but it is used as the basic for subsequent number generation. Give
a different seed, and you’ll get a different sequence of random numbers. Give the same seed, and you’ll
get the same sequence of random numbers corresponding to it’.

So if you call srand(3490) before you start generating numbers with rand(), you’ll get the same se-
quence every time. srand(37) would also give you the same sequence every time, but it would be a
different sequence than the one you got with srand(3490).

But if you can’t hardcode the seed (because that would give you the same sequence every time), how are
you supposed to do this?

It’s really common to use the number of seconds since January 1, 1970 (this date is known as the Unix
epoch®) to seed the generator. This sounds pretty arbitrary except for the fact that it’s exactly the value
most implementations return from the library call time (NULL)®.

We’ll do that in the example.

If you don’t call srand(), it’s as if you called srand(1).

Return Value

Returns nothing!

Example

#include <stdio.h>
#include <stdlib.h>
#include <time.h> // for the time() call

int main(void)
{
srand(time(NULL));

for (int 1 = 0; i < 5; i++)
printf("%d\n", rand() % 32);

Output:

4
20
22
14
9

Output from a subsequent run:

“Minecraft enthusiasts might recall that when generating a new world, they were given the option to enter a random number seed.
That single value is used to generate that entire random world. And if your friend starts a world with the same seed you did, they’ll
get the same world you did.

8https://en.wikipedia.org/wiki/Unix_time

9The C spec doesn’t say exactly what time (NULL) will return, but the POSIX spec does! And virtually everyone returns exactly
that: the number of seconds since epoch.

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

Chapter 23. <stdlib.h> Standard Library Functions 246

19
(0]

31
31
24

See Also

rand(), time()

23.8 aligned_alloc()

Allocate specifically-aligned memory

Synopsis
#include <stdlib.h>

void *aligned_alloc(size_t alignment, size_ t size);

Description
Maybe you wanted malloc() or calloc() instead of this. But if you’re sure you don’t, read on!

Normally you don’t have to think about this, since malloc() and realloc() both provide memory
regions that are suitably aligned'® for use with any data type.

But if you need a more specific alignment, you can specify it with this function.
When you’re done using the memory region, be sure to free it with a call to free().
Don’t pass in 0 for the size. It probably won’t do anything you want.

In case you’re wondering, all dynamically-allocated memory is automatically freed by the system when
the program ends. That said, it’s considered to be Good Form to explicitly free () everything you allocate.
This way other programmers don’t think you were being sloppy.

Return Value

Returns a pointer to the newly-allocated memory, aligned as specified. Returns NULL if something goes
wrong.

Example

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

int main(void)

{
int *p = aligned_alloc(256, 10 * sizeof(int));

// Just for fun, let's convert to intptr_t and mod with 256
// to make sure we're actually aligned on a 256-byte boundary.
//

Ohttps://en.wikipedia.org/wiki/Data_structure_alignment

https://en.wikipedia.org/wiki/Data_structure_alignment

Chapter 23. <stdlib.h> Standard Library Functions 247

// This 1is probably some kind of implementation-defined
// behavior, but I'll bet it works.

intptr_t ip = (intptr_t)p;
printf("%ld\n", ip % 256); // 0!

// Free it up
free(p);

See Also

malloc(), calloc(), free()

23.9 calloc(),malloc()

Allocate memory for arbitrary use

Synopsis
#include <stdlib.h>
void *calloc(size_t nmemb, size t size);

void *malloc(size_t size);

Description

Both of these functions allocate memory for general-purpose use. It will be aligned such that it’s useable
for storing any data type.

malloc () allocates exactly the specified number of bytes of memory in a contiguous block. The memory
might be full of garbage data. (You can clear it with memset (), if you wish.)

calloc() is different in that it allocates space for nmemb objects of size bytes each. (You can do the
same with malloc (), but you have to do the multiplication yourself.)

calloc() has an additional feature: it clears all the memory to 0.

So if you’re planning to zero the memory anyway, calloc() is probably the way to go. If you’re not,
you can avoid that overhead by calling malloc().

When you’re done using the memory region, free it with a call to free().
Don’t pass in 0 for the size. It probably won’t do anything you want.

In case you’re wondering, all dynamically-allocated memory is automatically freed by the system when
the program ends. That said, it’s considered to be Good Form to explicitly free () everything you allocate.
This way other programmers don’t think you were being sloppy.

Return Value

Both functions return a pointer to the shiny, newly-allocated memory. Or NULL if something’s gone awry.

Chapter 23. <stdlib.h> Standard Library Functions 248

Example

Comparison of malloc() and calloc() for allocating 5 ints:

#include <stdlib.h>

int main(void)
{
// Allocate space for 5 ints
int *p = malloc(5 * sizeof(int));

pLo]
p[1]

12;
30;

// Allocate space for 5 ints
// (Also clear that memory to 0)
int *q = calloc(5, sizeof(int));

qle]
q[1]

12;
30;

// All done
free(p);
free(q);

See Also
aligned_alloc(), free()

23.10 free()

Free a memory region

Synopsis
#include <stdlib.h>

void free(void *ptr);

Description

You know that pointer you got back from malloc(), calloc(), or aligned_alloc()? You pass that
pointer to free() to free the memory associated with it.

If you don’t do this, the memory will stay allocated FOREVER AND EVER! (Well, until your program
exits, anyway.)
Fun fact: free(NULL) does nothing. You can safely call that. Sometimes it’s convenient.

Don’t free() a pointer that’s already been free()d. Don’t free() a pointer that you didn’t get back
from one of the allocation functions. It would be Bad"!.

Return Value

Returns nothing!

HeTry to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of
light.” —Egon Spengler

Chapter 23. <stdlib.h> Standard Library Functions 249

Example

#include <stdlib.h>

int main(void)
{
// Allocate space for 5 ints
int *p = malloc(5 * sizeof(int));

12;
30;

pLo]
p[1]

// Free that space
free(p);

See Also

malloc(), calloc(),aligned_alloc()

23.11 realloc()

Resize a previously allocated stretch of memory

Synopsis
#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

This takes a pointer to some memory previously allocated with malloc() or calloc() and resizes it to
the new size.

If the new size is smaller than the old size, any data larger than the new size is discarded.

If the new size is larger than the old size, the new larger part is uninitialized. (You can clear it with
memset().)

Important note: the memory might move! If you resize, the system might need to relocate the memory
to a larger continguous chunk. If this happens, realloc() will copy the old data to the new location for
you.

Because of this, it’s important to save the returned value to your pointer to update it to the new location if
things move. (Also, be sure to error-check so that you don’t overwrite your old pointer with NULL, leaking
the memory.)

You can also relloc() memory allocated with aligned_alloc(), but it will potentially lose its align-
ment if the block is moved.

Return Value

Returns a pointer to the resized memory region. This might be equivalent to the ptr passed in, or it might
be some other location.

20

21

22

23

24

Chapter 23. <stdlib.h> Standard Library Functions 250

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
// Allocate space for 5 ints
int *p = malloc(5 * sizeof(int));
p[o] = 12;
p[1] = 30;
// Reallocate for 10 bytes
int *new_p = realloc(p, 10 * sizeof(int));
if (new_p == NULL) {
printf("Error reallocing\n");
} else {
p = new_p; // It's good; let's keep it
pL7] = 99;
}
// All done
free(p);
}
See Also

malloc(), calloc()

23.12 abort()

Abruptly end program execution

Synopsis
#include <stdlib.h>

_Noreturn void abort(void);

Description
This ends program execution abnormally and immediately. Use this in rare, unexpected circumstances.

Open streams might not be flushed. Temporary files created might not be removed. Exit handlers are not
called.

A non-zero exit status is returned to the environment.
On some systems, abort () might dump core'?, but this is outside the scope of the spec.

You can cause the equivalent of an abort () by calling raise(SIGABRT), but I don’t know why you’d
do that.

2https://en.wikipedia.org/wiki/Core_dump

https://en.wikipedia.org/wiki/Core_dump

Chapter 23. <stdlib.h> Standard Library Functions 251

The only portable way to stop an abort () call midway is to use signal() to catch SIGABRT and then
exit () in the signal handler.

Return Value

This function never returns.

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int bad_thing = 1;
if (bad_thing) {
printf("This should never have happened!\n");
fflush(stdout); // Make sure the message goes out
abort();
}
}

On my system, this outputs:

This should never have happened!
zsh: abort (core dumped) ./foo

See Also

signal()

23.13 atexit(), at_quick_exit()

Set up handlers to run when the program exits

Synopsis
#inc lude <stdlib.h>
int atexit(void (*func)(void));

int at_quick_exit(void (*func)(void));

Description

When the program does a normal exit with exit() or returns from main(), it looks for previously-
registered handlers to call on the way out. These handlers are registered with the atexit () call.

Think of it like, “Hey, when you’re about to exit, do these extra things.”

For the quick_exit() call, you can use the at_quick_exit () function to register handlers for that'>.
There’s no crossover in handlers from exit () to quick_exit(), i.e. for a call to one, none of the other’s
handlers will fire.

Bquick_exit() differs from exit () in that open files might not be flushed and temporary files might not be removed.

Chapter 23. <stdlib.h> Standard Library Functions 252

You can register multiple handlers to fire—at least 32 handlers are supported by both exit() and
quick_exit().

The argument func to the functions looks a little weird—it’s a pointer to a function to call. Basically just
put the function name to call in there (without parentheses after). See the example, below.

If you call atexit () from inside your atexit () handler (or equivalent in your at_quick_exit() han-
dler), it’s unspecified if it will get called. So get them all registered before you exit.

When exiting, the functions will be called in the reverse order they were registered.

Return Value

These functions return © on success, or nonzero on failure.

Example

atexit():

#include <stdio.h>
#include <stdlib.h>

void exit_handler_1(void)

{
printf("Exit handler 1 called!\n");
}
void exit_handler_2(void)
{
printf("Exit handler 2 called!\n");
}
int main(void)
{
atexit(exit_handler_1);
atexit(exit_handler_2);
exit(0);
}

For the output:

Exit handler 2 called!
Exit handler 1 called!

And a similar example with quick_exit():

#inc lude <stdio.h>
#include <stdlib.h>

void exit_handler_1(void)

{

printf("Exit handler 1 called!\n");
}
void exit_handler_2(void)
{

printf("Exit handler 2 called!\n");
}

int main(void)

{

Chapter 23. <stdlib.h> Standard Library Functions 253

at_quick_exit(exit_handler_1);
at_quick_exit(exit_handler_2);

quick_exit(0);

See Also

exit(), quick_exit()

23.14 exit(), quick_exit(), _Exit()

Exit the currently-running program

Synopsis

#include <stdlib.h>

_Noreturn void exit(int status);
_Noreturn void quick_exit(int status);

_Noreturn void _Exit(int status);

Description

All these functions cause the program to exit, with various levels of cleanup performed.
exit () does the most cleanup and is the most normal exit.

quick_exit() is the second most.

_Exit () unceremoniously drops everything and ragequits on the spot.

Calling either of exit () or quick_exit () causes their respective atexit() orat_quick_exit() han-
dlers to be called in the reverse order in which they were registered.

exit () will flush all streams and delete all temporary files.
quick_exit() or _Exit() might not perform that nicety.
_Exit() doesn’t call any of the at-exit handlers, either.

For all functions, the exit status is returned to the environment.

Defined exit statuses are:

Status Description

EXIT_SUCCESS Typically returned when good things happen
0 Same as EXIT_SUCCESS

EXIT_FAILURE Oh noes! Definitely failure!

Any positive value Generally indicates another failure of some kind

OS X note: quick_exit() is not supported.

Return Value

None of these functions ever return.

1

2

3

Chapter 23. <stdlib.h> Standard Library Functions

Example

#include <stdlib.h>

int main(void)

{
int contrived_exit_type = 1;
switch(contrived_exit_type) {
case 1:
exit (EXIT_SUCCESS);
case 2:
// Not supported in 0S X
quick_exit (EXIT_SUCCESS);
case 3:
_Exit(2);
}
}
See Also

atexit(), at_quick_exit()

23.15 getenv()

Get the value of an environment variable

Synopsis
#include <stdlib.h>

char *getenv(const char *name);

Description

254

The environment often provides variables that are set before the program run that you can access at run-

time.

Of course the exact details are system dependent, but these variables are key/value pairs, and you can get

the value by passing the key to getenv() as the name parameter.
You’re not allowed to overwrite the string that’s returned.

This is pretty limited in the standard, but your OS often provides better functionality.

Return Value

Returns a pointer to the environment variable value, or NULL if the variable doesn’t exist.

Example

#include <stdio.h>
#include <stdlib.h>

Chapter 23. <stdlib.h> Standard Library Functions 255

int main(void)

{
printf("PATH is %s\n'", getenv("PATH"));

}

Output (truncated in my case):

PATH is /usr/bin:/usr/local/bin:/usr/sbin:/home/beej/.cargo/bin [...]

23.16 system()

Run an external program

Synopsis
#include <stdlib.h>

int system(const char *string);

Description
This will run an external program and then return to the caller.

The manner in which it runs the program is system-defined, but typically you can pass something to it just
like you’d run on the command line, searching the PATH, etc.

Not all systems have this capability, but you can test for it by passing NULL to system() and seeing if it
returns 0 (no command processor is available) or non-zero (a command processor is available! Yay!)

If you’re getting user input and passing it to the system() call, be extremely careful to escape all special
shell characters (everything that’s not alphanumeric) with a backslash to keep a villain from running
something you don’t want them to.

Return Value
If NULL is passed, returns nonzero if a command processor is available (i.e. system() will work at all).

Otherwise returns an implementation-defined value.

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

' printf("Here's a directory listing:\n\n");
system("1ls -1"); // Run this command and return
printf("\nAll done!\n");

}

Output:

Here's a directory listing:

total 92

Chapter 23. <stdlib.h> Standard Library Functions 256

drwxr-xr-x 3 beej beej 4096 Oct 14 21:38 bin
drwxr-xr-x 2 beej beej 4096 Dec 20 20:07 examples
-rwxr-xr-x 1 beej beej 16656 Feb 23 21:49 foo
-rw-rw-rw- 1 beej beej 155 Feb 23 21:49 foo.c
-rw-r--r-- 1 beej beej 1350 Jan 27 22:11 Makefile
-rw-r--r-- 1 beej beej 4644 Jan 18 09:12 README.md
drwxr-xr-x 3 beej beej 4096 Feb 23 20:21 src
drwxr-xr-x 6 beej beej 4096 Feb 21 20:24 stage
drwxr-xr-x 2 beej beej 4096 Sep 27 20:54 translations
drwxr-xr-x 2 beej beej 4096 Sep 27 20:54 website

All done!

23.17 bsearch()

Binary Search (maybe) an array of objects

Synopsis
#inc lude <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description

This crazy-looking function searches an array for a value.

It probably is a binary search or some fast, efficient search. But the spec doesn’t really say.
However, the array must be sorted! So binary search seems likely.

* key is a pointer to the value to find.

* base is a pointer to the start of the array—the array must be sorted!

* nmemb is the number of elements in the array.

» size is the sizeof each element in the array.

» compar is a pointer to a function that will compare the key against other values.

The comparison function takes the key as the first argument and the value to compare against as the second.
It should return a negative number if the key is less than the value, 0 if the key equals the value, and a
positive number if the key is greater than the value.

This is commonly computed by taking the difference between the key and the value to be compared. If
subtraction is supported.

The return value from the strcmp () function can be used for comparing strings.

Again, the array must be sorted according to the order of the comparison function before running
bsearch(). Luckily for you, you can just call gsort () with the same comparison function to get this
done.

It’s a general-purpose function—it’1l search any type of array for anything. The catch is you have to write
the comparison function.

And that’s not as scary as it looks. Jump down to the example

20

21

22

23

24

25

26

27

28

29

Chapter 23. <stdlib.h> Standard Library Functions

Return Value

257

The function returns a pointer to the found value, or NULL if it can’t be found.

Example

#include <stdio.h>
#include <stdlib.h>

not voids

int compar(const void *key, const void *value)

{
const int *k = key, *v = value; // Need ints,
return *k - *v;

}

int main(void)

{
int a[9] = {2, 6, 9, 12, 13, 18, 20, 32, 47};
int *r, key;
key = 12; // 12 is in there
r = bsearch(&key, a, 9, sizeof(int), compar);
printf("Found %d\n", *r);
key = 30; // Won't find a 30
r = bsearch(&key, a, 9, sizeof(int), compar);
if (r == NULL)

printf("Didn't find 30\n");

// Searching with an unnamed key, pointer to 32
r = bsearch(&(int){32}, a, 9, sizeof(int), compar);
printf("Found %d\n", *r); // Found it

}

Output:

Found 12

Didn't find 30

Found 32

See Also

stremp(), gsort()

23.18 qsort()

Quicksort (maybe) some data

Synopsis

#include <stdlib.h>

void gsort(void *base, size t nmemb, size t size,
int (*compar)(const void *, const void *));

20

21

22

23

24

25

26

Chapter 23. <stdlib.h> Standard Library Functions 258

Description
This function will quicksort (or some other sort, probably speedy) an array of data in-place’4.

Like bsearch(), it’s data-agnostic. Any data for which you can define a relative ordering can be sorted,
whether ints, structs, or anything else.

Also like bsearch (), you have to give a comparison function to do the actual compare.

* base is a pointer to the start of the array to be sorted.
* nmemb is the number of elements in the array.

* size is the sizeof each element.

+ compar is a pointer to the comparison function.

The comparison function takes pointers to two elements of the array as arguments and compares them. It
should return a negative number if the first argument is less than the second, 0 if they are equal, and a
positive number if the first argument is greater than the second.

This is commonly computed by taking the difference between the first argument and the second. If sub-
traction is supported.

The return value from the strcmp() function can provide sort order for strings.
If you have to sort a struct, just subtract the specific field you want to sort by.
This comparison function can be used by bsearch() to do searches after the list is sorted.

To reverse the sort, subtract the second argument from the first, i.e. negate the return value from compar ().

Return Value

Returns nothing!

Example

#include <stdio.h>
#include <stdlib.h>

int compar(const void *elem®, const void *eleml)

{
const int *x = elem@, *y = eleml; // Need ints, not voids
if (*x > *y) return 1;
if (*x < *y) return -1;
return O;
}

int main(void)
int a[9] = {14, 2, 3, 17, 106, 8, 6, 1, 13};
// Sort the list
gsort(a, 9, sizeof(int), compar);
// Print sorted list

for (int 1 = 0; i < 9; i++)
printf("%d ", a[il);

putchar('\n');

14In-place” meaning that the original array will hold the results; no new array is allocated.

27

28

29

31

32

33

Chapter 23. <stdlib.h> Standard Library Functions

// Use the same compar() function to binary search
// for 17 (passed in as an unnamed object)

int *r = bsearch(&(int){17}, a, 9, sizeof(int), compar);
printf("Found %d'\n", *r);
}

Output:

12368 10 13 14 17
Found 17!

See Also

strcmp (), bsearch()

23.19 abs(), labs(), Llabs()

Compute the absolute value of an integer
Synopsis

#1include <stdlib.h>

int abs(int j);

long int labs(long int j);

long long int 1llabs(long long int j);

Description

Compute the absolute value of j. If you don’t remember, that’s how far from zero j is.

259

In other words, if j is negative, return it as a positive. If it’s positive, return it as a positive. Always be

positive. Enjoy life.

If the result cannot be represented, the behavior is undefined. Be especially aware of the upper half of

unsigned numbers.

Return Value

Returns the absolute value of j, |7].

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

printf("|-2| %d\n", abs(-2));
printf("|4| = %d\n", abs(4));
}

Output:

Chapter 23. <stdlib.h> Standard Library Functions

|-2] =
[4]

| |
AN

See Also
fabs()

23.20 div(), ldiv(), Lldiv()

Compute the quotient and remainder of two numbers

Synopsis
#include <stdlib.h>

div_t div(int numer, int denom);

ldiv_t ldiv(long int numer, long int denom);

1ldiv_t 1ldiv(long long int numer, long long int denom);

Description

These functions get you the quotient and remainder of a pair of numbers in one go.

260

They return a structure that has two fields, quot, and rem, the types of which match types of numer and

denom. Note how each function returns a different variant of div_t.

These div_t variants are equivalent to the following:
typedef struct {

int quot, rem;
} div_t;

typedef struct {
long int quot, rem;
} ldiv_t;

typedef struct {
long long int quot, rem;
} lldiv_t;
Why use these instead of the division operator?

The C99 Rationale says:

Because C89 had implementation-defined semantics for division of signed integers when
negative operands were involved, div and ldiv, and 11div in C99, were invented to provide
well-specified semantics for signed integer division and remainder operations. The semantics
were adopted to be the same as in Fortran. Since these functions return both the quotient
and the remainder, they also serve as a convenient way of efficiently modeling underlying
hardware that computes both results as part of the same operation. Table 7.2 summarizes the

semantics of these functions.

Indeed, K&R2 (C89) says:

The direction of truncation for / and the sign of the result for % are machine-dependent for

negative operands [...]

Chapter 23. <stdlib.h> Standard Library Functions 261

The Rationale then goes on to spell out what the signs of the quotient and remainder will be given the
signs of a numerator and denominator when using the div() functions:

numer denom quot rem

- - + o+
— + — —
- — -+

Return Value

A div_t, 1div_t, or 11div_t structure with the quot and rem fields loaded with the quotient and re-
mainder of the operation of numer/denom.

Example

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
div_t d = div(64, -7);
printf("64 / -7 = %d\n", d.quot);
printf("64 %% -7 = %d\n", d.rem);

}

Output:

64 / -7 = -9

64 % -7 = 1

See Also

fmod(), remainder ()

23.21 mblen()

Return the number of bytes in a multibyte character

Synopsis
#include <stdlib.h>

int mblen(const char *s, size_t n);

Description
If you have a multibyte character in a string, this will tell you how many bytes long it is.
n is the maximum number of bytes mblen () will scan before giving up.

If s is a NULL pointer, tests if this encoding has state dependency, as noted in the return value, below. It
also resets the state, if there is one.

The behavior of this function is influenced by the locale.

Chapter 23. <stdlib.h> Standard Library Functions 262

Return Value

Returns the number of bytes used to encode this character, or -1 if there is no valid multibyte character in
the next n bytes.

Or, if s is NULL, returns true if this encoding has state dependency.

Example
For the example, I used my extended character set to put Unicode characters in the source. If this doesn’t
work for you, use the \uXxXXx escape.

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

int main(void)

{
setlocale(LC_ALL, "");
printf("State dependency: %d\n", mblen(NULL, 0));
printf("Bytes for €: %d\n", mblen("€", 5));
printf("Bytes for \u00e9: %d\n", mblen("\uG0e9", 5)); // \ubbe9 == é
printf("Bytes for &: %d\n", mblen("&", 5));
}

Output (in my case, the encoding is UTF-8, but your mileage may vary):

State dependency: 0
Bytes for €: 3
Bytes for é: 2
Bytes for &: 1

See Also

mbtowc (), mbstowcs()), setlocale()

23.22 mbtowc()

Convert a multibyte character to a wide character

Synopsis
#include <stdlib.h>

int mbtowc(wchar_t * restrict pwc, const char * restrict s, size_t n);

Description

If you have a multibyte character, this function will convert it to a wide character and stored at the address
pointed to by pwc. Up to n bytes of the multibyte character will be analyzed.

If pwc is NULL, the resulting character will not be stored. (Useful for just getting the return value.)

If s is a NULL pointer, tests if this encoding has state dependency, as noted in the return value, below. It
also resets the state, if there is one.

The behavior of this function is influenced by the locale.

Chapter 23. <stdlib.h> Standard Library Functions 263

Return Value

Returns the number of bytes used in the encoded wide character, or -1 if there is no valid multibyte
character in the next n bytes.

Returns 0 if s points to the NUL character.

Or, if s is NULL, returns true if this encoding has state dependency.

Example

#inc lude <stdio.h>
#inc lude <stdlib.h>
#include <locale.h>
#inc lude <wchar.h>

int main(void)

‘ setlocale(LC_ALL, "");

printf("State dependency: %d\n", mbtowc(NULL, NULL, Q));

wchar_t wc;

int bytes;

bytes = mbtowc(&wc, "€", 5);

printf("L'%lc' takes %d bytes as multibyte char '€'\n", wc, bytes);
}

Output on my system:

State dependency: 0
L'€' takes 3 bytes as multibyte char '€'

See Also

mblen(), mbstowcs(), wcstombs(), setlocale()

23.23 wctomb()

Convert a wide character to a multibyte character

Synopsis
#include <stdlib.h>

int wctomb(char *s, wchar_t wc);

Description
If you have your hands on a wide character, you can use this to make it multibyte.

The wide character wc is stored as a multibyte character in the string pointed to by s. The buffer s points
to should be at least MB_CUR_MAX characters long. Note that MB_CUR_MAX changes with locale.

If we is a NUL wide character, a NUL is stored in s after the bytes needed to reset the shift state (if any).

Chapter 23. <stdlib.h> Standard Library Functions 264

If s is a NULL pointer, tests if this encoding has state dependency, as noted in the return value, below. It
also resets the state, if there is one.

The behavior of this function is influenced by the locale.

Return Value

Returns the number of bytes used in the encoded multibyte character, or -1 if wc does not correspond to
any valid multibyte character.

Or, if s is NULL, returns true if this encoding has state dependency.

Example

#include <stdio.h>
#inc lude <stdlib.h>
#include <locale.h>
#include <wchar.h>

int main(void)

{
setlocale(LC_ALL, "");

printf("State dependency: %d\n", mbtowc(NULL, NULL, Q));

int bytes;
char mb[MB_CUR_MAX + 11];

bytes = wctomb(mb, L'€");
mb[bytes] = '\0';

printf("L'€' takes %d bytes as multibyte char '%s'\n", bytes, mb);
}

Output on my system:

State dependency: 0
L'€' takes 3 bytes as multibyte char '€'

See Also

mbtowc (), mbstowcs (), wcstombs(), setlocale()

23.24 mbstowcs()

Convert a multibyte string to a wide character string
Synopsis
#include <stdlib.h>

size_t mbstowcs(wchar_t * restrict pwcs, const char * restrict s, size_t n);

Description

If you have a multibyte string (AKA a regular string), you can convert it wto a wide character string with
this function.

Chapter 23. <stdlib.h> Standard Library Functions 265

At most n wide characters are written to the destination pwcs from the source s.
A NUL character is stored as a wide NUL character.

Non-portable POSIX extension: if you’re using a POSIX-complaint library, this function allows pwcs
to be NULL if you’re only interested in the return value. Most notably, this will give you the number of
characters in a multibyte string (as opposed to strlen() which counts the bytes.)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Return Value

Returns the number of wide characters written to the destination pwcs.

If an invalid multibyte character was found, returns (size_t)(-1).

If the return value is n, it means the result was not NUL-terminated.

Example

This source uses an extended character set. If your compiler doesn’t support it, you’ll have to replace

them with \u escapes.
#include <stdio.h
#include <stdlib.
#inc lude <locale.
#include <string.

int main(void)

{

>
h>
h>
h>

setlocale(LC_ALL, "");

wchar_t wecs[1

28];

char *s = "€200 for this spoon?";

size_t char_c

char_count
byte_count =

printf("wide
printf("Char
printf("Byte

// POSIX Extension

// the destin

// value (whi

s = "§ﬂ°iﬂ€'”

char_count =
byte_count

printf("Multibyte str:

printf("Char
printf("Byte
}

ount, byte_count;

mbstowcs(wcs, s, 128);

strlen(s);

// 20 characters

string: L\"%1ls\"\n", wcs);
count : %zu\n'", char_count); // 20
count : %zu\n\n", byte_count); // 22

that allows you to pass NULL for

ation so you can just use the return
ch is the character count of the string,
// if no errors have occurred)

; // 7 characters

mbstowcs (NULL,
strlen(s);

s, 0);

// POSIX-only,

\"%s\"\n", s);

count : %zu\n", char_count); // 7
count : %zu\n", byte_count); // 16

Output on my system (byte count will depend on your encoding):

Wide string: L"€200 for this spoon?"

Char count : 20

on my system

nonportable

on my system

Chapter 23. <stdlib.h> Standard Library Functions 266

Byte count : 22

Multibyte str: "§f°tm€e"

Char count 7
Byte count 1 16
See Also

mblen(), mbtowc(), wcstombs(), setlocale()

23.25 wcstombs()

Convert a wide character string to a multibyte string

Synopsis
#include <stdlib.h>

size_t wcstombs(char * restrict s, const wchar_t * restrict pwcs, size_t n);

Description
If you have a wide character string and you want it as multibyte string, this is the function for you!

It’11 take the wide characters pointed to by pwcs and convert them to multibyte characters stored in s. No
more than n bytes will be written to s.

Non-portable POSIX extension: if you’re using a POSIX-complaint library, this function allows s to be
NULL if you’re only interested in the return value. Most notably, this will give you the number of bytes
needed to encode the wide characters in a multibyte string.

Return Value

Returns the number of bytes written to s, or (size_t)(-1) if one of the characters can’t be encoded into
a multibyte string.

If the return value is n, it means the result was not NUL-terminated.

Example

This source uses an extended character set. If your compiler doesn’t support it, you’ll have to replace
them with \u escapes.

#include <stdio.h>

#include <stdlib.h>

#include <locale.h>

#include <string.h>

int main(void)
{
setlocale(LC_ALL, "");

char mbs[128];
wchar_t *wcs = L"€200 for this spoon?"; // 20 characters

size_t byte_count;

20

21

22

23

24

25

26

27

28

29

30

31

32

Chapter 23. <stdlib.h> Standard Library Functions 267

}

byte_count = wcstombs(mbs, wcs, 128);

printf("wide string: L\"%Lls\"\n", wcs);
printf("Multibyte : \"%s\"\n", mbs);
printf("Byte count : %zu\n\n", byte_count); // 22 on my system

// POSIX Extension that allows you to pass NULL for
// the destination so you can just use the return

// value (which is the character count of the string,
// if no errors have occurred)

wcs = L"8§f°+n€"; // 7 characters

byte_count = wcstombs(NULL, wcs, ©); // POSIX-only, nonportable

printf("wide string: L\"%Lls\"\n", wcs);
printf("Byte count : %zu\n", byte_count); // 16 on my system

Output on my system (byte count will depend on your encoding):

Wide string: L"€200 for this spoon?"
Multibyte : "€200 for this spoon?"
Byte count : 22

Wide string: L"8f°im€e"
Byte count : 16

See Also

mblen(), wctomb(), mbstowcs(), setlocale()

Chapter 24

<stdnoreturn.h> Macros for
Non-Returning Functions

This header provides a macro n

Use this macro to indicate to the compiler that a function will never return to the caller. It’s undefined

oreturn that is a handy alias for _Noreturn.

behavior if the so-marked function does return.

Here’s a usage example:
#include <stdio.h>
#include <stdlib.h>
#include <stdnoreturn.h>

noreturn void foo(void)

{
printf("Happy days\n

exit(1);
}
int main(void)
{
foo();
}

That’s all there is to it.

// This function should never return!

)i

// And it doesn't return--it exits here!

268

Chapter 25

<string.h> String Manipulation

Function Description

memchr () Find the first occurrence of a character in memory.

memcmp () Compare two regions of memory.

memcpy () Copy a region of memory to another.

memmove () Move a (potentially overlapping) region of
memory.

memset () Set a region of memory to a value.

strcat() Concatenate (join) two strings together.

strchr() Find the first occurrence of a character in a string.

strcmp() Compare two strings.

strcoll() Compare two strings accounting for locale.

strcpy() Copy a string.

strcspn() Find length of a string not consisting of a set of

strerror()

characters.
Return a human-readable error message for a
given code.

strilen() Return the length of a string.

strncat() Concatenate (join) two strings, length-limited.

strncmp() Compare two strings, length-limited.

strncpy() Copy two strings, length-limited.

strpbrk() Search a string for one of a set of character.

strrchr() Find the last occurrence of a character in a string.

strspn() Find length of a string consisting of a set of
characters.

strstr() Find a substring in a string.

strtok() Tokenize a string.

strxfrm() Prepare a string for comparison as if by

strcoll().

As has been mentioned earlier in the guide, a string in C is a sequence of bytes in memory, terminated
by a NUL character (‘\0”). The NUL at the end is important, since it lets all these string functions (and
printf() and puts() and everything else that deals with a string) know where the end of the string
actually is.

Fortunately, when you operate on a string using one of these many functions available to you, they add
the NUL terminator on for you, so you actually rarely have to keep track of it yourself. (Sometimes you
do, especially if you’re building a string from scratch a character at a time or something.)

In this section you’ll find functions for pulling substrings out of strings, concatenating strings together,
getting the length of a string, and so forth and so on.

269

Chapter 25. <string.h> String Manipulation 270

25.1 memcpy(), memmove ()

Copy bytes of memory from one location to another

Synopsis
#include <string.h>
void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

void *memmove(void *si1, const void *s2, size_t n);

Description
These functions copy memory—as many bytes as you want! From source to destination!

The main difference between the two is that memcpy () cannot safely copy overlapping memory regions,
whereas memmove () can.

On the one hand, I’m not sure why you’d want to ever use memcpy () instead of memmove (), but I’ll bet
it’s possibly more performant.

The parameters are in a particular order: destination first, then source. I remember this order because it
behaves like an “=" assignment: the destination is on the left.

Return Value

Both functions return whatever you passed in for parameter s1 for your convenience.

Example

#include <string.h>

int main(void)

{
char s[100] = "Goats";
char t[100];
memcpy(t, s, 6); // Copy non-overlapping memory
memmove(s + 2, s, 6); // Copy overlapping memory
}
See Also

strcpy(), strncpy()

25.2 strcpy(), strncpy()

Copy a string

Synopsis
#include <string.h>

char *strcpy(char *dest, char *src);

20

21

22

23

24

25

26

Chapter 25. <string.h> String Manipulation 271

char *strncpy(char *dest, char *src, size_t n);

Description

These functions copy a string from one address to another, stopping at the NUL terminator on the
srcstring.

strncpy() is just like strcpy(), except only the first n characters are actually copied. Beware that
if you hit the limit, n before you get a NUL terminator on the src string, your dest string won’t be
NUL-terminated. Beware! BEWARE!

(If the src string has fewer than n characters, it works just like strcpy().)

You can terminate the string yourself by sticking the '\@" in there yourself:

char s[10];
char foo = "My hovercraft is full of eels."; // more than 10 chars

strncpy(s, foo, 9); // only copy 9 chars into positions 0-8
s[9] = '\0'; // position 9 gets the terminator

Return Value

Both functions return dest for your convenience, at no extra charge.

Example

#include <string.h>

int main(void)

{
char *src = "hockey hockey hockey hockey hockey hockey hockey hockey";
char dest[20];
int len;
strcpy(dest, "I like "); // dest is now "I like "
len = strlen(dest);
// tricky, but let's use some pointer arithmetic and math to append
// as much of src as possible onto the end of dest, -1 on the length to
// leave room for the terminator:
strncpy(dest+len, src, sizeof(dest)-len-1);
// remember that sizeof() returns the size of the array in bytes
// and a char is a byte:
dest[sizeof(dest)-1] = '\0'; // terminate
// dest 1is now: v null terminator
// I like hockey hocke
// 01234567890123456789012345
}
See Also

memcpy (), strcat(), strncat()

Chapter 25. <string.h> String Manipulation 272

25.3 strcat(), strncat()

Concatenate two strings into a single string

Synopsis
#include <string.h>
int strcat(const char *dest, const char *src);

int strncat(const char *dest, const char *src, size_t n);

Description

“Concatenate”, for those not in the know, means to “stick together”. These functions take two strings, and
stick them together, storing the result in the first string.

These functions don’t take the size of the first string into account when it does the concatenation. What
this means in practical terms is that you can try to stick a 2 megabyte string into a 10 byte space. This will
lead to unintended consequences, unless you intended to lead to unintended consequences, in which case
it will lead to intended unintended consequences.

Technical banter aside, your boss and/or professor will be irate.

If you want to make sure you don’t overrun the first string, be sure to check the lengths of the strings first
and use some highly technical subtraction to make sure things fit.

You can actually only concatenate the first n characters of the second string by using strncat() and
specifying the maximum number of characters to copy.

Return Value

Both functions return a pointer to the destination string, like most of the string-oriented functions.

Example

#inc lude <stdio.h>
#include <string.h>

int main(void)

{
char dest[30] = "Hello";
char *src = ", world!";
char numbers[] = "12345678";
printf("dest before strcat: \"%s\"\n", dest); // "Hello"
strcat(dest, src);
printf("dest after strcat: \"%s\"\n", dest); // "Hello, world!"
strncat(dest, numbers, 3); // strcat first 3 chars of numbers
printf("dest after strncat: \"%s\"\n", dest); // "Hello, world!123"
}

Notice I mixed and matched pointer and array notation there with src and numbers; this is just fine with
string functions.

See Also

strilen()

Chapter 25. <string.h> String Manipulation 273

25.4 strcmp(), strncmp(), memcmp()

Compare two strings or memory regions and return a difference

Synopsis

#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

int memcmp(const void *s1, const void *s2, size_t n);

Description
All these functions compare chunks of bytes in memory.

strcmp() and strncmp() operate on NUL-terminated strings, whereas memcmp () will compare the num-
ber of bytes you specify, brazenly ignoring any NUL characters it finds along the way.

strcmp () compares the entire string down to the end, while strncmp() only compares the first n char-
acters of the strings.

It’s a little funky what they return. Basically it’s a difference of the strings, so if the strings are the same,
it’ll return zero (since the difference is zero). It’ll return non-zero if the strings differ; basically it will find
the first mismatched character and return less-than zero if that character in s1 is less than the corresponding
character in s2. It’ll return greater-than zero if that character in s1 is greater than that in s2.

So if they return 0, the comparison was equal (i.e. the difference was 0.)

These functions can be used as comparison functions for gsort() if you have an array of char*s you
want to sort.

Return Value

Returns zero if the strings or memory are the same, less-than zero if the first different character in s1 is
less than that in s2, or greater-than zero if the first difference character in s1 is greater than than in s2.

Example

#include <stdio.h>
#include <string.h>

int main(void)

{
char *s1 = "Muffin";
char *s2 = "Muffin Sandwich";
char *s3 = "Muffin";

int r1 = strcmp("Biscuits", "Kittens");
printf("%d\n", r1); // prints < 0 since 'B' < 'K'

int r2 = strcemp("Kittens", "Biscuits");
printf("%d\n", r2); // prints > 0 since 'K' > 'B'

if (strcmp(sl, s2) == 0)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Chapter 25. <string.h> String Manipulation

if

/7
/7
V4
V4
//

if

if

printf("This won't get printed because the strings differ\n");

(strcmp(s1, s3) == 0)
printf("This will print because s1 and s3 are the same\n");

this is a little weird...but if the strings are the same, it'll
return zero, which can also be thought of as "false". Not-false
is "true", so (!strcmp()) will be true if the strings are the
same. yes, it's odd, but you see this all the time in the wild
so you might as well get used to it:

(Istrcmp(si, s3))
printf("The strings are the same!\n");

(!strncmp(sl, s2, 6))
printf("The first 6 characters of s1 and s2 are the same\n");

See Also

memcmp (), qsort()

25.5

strcoll()

Compare two strings accounting for locale

Synopsis

#include <string.h>

int strcoll(const char *s1, const char *s2);

Description

274

This is basically strcmp (), except that it handles accented characters better depending on the locale.

For example, my strcmp() reports that the character “é” (with accent) is greater than “f”. But that’s
hardly useful for alphabetizing.

By setting the LC_COLLATE locale value (either by name or via LC_ALL), you can have strcoll() sort
in a way that’s more meaningful by the current locale. For example, by having “é” appear sanely before

“fn

It’s also a lot slower than strcmp () so use it only if you have to. See strxfrm() for a potential speedup.

Return Value

Like the other string comparison functions, strcoll() returns a negative value if s1 is less than s2, or a
positive value if s1 is greater than s2. Or 0 if they are equal.

Example

#include <stdio.h>
#include <string.h>
#include <locale.h>

Chapter 25. <string.h> String Manipulation 275

int main(void)

{
setlocale(LC_ALL, "");
// If your source character set doesn't support "é" in a string
// you can replace it with “\u@0e9', the Unicode code point
// for "eé".
printf("%d\n", strcmp("ée", "f")); // Reports é > f, yuck.
printf("%d\n", strcoll("é", "f")); // Reports é < f, yay!

}

See Also

strcemp()

25.6 strxfrm()

Transform a string for comparing based on locale

Synopsis
#include <string.h>

size_t strxfrm(char * restrict s1, const char * restrict s2, size_t n);

Description
This is a strange little function, so bear with me.
Firstly, if you haven’t done so, get familiar with strcoll() because this is closely related to that.

OK! Now that you’re back, you can think of strxfrm() as the first part of the strcoll() internals.
Basically, strcoll() has to transform a string into a form that can be compared with strcemp (). And it
does this with strxfrm() for both strings every time you call it.

strxform() takes string s2 and transforms it (readies it for strcmp()) storing the result in s1. It writes
no more than n bytes, protecting us from terrible buffer overflows.

But hang on—there’s another mode! If you pass NULL for s1 and @ for n, it will return the number of
bytes that the transformed string would have used!. This is useful if you need to allocate some space to
hold the transformed string before you strcmp() it against another.

What I’'m getting at, not to be too blunt, is that strcoll() is slow compared to strcmp(). It does a lot
of extra work running strxfrm() on all its strings.

In fact, we can see how it works by writing our own like this:

int my_strcoll(char *s1, char *s2)

{
// Use n = 0 to just get the lengths of the transformed strings
int leni strxfrm(NULL, s1, O) + 1;
int len2 = strxfrm(NULL, s2, Q) + 1;

// Allocate enough room for each
char *d1 = malloc(lenl);

!t always returns the number of bytes the transformed string took, but in this case because s1 was NULL, it doesn’t actually write
a transformed string.

20

21

22

23

22

23

24

25

Chapter 25. <string.h> String Manipulation 276

char *d2 = malloc(len2);

// Transform the strings for comparison
strxfrm(d1, si1, leni);
strxfrm(d2, s2, len2);

// Compare the transformed strings
int result = strcmp(di, d2);

// Free up the transformed strings
free(d2);
free(dl);

return result;

}

You see on lines 12, 13, and 16, above how we transform the two input strings and then call strcmp() on
the result.

So why do we have this function? Can’t we just call strcoll() and be done with it?

The idea is that if you have one string that you’re going to be comparing against a whole lot of other ones,
maybe you just want to transform that string one time, then use the faster strcmp () saving yourself a
bunch of the work we had to do in the function, above.

We’ll do that in the example.

Return Value

Returns the number of bytes in the transformed sequence. If the value is greater than n, the results in s1
are meaningless.

Example

#include <stdio.h>
#include <string.h>
#inc lude <locale.h>
#include <stdlib.h>

// Transform a string for comparison, returning a malloc'd
// result
char *get_xfrm_str(char *s)

{
int len = strxfrm(NULL, s, 0) + 1;
char *d = malloc(len);

strxfrm(d, s, len);
return d;
// Does half the work of a regular strcoll() because the second

// string arrives already transformed.
int half_strcoll(char *s1, char *s2_transformed)

{

char *s1_transformed = get_xfrm_str(s1);

int result = strcmp(sl_transformed, s2_transformed);

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

Chapter 25. <string.h> String Manipulation 277

free(sl_transformed);

return result;

}

int main(void)

{
setlocale(LC_ALL, "");
// Pre-transform the string to compare against
char *s = get_xfrm_str("efg");
// Repeatedly compare against "éfg"
printf("%d\n", half_strcoll("fgh", s)); // "fgh" > "éfg"
printf("%d\n", half_strcoll("abc", s)); // "abc" < "éfg"
printf("%d\n", half_strcoll("hij", s)); // "hij" > "éfg"
free(s);

}

See Also

strcoll()

25.7 strchr(), strrchr(), memchr ()

Find a character in a string

Synopsis

#include <string.h>

char *strchr(char *str, int c);
char *strrchr(char *str, int c);

void *memchr(const void *s, int c, size_t n);

Description

The functions strchr () and strrchr find the first or last occurrence of a letter in a string, respectively.
(The extra “r” in strrchr() stands for “reverse”—it looks starting at the end of the string and working
backward.) Each function returns a pointer to the char in question, or NULL if the letter isn’t found in the
string.

memchr () is similar, except that instead of stopping on the first NUL character, it continues searching for
however many bytes you specify.
Quite straightforward.

One thing you can do if you want to find the next occurrence of the letter after finding the first, is call the
function again with the previous return value plus one. (Remember pointer arithmetic?) Or minus one if
you’re looking in reverse. Don’t accidentally go off the end of the string!

20

21

22

23

24

Chapter 25. <string.h> String Manipulation 278

Return Value

Returns a pointer to the occurrence of the letter in the string, or NULL if the letter is not found.

Example

#include <stdio.h>
#include <string.h>

int main(void)

{
// "Hello, world!"
// A A A
// A B (03
char *str = "Hello, world!";
char *p;
p = strchr(str, ',"); // p now points at position A
p = strrchr(str, '0'); // p now points at position B
p = memchr(str, '!', 13); // p now points at position C
// repeatedly find all occurrences of the letter 'B'
str = "A BIG BROWN BAT BIT BEEJ";
for(p = strchr(str, 'B'"); p != NULL; p = strchr(p + 1, 'B')) {
printf("Found a 'B' here: %s\n", p);
}
}
Output:
Found a 'B' here: BIG BROWN BAT BIT BEEJ
Found a 'B' here: BROWN BAT BIT BEEJ
Found a 'B' here: BAT BIT BEEJ
Found a 'B' here: BIT BEEJ
Found a 'B' here: BEEJ

25.8 strspn(), strcspn()

Return the length of a string consisting entirely of a set of characters, or of not a set of characters
Synopsis

#inc lude <string.h>

size_t strspn(char *str, const char *accept);

size_t strcspn(char *str, const char *reject);

Description

strspn() will tell you the length of a string consisting entirely of the set of characters in accept. That
is, it starts walking down str until it finds a character that is not in the set (that is, a character that is not
to be accepted), and returns the length of the string so far.

Chapter 25. <string.h> String Manipulation 279

strcspn() works much the same way, except that it walks down str until it finds a character in the
reject set (that is, a character that is to be rejected.) It then returns the length of the string so far.

Return Value

The length of the string consisting of all characters in accept (for strspn()), or the length of the string
consisting of all characters except reject (for strcspn()).

Example

#include <stdio.h>
#include <string.h>

int main(void)

{
char stri[] = "a banana";
char str2[] = "the bolivian navy on maenuvers in the south pacific";
int n;
// how many letters in strl until we reach something that's not a vowel?
n = strspn(strl, "aeiou");
printf("%d\n", n); // n == 1, just "a"
// how many letters in strl until we reach something that's not a, b,
// or space?
n = strspn(stri, "ab ");
printf("%d\n", n); // n == 4, "a ba"
// how many letters in str2 before we get a "y"?
n = strcspn(str2, "y");
printf("%d\n", n); // n = 16, "the bolivian nav"
}
See Also

strchr(), strrchr()

25.9 strpbrk()

Search a string for one of a set of characters

Synopsis
#include <string.h>

char *strpbrk(const char *si1, const char *s2);

Description
This function searches string s1 for any of the characters that are found in string s2.

It’s just like how strchr () searches for a specific character in a string, except it will match any of the
characters found in s2.

Think of the power!

Chapter 25. <string.h> String Manipulation

Return Value

Returns a pointer to the first character matched in s1, or NULL if the string isn’t found.

Example

#include <stdio.h>
#include <string.h>

int main(void)

{
// p points here after strpbrk
// 1%
char *s1 = "Hello, world!";
char *s2 = "dow!"; // Match any of these chars
char *p = strpbrk(si, s2); // p points to the o
printf("%s\n", p); // "o, world!"

}

See Also

strchr(), memchr ()

25.10 strstr()

Find a string in another string

Synopsis

#include <string.h>

char *strstr(const char *str, const char *substr);

Description

280

Let’s say you have a big long string, and you want to find a word, or whatever substring strikes your fancy,

inside the first string. Then strstr() is for you! It’ll return a pointer to the substr within the str!

Return Value

You get back a pointer to the occurrence of the substr inside the str, or NULL if the substring can’t be
found.

Example

#include <stdio.h>
#include <string.h>

int main(void)

{

char *str = "The quick brown fox jumped over the lazy dogs.";
char *p;

Chapter 25. <string.h> String Manipulation 281

p = strstr(str, "lazy");
printf("%s\n", p == NULL? "null": p); // "lazy dogs."

// p 1s NULL after this, since the string "wombat" isn't in str:

p = strstr(str, "wombat");
printf("%s\n", p == NULL? "null": p); // "null"

See Also

strchr(), strrchr(), strspn(), strcspn()

25.11 strtok()

Tokenize a string

Synopsis
#include <string.h>

char *strtok(char *str, const char *delim);

Description

If you have a string that has a bunch of separators in it, and you want to break that string up into individual
pieces, this function can do it for you.

The usage is a little bit weird, but at least whenever you see the function in the wild, it’s consistently weird.

Basically, the first time you call it, you pass the string, str that you want to break up in as the first
argument. For each subsequent call to get more tokens out of the string, you pass NULL. This is a little
weird, but strtok () remembers the string you originally passed in, and continues to strip tokens off for
you.

Note that it does this by actually putting a NUL terminator after the token, and then returning a pointer to
the start of the token. So the original string you pass in is destroyed, as it were. If you need to preserve
the string, be sure to pass a copy of it to strtok() so the original isn’t destroyed.

Return Value

A pointer to the next token. If you’re out of tokens, NULL is returned.

Example

#include <stdio.h>
#include <string.h>

int main(void)
{
// break up the string into a series of space or
// punctuation-separated words
char str[] = "Where is my bacon, dude?";
char *token;

// Note that the following if-do-while construct is very very
// very very very common to see when using strtok().

20

21

22

23

24

Chapter 25. <string.h> String Manipulation 282

// grab the first token (making sure there is a first token!)
if ((token = strtok(str, ".,?! ")) != NULL) {
do {
printf("word: \"%s\"\n", token);

// now, the while continuation condition grabs the
// next token (by passing NULL as the first param)
// and continues if the token's not NULL:

} while ((token = strtok(NULL, ".,?! ")) I= NULL);

}
}
Output:
Word: "Where"
Word: "is"
word: "my"
Word: "bacon"
Word: "dude"
See Also

strchr(), strrchr(), strspn(), strcspn()

25.12 memset()

Set a region of memory to a certain value

Synopsis
#include <string.h>

void *memset(void *s, int c, size_t n);

Description

This function is what you use to set a region of memory to a particular value, namely ¢ converted into
unsigned char.

The most common usage is to zero out an array or struct.

Return Value

memset () returns whatever you passed in as s for happy convenience.

Example

#include <stdio.h>
#include <string.h>

int main(void)
{
struct banana {
float ripeness;
char *peel_color;

Chapter 25. <string.h> String Manipulation 283

int grams;

1
struct banana b;

memset (&b, 0, sizeof b);

printf("%d\n", b.ripeness == 0.0); // True
printf("%d\n", b.peel_color == NULL); // True
printf("%d\n", b.grams == 0); // True
}
See Also

memcpy (), memmove ()

25.13 strerror()

Get a string version of an error number

Synopsis
#include <string.h>

char *strerror(int errnum);

Description

This function ties closely into perror () (which prints a human-readable error message corresponding to
errno). But instead of printing, strerror () returns a pointer to the locale-specific error message string.

So if you ever need that string back for some reason (e.g. you’re going to fprintf() it to a file or
something), this function will give it to you. All you need to do is pass in errno as an argument. (Recall
that errno gets set as an error status by a variety of functions.)

You can actually pass in any integer for errnum you want. The function will return some message, even
if the number doesn’t correspond to any known value for errno.

The values of errno and the strings returned by strerror () are system-dependent.

Return Value
A string error message corresponding to the given error number.

You are not allowed to modify the returned string.

Example

#include <stdio.h>
#include <string.h>
#include <errno.h>

int main(void)
{
FILE *fp = fopen("NONEXISTENT_FILE.TXT", "r");

Chapter 25. <string.h> String Manipulation 284

if (fp == NULL) {
char *errmsg = strerror(errno);
printf("Error %d opening file: %s\n", errno, errmsg);

}

Output:

Error 2 opening file: No such file or directory

See Also

perror()

25.14 strlen()

Returns the length of a string

Synopsis
#include <string.h>

size_t strlen(const char *s);

Description

This function returns the length of the passed null-terminated string (not counting the NUL character at
the end). It does this by walking down the string and counting the bytes until the NUL character, so it’s a
little time consuming. If you have to get the length of the same string repeatedly, save it off in a variable
somewhere.

Return Value

Returns the number of bytes in the string. Note that this might be different than the number of characters
in a multibyte string.

Example

#include <stdio.h>
#inc lude <string.h>

int main(void)

{
char *s = "Hello, world!"; // 13 characters
// prints "The string is 13 characters long.":
printf("The string is %zu characters long.\n", strlen(s));
}

See Also

Chapter 26

<tgmath.h> Type-Generic Math
Functions

These are type-generic macros that are wrappers around the math functions in <math.h> and <com-
plex.h>. This header includes both of those.

But on the surface, you can think of them as being able to use, say, the sqrt () function with any type
without needed to think about if it’s double or long double or even complex

These are the defined macros—some of them don’t have a counterpart in the real or complex space. Type
suffixes are omitted in the table on the Real and Complex columns. None of the generic macros have type
suffixes.

Real Function Complex Function Generic Macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs
atan2 — atan2
fdim — fdim
cbrt — cbrt
floor — floor
ceil — ceil
fma — fma
copysign — copysign
fmax — fmax
erf — erf
fmin — fmin
erfc — erfc
fmod — fmod

285

Chapter 26. <tgmath. h> Type-Generic Math Functions

286

Real Function

Complex Function

Generic Macro

exp2 — exp2
frexp — frexp
expml — expml
hypot — hypot
ilogb — ilogb
ldexp — ldexp
lgamma — lgamma
1lrint — 1lrint
11lround — 11lround
log10 — logl0
loglp — logilp
log2 — log2

logb — logb
lrint — lrint
lround — lround
nearbyint — nearbyint
nextafter — nextafter
nexttoward — nexttoward
remainder — remainder
remquo — remquo
rint — rint
round — round
scalbn — scalbn
scalbln — scalbln
tgamma — tgamma
trunc — trunc

— carg carg

— cimag cimag

— conj conj

— cproj cproj

— creal creal

26.1 Example

Here’s an example where we call the type-generic sqrt () function on a variety of types.

#include <stdio.h>
#include <tgmath.h>

int main(void)
{
double x = 12.8;
long double y = 34.9;
double complex z =1 + 2 * I;

double x_result;
long double y_result;
double complex z_result;

// We call the same sqrt() function--it's type-generic!
x_result = sqrt(x);
y_result sqrt(y);
z_result sqrt(z);

printf("x _result: %f\n", x_result);
printf("y_result: %Lf\n", y_result);

21

22

Chapter 26. <tgmath. h> Type-Generic Math Functions 287

printf("z result: %f + %fi\n", creal(z_result), cimag(z_result));

}

Output:

Xx_result: 3.577709
y_result: 5.907622
z_result: 1.272020 + 0.7861511i

Chapter 27

<threads.h> Multithreading

Functions

Function

Description

call_once()
cnd_broadcast()

cnd_destroy()
cnd_init()

cnd_signal()
cnd_timedwait()
cnd_wait()
mtx_destroy()
mtx_init()
mtx_Tlock()
mtx_timedlock()
mtx_trylock()
mtx_unlock()

thrd_create()
thrd_current()
thrd_detach()
thrd_equal()
thrd_exit()
thrd_join()
thrd_yield()
tss_create()
tss_delete()
tss_get()
tss_set()

Call a function one time no matter how many
threads try

Wake up all threads waiting on a condition
variable

Free up resources from a condition variable
Initialize a condition variable to make it ready for
use

Wake up a thread waiting on a condition variable
Wait on a condition variable with a timeout
Wait for a signal on a condition variable
Cleanup a mutex when done with it

Initialize a mutex for use

Acquire a lock on a mutex

Lock a mutex allowing for timeout

Try to lock a mutex, returning if not possible
Free a mutex when you’re done with the critical
section

Create a new thread of execution

Get the ID of the calling thread

Automatically clean up threads when they exit
Compare two thread descriptors for equality
Stop and exit this thread

Wait for a thread to exit

Stop running that other threads might run
Create new thread-specific storage

Clean up a thread-specific storage variable

Get thread-specific data

Set thread-specific data

We have a bunch of good things at our disposal with this one:

» Threads
* Mutexes

» Condition Variables
+ Thread-Specific Storage

 And, last but not least, the always-fun call_once() function!

Enjoy!

288

20

21

22

23

24

Chapter 27. <threads . h> Multithreading Functions 289

27.1 call_once()

Call a function one time no matter how many threads try

Synopsis
#include <threads.h>

void call_once(once_flag *flag, void (*func)(void));

Description

If you have a bunch of threads running over the same piece of code that calls a function, but you only
want that function to run one time, call_once() can help you out.

The catch is the function that is called doesn’t return anything and takes no arguments.

If you need more than that, you’ll have to set a threadsafe flag such as atomic_flag, or one that you
protect with a mutex.

To use this, you need to pass it a pointer to a function to execute, func, and also a pointer to a flag of type
once_flag.

once_flag is an opaque type, so all you need to know is that you initialize it to the wvalue
ONCE_FLAG_INIT.

Return Value
Returns nothing.

Example

#include <stdio.h>
#include <threads.h>

once_flag of = ONCE_FLAG_INIT; // Initialize it like this

void run_once_function(void)

{
printf("I'll only run once!\n");

}

int run(void *arg)

{
(void)arg;
printf("Thread running!\n");
call_once(&of, run_once_function);
return 0O;

}

#define THREAD_COUNT 5

int main(void)

25

26

27

28

29

31

32

33

Chapter 27. <threads . h> Multithreading Functions 290

{
thrd_t t[THREAD_COUNT];
for (int i = ©; i < THREAD_COUNT; i++)
thrd_create(t + i, run, NULL);
for (int i = 0; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL);
}

Output (might vary per run):

Thread running!
Thread running!
I'll only run once!
Thread running!
Thread running!
Thread running!

27.2 cnd_broadcast()

Wake up all threads waiting on a condition variable

Synopsis
#include <threads.h>

int cnd_broadcast(cnd_t *cond);

Description

This is just like cnd_signal() in that it wakes up threads that are waiting on a condition variable....
except instead of just rousing one thread, it wakes them all.

Of course, only one will get the mutex, and the rest will have to wait their turn. But instead of being
asleep waiting for a signal, they’ll be asleep waiting to reacquire the mutex. They’re rearin’ to go, in other
words.

This can make a difference in a specific set of circumstances where cnd_signal() might leave you
hanging.

If you’re relying on subsequent threads to issue the next cnd_signal(), but you have the cnd_wait ()
inawhile loop! that doesn’t allow any threads to escape, you’ll be stuck. No more threads will be woken
up from the wait.

But if you cnd_broadcast (), all the threads will be woken, and presumably at least one of them will be
allowed to escape the while loop, freeing it up to broadcast the next wakeup when its work is done.

Return Value

Returns thrd_success or thrd_error depending on how well things went.

Example

In the example below, we launch a bunch of threads, but they’re only allowed to run if their ID matches
the current ID. If it doesn’t, they go back to waiting.

'Which you should because of spurious wakeups.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Chapter 27. <threads . h> Multithreading Functions 291

If you cnd_signal() to wake the next thread, it might not be the one with the proper ID to run. If it’s
not, it goes back to sleep and we hang (because no thread is awake to hit cnd_signal() again).

But if you cnd_broadcast () to wake them all, then they’ll all try (one after another) to get out of the
while loop. And one of them will make it.

Try switching the cnd_broadcast () to cnd_signal() to see likely deadlocks. It doesn’t happen every
time, but usually does.

#include <stdio.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)

{

int id = *(int*)arg;
static int current_id = 0;
mtx_lock(&mutex);
while (id != current_id) {
printf("THREAD %d: waiting\n", id);
cnd_wait(&condvar, &mutex);
if (id != current_id)
printf("THREAD %d: woke up, but it's not my turn!\n", id);
else
printf("THREAD %d: woke up, my turn! Let's go!\n", id);
current_id++;
printf("THREAD %d: signaling thread %d to run\n", id, current_id);
//cnd_signal(&condvar);
cnd_broadcast(&condvar);

mtx_unlock(&mutex);

return O;

#define THREAD_COUNT 5

int main(void)
{
thrd_t t[THREAD_COUNT];
int id[] = {4, 3, 2, 1, 0};

mtx_init(&mutex, mtx_plain);
cnd_init(&condvar);

for (int i = 0; i < THREAD_COUNT; i++)
thrd_create(t + i, run, id + 1i);

for (int i = ©; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL):

Chapter 27. <threads . h> Multithreading Functions

mtx_destroy(&mutex);
cnd_destroy(&condvar) ;

292

THREAD
THREAD
THREAD
THREAD

woke up, my turn! Let's go!
signaling thread 4 to run
woke up, my turn! Let's go!
signaling thread 5 to run

}
Example run with cnd_broadcast():
THREAD 4: waiting
THREAD 1: waiting
THREAD 3: waiting
THREAD 2: waiting
THREAD 0: signaling thread 1 to run
THREAD 2: woke up, but it's not my turn!
THREAD 2: waiting
THREAD 4: woke up, but it's not my turn!
THREAD 4: waiting
THREAD 3: woke up, but it's not my turn!
THREAD 3: waiting
THREAD 1: woke up, my turn! Let's go!
THREAD 1: signaling thread 2 to run
THREAD 4: woke up, but it's not my turn!
THREAD 4: waiting
THREAD 3: woke up, but it's not my turn!
THREAD 3: waiting
THREAD 2: woke up, my turn! Let's go!
THREAD 2: signaling thread 3 to run
THREAD 4: woke up, but it's not my turn!
THREAD 4: waiting

Sh

&8

4:

4:

Example run with cnd_signal():

THREAD 4: waiting

THREAD 1: waiting

THREAD 3: waiting

THREAD 2: waiting

THREAD 0: signaling thread 1 to run
THREAD 4: woke up, but it's not my turn!
THREAD 4: waiting

[deadlock at this point]

See how THREAD 0 signaled that it was THREAD 1’s turn? But—bad news—it was THREAD 4 that got
woken up. So no one continued the process. cnd_broadcast () would have woken them all, so eventually
THREAD 1 would have run, gotten out of the while, and broadcast for the next thread to run.

See Also

cnd_signal(), mtx_lock(), mtx_unlock()

27.3 cnd_destroy()

Free up resources from a condition variable

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Chapter 27. <threads . h> Multithreading Functions

Synopsis

#include <threads.h>

void cnd_destroy(cnd_t *cond);

Description

This is the opposite of cnd_init () and should be called when all threads are done using a condition

variable.

Return Value

Returns nothing!

Example

General-purpose condition variable example here, but you can see the cnd_destroy() down at the end.

#include <stdio.h>
#include <threads.h>

cnd_
mtx_

int

{

int

t condvar;
t mutex;

run(void *arg)

(void)arg;

mtx_lock(&mutex);

printf("Thread: waiting...\n");
cnd_wait(&condvar, &mutex);
printf("Thread: running again!\n");

mtx_unlock(&mutex) ;

return 0;

main(void)
thrd_t t;

mtx_init(&mutex, mtx_plain);
cnd_init(&condvar);

printf("Main creating thread\n");
thrd_create(&t, run, NULL);

// Sleep 0.1s to allow the other thread to wait
thrd_sleep(&(struct timespec){.tv_nsec=100000000L},

mtx_lock(&mutex);

printf("Main: signaling thread\n");
cnd_signal(&condvar);
mtx_unlock(&mutex) ;

NULL);

40

41

42

43

Chapter 27. <threads . h> Multithreading Functions 294

thrd_join(t, NULL);

mtx_destroy(&mutex);
cnd_destroy(&condvar); // <-- DESTROY CONDITION VARIABLE

}

Output:

Main creating thread
Thread: waiting...
Main: signaling thread
Thread: running again!

See Also

cnd_init()

27.4 cnd_init()

Initialize a condition variable to make it ready for use

Synopsis
#include <threads.h>

int cnd_init(cnd_t *cond);

Description

This is the opposite of cnd_destroy(). This prepares a condition variable for use, doing behind-the-
scenes work on it.

Don’t use a condition variable without calling this first!

Return Value

If all goes well, returns thrd_success. It all doesn’t go well, it could return thrd_nomem if the system
is out of memory, or thread_error in the case of any other error.

Example
General-purpose condition variable example here, but you can see the cnd_init () down at the start of
main().

#include <stdio.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)
{

(void)arg;

mtx_lock(&mutex);

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chapter 27. <threads . h> Multithreading Functions

printf("Thread: waiting...\n");
cnd_wait(&condvar, &mutex);
printf("Thread: running again!\n");

mtx_unlock(&mutex);

return 0O;

int main(void)
thrd_t t;

mtx_init(&mutex, mtx_plain);

cnd_init(&condvar); // <-- INITIALIZE CONDITION VARIABLE

printf("Main creating thread\n");
thrd_create(&t, run, NULL);

// Sleep 0.1s to allow the other thread to wait
thrd_sleep(&(struct timespec){.tv_nsec=100000000L}, NULL);

mtx_lock(&mutex);

printf("Main: signaling thread\n");
cnd_signal(&condvar);
mtx_unlock(&mutex);

thrd_join(t, NULL);

mtx_destroy(&mutex);
cnd_destroy(&condvar);

}

Output:

Main creating thread
Thread: waiting...
Main: signaling thread
Thread: running again!

See Also

cnd_destroy()

27.5 cnd_signal()

Wake up a thread waiting on a condition variable
Synopsis

#include <threads.h>

int cnd_signal(cnd_t *cond);

295

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Chapter 27. <threads . h> Multithreading Functions 296

Description

If you have a thread (or a bunch of threads) waiting on a condition variable, this function will wake one
of them up to run.

Compare to cnd_broadcast () that wakes up all the threads. See the cnd_broadcast () page for more
information on when you’re want to use that versus this.

Return Value

Returns thrd_success or thrd_error depending on how happy your program is.

Example

General-purpose condition variable example here, but you can see the cnd_signal() in the middle of
main().

#include <stdio.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)

{
(void)arg;
mtx_lock(&mutex);
printf("Thread: waiting...\n");
cnd_wait(&condvar, &mutex);
printf("Thread: running again!\n");
mtx_unlock(&mutex);
return 0O;

}

int main(void)
thrd_t t;

mtx_init(&mutex, mtx_plain);
cnd_init(&condvar);

printf("Main creating thread\n");
thrd_create(&t, run, NULL);

// Sleep 0.1s to allow the other thread to wait
thrd_sleep(&(struct timespec){.tv_nsec=100000000L}, NULL);

mtx_lock(&mutex);

printf("Main: signaling thread\n");

cnd_signal(&condvar); // <-- SIGNAL CHILD THREAD HERE!
mtx_unlock(&mutex);

thrd_join(t, NULL);

mtx_destroy(&mutex);

43

Chapter 27. <threads . h> Multithreading Functions 297

cnd_destroy(&condvar);

}

Output:

Main creating thread
Thread: waiting...
Main: signaling thread
Thread: running again!

See Also

cnd_init (), cnd_destroy()

27.6 cnd_timedwait()

Wait on a condition variable with a timeout

Synopsis
#1include <threads.h>

int cnd_timedwait(cnd_t *restrict cond, mtx_t *restrict mtx,
const struct timespec *restrict ts);

Description
This is like cnd_wait () except we get to specify a timeout, as well.

Note that the thread still must reacquire the mutex to get more work done even after the timeout. The
the main difference is that regular cnd_wait () will only try to get the mutex after a cnd_signal()
or cnd_broadcast (), whereas cnd_timedwait () will do that, too, and try to get the mutex after the
timeout.

The timeout is specified as an absolute UTC time since Epoch. You can get this with the timespec_get ()
function and then add values on to the result to timeout later than now, as shown in the example.

Beware that you can’t have more than 999999999 nanoseconds in the tv_nsec field of the struct time-
spec. Mod those so they stay in range.

Return Value

If the thread wakes up for a non-timeout reason (e.g. signal or broadcast), returns thrd_success. If
woken up due to timeout, returns thrd_timedout. Otherwise returns thrd_error.

Example

This example has a thread wait on a condition variable for a maximum of 1.75 seconds. And it always
times out because no one ever sends a signal. Tragic.

#include <stdio.h>
#include <time.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

60

61

62

63

64

65

Chapter 27. <threads . h> Multithreading Functions

int

{

int

run(void *arg)
(void)arg;
mtx_lock(&mutex);
struct timespec ts;

// Get the time now
timespec_get(&ts, TIME_UTC);

// Add on 1.75 seconds from now
ts.tv_sec += 1;
ts.tv_nsec += 750000000L;

// Handle nsec overflow
ts.tv_sec += ts.tv_nsec / 1000000000L;
ts.tv_nsec = ts.tv_nsec % 1000000000L;

printf("Thread: waiting...\n");

int r = cnd_timedwait(&condvar, &mutex, &ts);

switch (r) {
case thrd_success:
printf("Thread: signaled!\n");
break;

case thrd_timedout:
printf("Thread: timed out!\n");

return 1;

case thrd_error:

printf("Thread: Some kind of error\n");

return 2;

mtx_unlock(&mutex);

return 0;

main(void)
thrd_t t;

mtx_init(&mutex, mtx_plain);
cnd_init(&condvar);

printf("Main creating thread\n");
thrd_create(&t, run, NULL);

// Sleep 3s to allow the other thread to timeout
thrd_sleep(&(struct timespec){.tv_sec=3}, NULL);

thrd_join(t, NULL);

mtx_destroy(&mutex);
cnd_destroy(&condvar);

298

66

Chapter 27. <threads . h> Multithreading Functions

}

Output:

Main creating thread
Thread: waiting...
Thread: timed out!

See Also

cnd_wait(), timespec_get()

27.7 cnd_wait()

Wait for a signal on a condition variable

Synopsis
#include <threads.h>

int cnd_wait(cnd_t *cond, mtx_t *mtx);

Description

299

This puts the calling thread to sleep until it is awakened by a call to cnd_signal() or cnd_broadcast().

Return Value

If everything’s fantastic, returns thrd_success. Otherwise it returns thrd_error to report that some-

thing has gone fantastically, horribly awry.

Example

General-purpose condition variable example here, but you can see the cnd_wait () in the run() function.

#include <stdio.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)
{
(void)arg;

mtx_lock(&mutex);

printf("Thread: waiting...\n");

cnd_wait(&condvar, &mutex); // <-- WAIT HERE!

printf("Thread: running again!\n");
mtx_unlock(&mutex);

return 0O;

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chapter 27. <threads . h> Multithreading Functions

int main(void)

{
thrd_t t;
mtx_init(&mutex, mtx_plain);
cnd_init(&condvar);
printf("Main creating thread\n");
thrd_create(&t, run, NULL);
// Sleep 0.1s to allow the other thread to wait
thrd_sleep(&(struct timespec){.tv_nsec=100000000L}, NULL);
mtx_lock(&mutex);
printf("Main: signaling thread\n");
cnd_signal(&condvar); // <-- SIGNAL CHILD THREAD HERE!
mtx_unlock(&mutex);
thrd_join(t, NULL);
mtx_destroy(&mutex);
cnd_destroy(&condvar);
}
Output:

Main creating thread
Thread: waiting...
Main: signaling thread
Thread: running again!

See Also

cnd_timedwait()

27.8 mtx_destroy()

Cleanup a mutex when done with it
Synopsis
#1include <threads.h>

void mtx_destroy(mtx_t *mtx);

Description
The opposite of mtx_init (), this function frees up any resources associated with the given mutex.

You should call this when all threads are done using the mutex.

Return Value

Returns nothing, the selfish ingrate!

300

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Chapter 27. <threads . h> Multithreading Functions 301

Example

General-purpose mutex example here, but you can see the mtx_destroy() down at the end.

#include <stdio.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)
{
(void)arg;
static int count = 0;

mtx_lock(&mutex);

printf("Thread: I got %d!\n", count);
count++;

mtx_unlock(&mutex);

return 0O;

#define THREAD_COUNT 5

int main(void)

{
thrd_t t[THREAD_COUNT];
mtx_init(&mutex, mtx_plain);
for (int i1 = 0; i < THREAD_COUNT; i++)
thrd_create(t + i, run, NULL);
for (int i1 = 0; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL);
mtx_destroy(&mutex); // <-- DESTROY THE MUTEX HERE
}
Output:

Thread: I got 0!
Thread: I got 1!
Thread: I got 2!
Thread: I got 3!
Thread: I got 4!

See Also

mtx_init()

27.9 mtx_init()

Initialize a mutex for use

Chapter 27. <threads . h> Multithreading Functions 302
Synopsis
#include <threads.h>

int mtx_init(mtx_t *mtx, int type);

Description

Before you can use a mutex variable, you have to initialize it with this call to get it all prepped and ready
to go.

But wait! It’s not quite that simple. You have to tell it what type of mutex you want to create.

Type Description
mtx_plain Regular ol’ mutex
mtx_timed Mutex that supports timeouts

mtx_plain|mtx_recursive Recursive mutex
mtx_timed|mtx_recursive Recursive mutex that supports timeouts

As you can see, you can make a plain or timed mutex recursive by bitwise-ORing the value with
mtx_recursive.

“Recursive” means that the holder of a lock can call mtx_1lock () multiple times on the same lock. (They
have to unlock it an equal number of times before anyone else can take the mutex.) This might ease coding
from time to time, especially if you call a function that needs to lock the mutex when you already hold
the mutex.

And the timeout gives a thread a chance to try to get the lock for a while, but then bail out if it can’t get it
in that timeframe. You use the mtx_timedlock() function with mtx_timed mutexes.

Return Value

Returns thrd_success in a perfect world, and potentially thrd_error in an imperfect one.

Example

General-purpose mutex example here, but you can see the mtx_init () down at the top of main():

#include <stdio.h>
#inc lude <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)
{
(void)arg;
static int count = 0;

mtx_lock(&mutex);

printf("Thread: I got %d!\n", count);
count++;

mtx_unlock(&mutex) ;

return 0;

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Chapter 27. <threads . h> Multithreading Functions 303

#define THREAD_COUNT 5

int main(void)

{
thrd_t t[THREAD_COUNT];
mtx_init(&mutex, mtx_plain); // <-- CREATE THE MUTEX HERE
for (int i = 0; i < THREAD_COUNT; i++)
thrd_create(t + i, run, NULL);
for (int i1 = 0; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL);
mtx_destroy(&mutex); // <-- DESTROY THE MUTEX HERE
}
Output:

Thread: I got 0!
Thread: I got 1!
Thread: I got 2!
Thread: I got 3!
Thread: I got 4!

See Also

mtx_destroy()

27.10 mtx_lock()

Acquire a lock on a mutex

Synopsis
#include <threads.h>

int mtx_lock(mtx_t *mtx);

Description
If you’re a thread and want to enter a critical section, do I have the function for you!

A thread that calls this function will wait until it can acquire the mutex, then it will grab it, wake up, and
run!

If the mutex is recursive and is already locked by this thread, it will be locked again and the lock count
will increase. If the mutex is not recursive and the thread already holds it, this call will error out.

Return Value

Returns thrd_success on goodness and thrd_error on badness.

Chapter 27. <threads . h> Multithreading Functions 304

Example

General-purpose mutex example here, but you can see the mtx_lock() in the run() function:

#include <stdio.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)
{

(void)arg;

static int count = 0;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

mtx_lock(&mutex);

printf("Thread:

count++;

mtx_unlock(&mutex);

return 0O;

#define THREAD_COUNT 5

int main(void)

{
thrd_t t[THREAD_COUNT];
mtx_init(&mutex, mtx_plain); // <-- CREATE THE MUTEX HERE
for (int i1 = 0; i < THREAD_COUNT; i++)
thrd_create(t + i, run, NULL);
for (int i1 = 0; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL);
mtx_destroy(&mutex); // <-- DESTROY THE MUTEX HERE
}
Output:
Thread: I got 0!
Thread: I got 1!
Thread: I got 2!
Thread: I got 3!
Thread: I got 4!
See Also

// <-- LOCK HERE

I got %d!'\n", count);

mtx_unlock(), mtx_trylock(), mtx_timedlock()

27.11 mtx_timedlock()

Lock a mutex allowing for timeout

20

21

22

23

24

25

26

27

28

29

30

31

32

Chapter 27. <threads . h> Multithreading Functions 305

Synopsis
#include <threads.h>

int mtx_timedlock(mtx_t *restrict mtx, const struct timespec *restrict ts);

Description
This is just like mtx_Tlock() except you can add a timeout if you don’t want to wait forever.

The timeout is specified as an absolute UTC time since Epoch. You can get this with the timespec_get ()
function and then add values on to the result to timeout later than now, as shown in the example.

Beware that you can’t have more than 999999999 nanoseconds in the tv_nsec field of the struct time-
spec. Mod those so they stay in range.

Return Value

If everything works and the mutex is obtained, returns thrd_success. If a timeout happens first, returns
thrd_timedout.

Otherwise, returns thrd_error. Because if nothing is right, everything is wrong.

Example

This example has a thread wait on a mutex for a maximum of 1.75 seconds. And it always times out
because no one ever sends a signal.

#include <stdio.h>

#include <time.h>

#1include <threads.h>

mtx_t mutex;

int run(void *arg)

{

(void)arg;
struct timespec ts;

// Get the time now
timespec_get(&ts, TIME_UTC);

// Add on 1.75 seconds from now
ts.tv_sec += 1;
ts.tv_nsec += 750000000L;

// Handle nsec overflow
ts.tv_sec += ts.tv_nsec / 1000000000L;
ts.tv_nsec = ts.tv_nsec % 1000000000L;

printf("Thread: waiting for lock...\n");
int r = mtx_timedlock(&mutex, &ts);

switch (r) {
case thrd_success:
printf("Thread: grabbed lock!\n");
break;

case thrd_timedout:

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

60

61

62

63

64

65

Chapter 27. <threads . h> Multithreading Functions

printf("Thread: timed out!\n");
break;

case thrd_error:
printf("Thread: Some kind of error\n");
break;

mtx_unlock(&mutex);

return 0;

int main(void)
thrd_t t;
mtx_init(&mutex, mtx_plain);
mtx_lock(&mutex);

printf("Main creating thread\n");
thrd_create(&t, run, NULL);

// Sleep 3s to allow the other thread to timeout
thrd_sleep(&(struct timespec){.tv_sec=3}, NULL);

mtx_unlock(&mutex);
thrd_join(t, NULL);

mtx_destroy(&mutex);

}

Output:

Main creating thread
Thread: waiting for lock...
Thread: timed out!

See Also

mtx_lock(), mtx_trylock(), timespec_get()

27.12 mtx_trylock()

Try to lock a mutex, returning if not possible

Synopsis
#include <threads.h>

int mtx_trylock(mtx_t *mtx);

306

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chapter 27. <threads . h> Multithreading Functions 307

Description
This works just like mtx_lock except that it returns instantly if a lock can’t be obtained.

The spec notes that there’s a chance that mtx_trylock() might spuriously fail with thrd_busy even if
there are no other threads holding the lock. I’m not sure why this is, but you should defensively code
against it.

Return Value

Returns thrd_success if all’s well. Or thrd_busy if some other thread holds the lock. Or thrd_error,
which means something went right. I mean “wrong”.

Example

#include <stdio.h>
#include <time.h>
#include <threads.h>

mtx_t mutex;

int run(void *arg)

{
int id = *(int*)arg;
int r = mtx_trylock(&mutex); // <-- TRY TO GRAB THE LOCK
switch (r) {
case thrd_success:
printf("Thread %d: grabbed lock!\n", id);
break;
case thrd_busy:
printf("Thread %d: lock already taken :(\n", id);
return 1;
case thrd_error:
printf("Thread %d: Some kind of error\n", id);
return 2;
}
mtx_unlock(&mutex);
return 0;
}

#define THREAD_COUNT 5

int main(void)

{
thrd_t t[THREAD_COUNT];
int id[THREAD_COUNT];

mtx_init(&mutex, mtx_plain);
for (int i = ©; i < THREAD_COUNT; i++) {

id[i] = 1i;
thrd_create(t + i, run, id + 1i);

45

46

47

48

49

Chapter 27. <threads . h> Multithreading Functions 308

for (int i = 0; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL);

mtx_destroy(&mutex);

}

Output (varies by run):

Thread 0: grabbed lock!

Thread 1: lock already taken :(
Thread 4: lock already taken :(
Thread 3: grabbed lock!

Thread 2: lock already taken :(

See Also

mtx_lock(), mtx_timedlock(), mtx_unlock()

27.13 mtx_unlock()

Free a mutex when you’re done with the critical section

Synopsis
#inc lude <threads.h>

int mtx_unlock(mtx_t *mtx);

Description

After you’ve done all the dangerous stuff you have to do, wherein the involved threads should not be
stepping on each other’s toes... you can free up your stranglehold on the mutex by calling mtx_unlock().

Return Value

Returns thrd_success on success. Or thrd_error on error. It’s not very original in this regard.

Example

General-purpose mutex example here, but you can see the mtx_unlock() in the run() function:

#include <stdio.h>
#include <threads.h>

cnd_t condvar;
mtx_t mutex;

int run(void *arg)
{
(void)arg;

static int count = 0;

mtx_lock(&mutex);

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

Chapter 27. <threads . h> Multithreading Functions

printf("Thread:

count++;

mtx_unlock(&mutex);

return 0;

#define THREAD_COUNT 5

int main(void)
thrd_t t[THREAD_COUNT];
mtx_init(&mutex, mtx_plain);

for (int i = ©; i < THREAD_COUNT; i++)
thrd_create(t + 1,

for (int i = ©; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL);

mtx_destroy(&mutex);

{

}

Output:
Thread: I got
Thread: I got
Thread: I got
Thread: I got
Thread: I got
See Also

mtx_lock(), mtx_timedlock(), mtx_trylock()

27.14 thrd_create()

Create a new thread of execution

Synopsis

#include <threads.h>

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

Description

Now you have the POWER!

Right?

This is how you launch new threads to make your program do multiple things at once?!

!
11
21
3!
41

I got %d!'\n", count);

// <-- UNLOCK HERE

run, NULL);

2Well, as at least as many things as you have free cores. Your OS will schedule them as it can.

309

20

21

22

23

24

25

26

27

28

29

30

31

32

Chapter 27. <threads . h> Multithreading Functions 310

In order to make this happen, you need to pass a pointer to a thrd_t that will be used to represent the
thread you’re spawning.

That thread will start running the function you pass a pointer to in func. This is a value of type
thrd_start_t, which is a pointer to a function that returns an int and takes a single void* as a
parameter, i.e.:

int thread_run_func(void *arg)

And, as you might have guessed, the pointer you pass to thrd_create() for the arg parameter is passed
on to the func function. This is how you can give additional information to the thread when it starts up.

Of course, for arg, you have to be sure to pass a pointer to an object that is thread-safe or per-thread.
If the thread returns from the function, it exits just as if it had called thrd_exit().

Finally, the value that the func function returns can be picked up by the parent thread with thrd_join().

Return Value

In the case of goodness, returns thrd_success. If you’re out of memory, will return thrd_nomem. Oth-
erwise, thrd_error.

Example

#include <stdio.h>
#include <threads.h>

int run(void *arg)

{
int id = *(int*)arg;
printf("Thread %d: I'm alive!!\n", id);
return id;

}

#define THREAD_COUNT 5

int main(void)

{
thrd_t t[THREAD_COUNT];
int id[THREAD_COUNT]; // One of these per thread
for (int i = 0; i1 < THREAD_COUNT; i++) {
id[i] = i; // Let's pass in the thread number as the ID
thrd_create(t + i, run, id + 1i);
}
for (int i = 0; 1 < THREAD_COUNT; i++) {
int res;
thrd_join(t[i], &res);
printf("Main: thread %d exited with code %d\n", i, res);
}
}

Output (might vary from run to run):

Chapter 27. <threads . h> Multithreading Functions 311

Thread 1: I'm alive!!
Thread ©: I'm alive!!
Thread 3: I'm alive!!
Thread 2: I'm alive!!
Main: thread 0 exited with code
Main: thread 1 exited with code
Main: thread 2 exited with code
Main: thread 3 exited with code
Thread 4: I'm alive!!
Main: thread 4 exited with code 4

W N R o

See Also

thrd_exit(), thrd_join()

27.15 thrd_current()

Get the ID of the calling thread

Synopsis
#1include <threads.h>

thrd_t thrd_current(void);

Description

Each thread has an opaque ID of type thrd_t. This is the value we see get initialized when we call
thrd_create().

But what if you want to get the ID of the currently running thread?
No problem! Just call this function and it will be returned to you.
Why? Who knows!

Well, to be honest, I could see it being used a couple places.

1. You could use it to have a thread detach itself with thrd_detach(). I’m not sure why you’d want
to do this, however.

2. You could use it to compare this thread’s ID with another you have stored in a variable somewhere
by using the thrd_equal() function. Seems like the most legit use.

3. ..

4. Profit!

If anyone has another use, please let me know.

Return Value

Returns the calling thread’s ID.

Example

Here’s a general example that shows getting the current thread ID and comparing it to a previously-
recorded thread ID and taking exciting action based on the result! Starring Arnold Schwarzenegger!

20

21

22

23

24

25

26

27

28

29

Chapter 27. <threads . h> Multithreading Functions 312

#include <stdio.h>
#include <threads.h>

thrd_t first_thread_id;

int run(void *arg)

{
(void)arg;
thrd_t my_id = thrd_current(); // <-- GET MY THREAD ID
if (thrd_equal(my_id, first_thread_id))
printf("I'm the first thread!\n");
else
printf("I'm not the first!\n");
return 0;
}
int main(void)
{
thrd_t t;
thrd_create(&first_thread_id, run, NULL);
thrd_create(&t, run, NULL);
thrd_join(first_thread_id, NULL);
thrd_join(t, NULL);
}
Output:

Come on, you got what you want, Cohaagen! Give deez people ay-ah!

No, wait, that’s an Arnold Schwarzenegger quote from Total Recall, one of the best science fiction films
of all time. Watch it now and then come back to finish this reference page.

Man-what an ending! And Johnny Cab? So excellent. Anyway!

Output:

I'm the first thread!
I'm not the first!

See Also
thrd_equal(), thrd_detach()

27.16 thrd_detach()

Automatically clean up threads when they exit

Synopsis
#inc lude <threads.h>

int thrd_detach(thrd_t thr);

20

21

22

23

24

25

26

27

28

29

30

Chapter 27. <threads . h> Multithreading Functions 313

Description

Normally you have to thrd_join() to get resources associated with a deceased thread cleaned up. (Most
notably, its exit status is still floating around waiting to get picked up.)

But if you call thrd_detach () on the thread first, manual cleanup isn’t necessary. They just exit and are
cleaned up by the OS.

(Note that when the main thread dies, all the threads die in any case.)

Return Value

thrd_success if the thread successfully detaches, thrd_error otherwise.

Example

#include <stdio.h>
#include <threads.h>

thrd_t first_thread_id;

int run(void *arg)

{
(void)arg;
printf("Thread running!\n");
return 0;

}

#define THREAD_COUNT 5

int main(void)

{
thrd_t t;
for (int i = ©; i < THREAD_COUNT; i++) {
thrd_create(&t, run, NULL);
thrd_detach(t);
}
// No need to thrd_join()!
// Sleep a quarter second to let them all finish
thrd_sleep(&(struct timespec){.tv_nsec=250000000}, NULL);
}
See Also

thrd_join(), thrd_exit()

27.17 thrd_equal()

Compare two thread descriptors for equality

20

21

22

23

24

25

26

27

28

29

Chapter 27. <threads . h> Multithreading Functions 314

Synopsis
#include <threads.h>

int thrd_equal(thrd_t thro, thrd_t thr1);

Description
If you have two thread descriptors in thrd_t variables, you can test them for equality with this function.

For example, maybe one of the threads has special powers the others don’t, and the run function needs to
be able to tell them apart, as in the example.

Return Value

Returns non-zero if the threads are equal. Returns 0 if they’re not.

Example

Here’s a general example that shows getting the current thread ID and comparing it to a previously-
recorded thread ID and taking boring action based on the result.

#include <stdio.h>
#include <threads.h>

thrd_t first_thread_id;

int run(void *arg)

{
(void)arg;
thrd_t my_id = thrd_current();
if (thrd_equal(my_id, first_thread_id)) // <-- COMPARE!
printf("I'm the first thread!\n");
else
printf("I'm not the first!\n");
return 0;
}
int main(void)
{
thrd_t t;
thrd_create(&first_thread_id, run, NULL);
thrd_create(&t, run, NULL);
thrd_join(first_thread_id, NULL);
thrd_join(t, NULL);
}
Output:

I'm the first thread!
I'm not the first!

See Also

thrd_current()

Chapter 27. <threads . h> Multithreading Functions 315

27.18 thrd_exit()

Stop and exit this thread

Synopsis
#include <threads.h>

_Noreturn void thrd_exit(int res);

Description

A thread commonly exits by returning from its run function. But if it wants to exit early (perhaps from
deeper in the call stack), this function will get that done.

The res code can be picked up by a thread calling thrd_join(), and is equivalent to returning a value
from the run function.

Like with returning from the run function, this will also properly clean up all the thread-specific storage
associated with this thread—all the destructors for the threads TSS variables will be called. If there are any
remaining TSS variables with destructors after the first round of destruction®, the remaining destructors
will be called. This happens repeatedly until there are no more, or the number of rounds of carnage reaches
TSS_DTOR_ITERATIONS.

If the main thread calls this, it’s as if you called exit (EXIT_SUCCESS).

Return Value

This function never returns because the thread calling it is killed in the process. Trippy!

Example

Threads in this example exit early with result 22 if they get a NULL value for arg.

#include <stdio.h>
#inc lude <threads.h>

thrd_t first_thread_id;

int run(void *arg)

{
(void)arg;
if (arg == NULL)
thrd_exit(22);
return O;
}

#define THREAD_COUNT 5

int main(void)

{
thrd_t t[THREAD_COUNT];

3For example, if a destructor caused more variables to be set.

23

24

25

26

27

28

29

30

31

32

Chapter 27. <threads . h> Multithreading Functions 316

for (int i1 = 0; i < THREAD_COUNT; i++)
thrd_create(t + i, run, i == 2?2 NULL: "spatula");

for (int i = ©; i < THREAD_COUNT; i++) {
int res;
thrd_join(t[i], &res);

printf("Thread %d exited with code %d\n", i, res);

}

Output:

Thread 0 exited with code 0
Thread 1 exited with code 0
Thread 2 exited with code 22
Thread 3 exited with code 0
Thread 4 exited with code 0

See Also
thrd_join()

27.19 thrd_join()

Wait for a thread to exit

Synopsis
#include <threads.h>

int thrd_join(thrd_t thr, int *res);

Description

When a parent thread fires off some child threads, it can wait for them to complete with this call

Return Value

Example
Threads in this example exit early with result 22 if they get a NULL value for arg. The parent thread picks
up this result code with thrd_join().

#inc lude <stdio.h>
#include <threads.h>

thrd_t first_thread_id;
int run(void *arg)
{

(void)arg;

if (arg == NULL)
thrd_exit(22);

20

21

22

23

24

25

26

27

28

29

30

32

Chapter 27. <threads . h> Multithreading Functions

return 0;

#define THREAD_COUNT 5

int main(void)

{
thrd_t t[THREAD_COUNT];
for (int i = ©; i < THREAD_COUNT; i++)
thrd_create(t + i, run, i == 2? NULL: "spatula");
for (int i = @; i < THREAD_COUNT; i++) {
int res;
thrd_join(t[i], é&res);
printf("Thread %d exited with code %d\n", i, res);
}
}
Output:

Thread 0 exited with code 0
Thread 1 exited with code 0
Thread 2 exited with code 22
Thread 3 exited with code 0
Thread 4 exited with code 0

See Also

thrd_exit()
27.20 thrd_sleep()
Sleep for a specific number of seconds and nanoseconds

Synopsis

#include <threads.h>

int thrd_sleep(const struct timespec *duration, struct timespec *remaining);

Description

This function puts the current thread to sleep for a while* allowing other threads to run.

317

The calling thread will wake up after the time has elapsed, or if it gets interrupted by a signal or something.

If it doesn’t get interrupted, it’ll sleep at least as long as you asked. Maybe a tad longer. You know how

hard it can be to get out of bed.

The structure looks like this:

struct timespec {
time_t tv_sec; // Seconds

4Unix-like systems have a sleep() syscall that sleeps for an integer number of seconds. But thrd_sleep() is likely more

portable and gives subsecond resolution, besides!

Chapter 27. <threads . h> Multithreading Functions 318
long tv_nsec; // Nanoseconds (billionths of a second)
};

Don’t set tv_nsec greater than 999,999,999. I can’t see what officially happens if you do, but on my
system thrd_sleep() returns -2 and fails.

Return Value

Returns 0 on timeout, or -1 if interrupted by a signal. Or any negative value on some other error. Weirdly,
the spec allows this “other error negative value” to also be -1, so good luck with that.

Example

#include <stdio.h>
#include <threads.h>

int main(void)

{
// Sleep for 3.25 seconds
thrd_sleep(&(struct timespec){.tv_sec=3, .tv_nsec=250000000}, NULL);
return 0;

}

See Also

thrd_yield()

27.21 thrd_yield()

Stop running that other threads might run

Synopsis
#include <threads.h>

void thrd_yield(void);

Description

If you have a thread that’s hogging the CPU and you want to give your other threads time to run, you
can call thrd_yield(). If the system sees fit, it will put the calling thread to sleep and one of the other
threads will run instead.

It’s a good way to be “polite” to the other threads in your program if you want the encourage them to run
instead.

Return Value

Returns nothing!

Example

This example’s kinda poor because the OS is probably going to reschedule threads on the output anyway,
but it gets the point across.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Chapter 27. <threads . h> Multithreading Functions 319

The main thread is giving other threads a chance to run after every block of dumb work it does.

#include <stdio.h>
#include <threads.h>

int run(void *arg)

{
int main_thread = arg != NULL;
if (main_thread) {
long int total = 0;
for (int 1 = 0; i < 10; i++) {
for (long int j = 0; j < 1000L; j++)
total++;
printf("Main thread yielding\n");
thrd_yield(); // <-- YIELD HERE
}
} else
printf("Other thread running!\n");
return 0;
}

#define THREAD_COUNT 10

int main(void)

{
thrd_t t[THREAD_COUNT];
for (int i = ©; i < THREAD_COUNT; i++)
thrd_create(t + i, run, i == 0? "main": NULL);
for (int i = 0; i < THREAD_COUNT; i++)
thrd_join(t[i], NULL);
return 0;
}

The output will vary from run to run. Notice that even after thrd_yield() other threads might not yet
be ready to run and the main thread will continue.

Main thread yielding
Main thread yielding
Main thread yielding
Other thread running!
Other thread running!
Other thread running!
Other thread running!
Main thread yielding
Other thread running!
Other thread running!
Main thread yielding
Main thread yielding
Main thread yielding
Other thread running!
Main thread yielding
Main thread yielding

Chapter 27. <threads . h> Multithreading Functions 320

Main thread yielding
Other thread running!
Other thread running!

See Also

thrd_sleep()

27.22 tss_create()

Create new thread-specific storage

Synopsis
#inc lude <threads.h>

int tss_create(tss_t *key, tss_dtor_t dtor);

Description
This helps when you need per-thread storage of different values.

A common place this comes up is if you have a file scope variable that is shared between a bunch of
functions and often returned. That’s not threadsafe. One way to refactor is to replace it with thread-
specific storage so that each thread gets their own code and doesn’t step on other thread’s toes.

To make this work, you pass in a pointer to a tss_t key—this is the variable you will use in subsequent
tss_set() and tss_get () calls to set and get the value associated with the key.

The interesting part of this is the dtor destructor pointer of type tss_dtor_t. This is actually a pointer
to a function that takes a void* argument and returns void, i.e.

void dtor(void *p) { ... }

This function will be called per thread when the thread exits with thrd_exit () (or returns from the run
function).

It’s unspecified behavior to call this function while other threads’ destructors are running.

Return Value

Returns nothing!

Example

This is a general-purpose TSS example. Note the TSS variable is created near the top of main().

#include <stdio.h>
#include <stdlib.h>
#include <threads.h>

tss_t str;

void some_function(void)

{
// Retrieve the per-thread value of this string
char *tss_string = tss_get(str);

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

40

41

42

43

45

46

47

48

49

Chapter 27. <threads . h> Multithreading Functions 321

int

{

// And print it
printf("TSS string: %s\n", tss_string);
run(void *arg)

int serial = *(int*)arg; // Get this thread's serial number
free(arg);

// malloc() space to hold the data for this thread
char *s = malloc(64);

sprintf(s, "thread %d! :)", serial); // Happy little string

// Set this TSS variable to point at the string
tss_set(str, s);

// Call a function that will get the variable
some_function();

return 0; // Equivalent to thrd_exit(0); fires destructors

#define THREAD_COUNT 15

int main(void)
{
thrd_t t[THREAD_COUNT];
// Make a new TSS variable, the free() function is the destructor
tss_create(&str, free); // <-- CREATE TSS VAR!
for (int i = 0; i1 < THREAD_COUNT; i++) {
int *n = malloc(sizeof *n); // Holds a thread serial number
*n = 1;
thrd_create(t + i, run, n);
}
for (int i = 0; i1 < THREAD_COUNT; i++) {
thrd_join(t[i], NULL);
}
// And all threads are done, so let's free this
tss_delete(str);
}
Output:
TSS string: thread 0! :)
TSS string: thread 2! :)
TSS string: thread 1! :)
TSS string: thread 5! :)
TSS string: thread 3! :)
TSS string: thread 6! :)
TSS string: thread 4! :)
TSS string: thread 7! :)
TSS string: thread 8! :)
TSS string: thread 9! :)
TSS string: thread 10! :)

Chapter 27. <threads . h> Multithreading Functions 322

TSS string: thread 13!
TSS string: thread 12!
TSS string: thread 11!
TSS string: thread 14!

~— ~— — ~—

See Also

tss_delete(), tss_set(), tss_get(), thrd_exit()

27.23 tss_delete()

Clean up a thread-specific storage variable

Synopsis
#include <threads.h>

void tss_delete(tss_t key);

Description

This is the opposite of tss_create(). You create (initialize) the TSS variable before using it, then, when
all the threads are done that need it, you delete (deinitialize/free) it with this.

This doesn’t call any destructors! Those are all called by thrd_exit()!

Return Value

Returns nothing!

Example

This is a general-purpose TSS example. Note the TSS variable is deleted near the bottom of main().
#1include <stdio.h>

#include <stdlib.h>

#include <threads.h>

tss_t str;

void some_function(void)

{
// Retrieve the per-thread value of this string
char *tss_string = tss_get(str);
// And print it
printf("TSS string: %s\n", tss_string);
}

int run(void *arg)

int serial = *(int*)arg; // Get this thread's serial number
free(arg);

// malloc() space to hold the data for this thread
char *s = malloc(64);

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

39

40

41

42

43

45

46

47

48

49

Chapter 27. <threads . h> Multithreading Functions 323

sprintf(s, "thread %d! :)", serial); // Happy little string

// Set this TSS variable to point at the string
tss_set(str, s);

// Call a function that will get the variable
some_function();

return 0; // Equivalent to thrd_exit(0), fires destructors

#define THREAD_COUNT 15

int main(void)
{
thrd_t t[THREAD_COUNT];
// Make a new TSS variable, the free() function is the destructor
tss_create(&str, free);
for (int i = 0; i1 < THREAD_COUNT; i++) {
int *n = malloc(sizeof *n); // Holds a thread serial number
*n = 1i;
thrd_create(t + i, run, n);
}
for (int i = 0; i < THREAD_COUNT; i++) {
thrd_join(t[i], NULL);
}
// And all threads are done, so let's free this
tss_delete(str); // <-- DELETE TSS VARIABLE!
}
Output:
TSS string: thread 0! :)
TSS string: thread 2!)
TSS string: thread 1! :)
TSS string: thread 5! :)
TSS string: thread 3! :)
TSS string: thread 6! :)
TSS string: thread 4! :)
TSS string: thread 7! :)
TSS string: thread 8! :)
TSS string: thread 9! :)
TSS string: thread 10! :)
TSS string: thread 13! :)
TSS string: thread 12! :)
TSS string: thread 11! :)
TSS string: thread 14! :)
See Also
tss_create(), tss_set(), tss_get(), thrd_exit()

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Chapter 27. <threads . h> Multithreading Functions 324

27.24 tss_get()

Get thread-specific data

Synopsis
#include <threads.h>

void *tss_get(tss_t key);

Description

Once you’ve set a variable with tss_set (), you can retrieve the value with tss_get ()—just pass in the
key and you’ll get a pointer to the value back.

Don’t call this from a destructor.

Return Value

Returns the value stored for the given key, or NULL if there’s trouble.

Example

This is a general-purpose TSS example. Note the TSS variable is retrieved in some_function(), below.
#include <stdio.h>

#include <stdlib.h>

#include <threads.h>

tss_t str;

void some_function(void)

{
// Retrieve the per-thread value of this string
char *tss_string = tss_get(str); // <-- GET THE VALUE
// And print it
printf("TSS string: %s\n", tss_string);
}
int run(void *arg)
{
int serial = *(int*)arg; // Get this thread's serial number
free(arg);
// malloc() space to hold the data for this thread
char *s = malloc(64);
sprintf(s, "thread %d! :)", serial); // Happy little string
// Set this TSS variable to point at the string
tss_set(str, s);
// Call a function that will get the variable
some_function();
return 0; // Equivalent to thrd_exit(0); fires destructors
}

#define THREAD_COUNT 15

39

40

41

42

43

45

46

47

48

49

Chapter 27. <threads . h> Multithreading Functions

int main(void)
{
thrd_t t[THREAD_COUNT];
// Make a new TSS variable, the free() function is the destructor
tss_create(&str, free);
for (int i = 0; i1 < THREAD_COUNT; i++) {
int *n = malloc(sizeof *n); // Holds a thread serial number
*n = 1i;
thrd_create(t + i, run, n);
}
for (int i = ©; i < THREAD_COUNT; i++) {
thrd_join(t[i], NULL);
}
// And all threads are done, so let's free this
tss_delete(str);
}
Output:
TSS string: thread 0! :)
TSS string: thread 2! :)
TSS string: thread 1! :)
TSS string: thread 5! :)
TSS string: thread 3! :)
TSS string: thread 6! :)
TSS string: thread 4! :)
TSS string: thread 7! :)
TSS string: thread 8! :)
TSS string: thread 9! :)
TSS string: thread 10! :)
TSS string: thread 13! :)
TSS string: thread 12! :)
TSS string: thread 11! :)
TSS string: thread 14! :)
See Also
tss_set()

27.25 tss_set()

Set thread-specific data

Synopsis

#include <threads.h>

int

tss_set(tss_t key, void *val);

325

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

Chapter 27. <threads . h> Multithreading Functions 326

Description

Once you’ve set up your TSS variable with tss_create(), you can set it on a per thread basis with
tss_set().

key is the identifier for this data, and val is a pointer to it.
The destructor specified in tss_create() will be called for the value set when the thread exits.

Also, if there’s a destructor and there is already at value for this key in place, the destructor will not be
called for the already-existing value. In fact, this function will never cause a destructor to be called. So
you’re on your own, there—best clean up the old value before overwriting it with the new one.

Return Value

Returns thrd_success when happy, and thrd_error when not.

Example

This is a general-purpose TSS example. Note the TSS variable is set in run(), below.
#include <stdio.h>

#include <stdlib.h>

#include <threads.h>

tss_t str;

void some_function(void)

{
// Retrieve the per-thread value of this string
char *tss_string = tss_get(str);
// And print it
printf("TSS string: %s\n", tss_string);
}
int run(void *arg)
{
int serial = *(int*)arg; // Get this thread's serial number
free(arg);
// malloc() space to hold the data for this thread
char *s = malloc(64);
sprintf(s, "thread %d! :)", serial); // Happy little string
// Set this TSS variable to point at the string
tss_set(str, s); // <-- SET THE TSS VARIABLE
// Call a function that will get the variable
some_function();
return 0; // Equivalent to thrd_exit(0); fires destructors
}

#define THREAD_COUNT 15
int main(void)
{

thrd_t t[THREAD_COUNT];

// Make a new TSS variable, the free() function is the destructor

42

43

44

45

46

47

48

49

Chapter 27. <threads . h> Multithreading Functions

}

tss_create(&str, free);

for (int i

*n

thrd_create(t + i,

for (int i = ©; i < THREAD_COUNT; i++) {
thrd_join(t[i], NULL);

i;

0; i < THREAD_COUNT; i++) {
int *n = malloc(sizeof *n);

// And all threads are done,

tss_delete(str);

Output:

TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS
TSS

string:
string:
string:
string:
string:
string:
string:
string:
string:
string:
string:
string:
string:
string:
string:

See Also

tss_

get()

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

0!
2!
1!
5!
3!
6!
4!
7!
8!
9!
10!
13!
12!
11!
14!

// Holds a thread serial number

so let's free this

e N N N

~— O N

Chapter 28

<time.h> Date and Time Functions

Function Description

clock() How much processor time has been used by this process
difftime() Compute the difference between two times

mktime() Convert a struct tmintoa time_t

time() Get the current calendar time

timespec_get () Get a higher resolution time, probably now
asctime() Return a human-readable version of a struct tm
ctime() Return a human-readable version of a time_t
gmtime() Convert a calendar time into a UTC broken-down time
localtime() Convert a calendar time into a broken-down local time
strftime() Formatted date and time output

When it comes to time and C, there are two main types to look for:

 time_t holds a calendar time. This is an potentially opaque numeric type that represents an absolute
time that can be converted to UTC! or local time.

* struct tm holds a broken-down time. This has things like the day of the week, the day of the
month, the hour, the minute, the second, etc.

On POSIX systems and Windows, time_t is an integer and represents the number of seconds that have
elapsed since January 1, 1970 at 00:00 UTC.

A struct tm contains the following fields:

struct tm {
int tm_sec; // seconds after the minute -- [0, 60]
int tm_min; // minutes after the hour -- [0, 59]
int tm_hour; // hours since midnight -- [0, 23]
int tm_mday; // day of the month -- [1, 31]
int tm_mon; // months since January -- [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday -- [0, 6]
int tm_yday; // days since January 1 -- [0, 365]
int tm_isdst; // Daylight Saving Time flag

};

You can convert between the two with mktime(), gmtime(), and localtime().

You can print time information to strings with ctime(), asctime(), and strftime().

'When you say GMT, unless you’re talking specifically about the time zone and not the time, you probably mean “UTC”.

328

Chapter 28. <time.h> Date and Time Functions 329

28.1 Thread Safety Warning

asctime(), ctime(): These two functions return a pointer to a static memory region. They both
might return the same pointer. If you need thread safety, you’ll need a mutex across them. If you need
both results at once, strcpy() one of them out.

All these problems with asctime() and ctime() can be avoided by using the more flexible and thread-
safe strftime() function instead.

localtime(), gmtime(): These other two functions also return a pointer to a static memory region.
They both might return the same pointer. If you need thread safety, you’ll need a mutex across them. If
you need both results at once, copy the struct to another.

28.2 clock()

How much processor time has been used by this process

Synopsis
#include <time.h>

clock_t clock(void);

Description

Your processor is juggling a lot of things right now. Just because a process has been alive for 20 minutes
doesn’t mean that it used 20 minutes of “CPU time”.

Most of the time your average process spends asleep, and that doesn’t count toward the CPU time spent.

This function returns an opaque type representing the number of “clock ticks”?

operation.

the process has spent in

You can get the number of seconds out of that by dividing by the macro CLOCKS_PER_SEC. This is an
integer, so you will have to cast part of the expression to a floating type to get a fractional time.

Note that this is not the “wall clock time” of the program. If you want to get that loosely use time() and
difftime() (which might only offer 1-second resolution) or timespec_get () (which might only also
offer low resolution, but at least it might go to nanosecond level).

Return Value

Returns the amount of CPU time spent by this process. This comes back in a form that can be divided by
CLOCKS_PER_SEC to determine the time in seconds.

Example

#include <stdio.h>
#include <time.h>

// Deliberately naive Fibonacci
long long int fib(long long int n) {

if (n <= 1) return n;

return fib(n-1) + fib(n-2);

2The spec doesn’t actually say “clock ticks”, but I... am.

Chapter 28. <time.h> Date and Time Functions

int main(void)

{
printf("The 42nd Fibonacci Number is %1lld\n", fib(42));

printf("CPU time: %f\n", clock() / (double)CLOCKS_PER_SEC);
}

Output on my system:

The 42nd Fibonacci Number is 267914296
CPU time: 1.863078

See Also

time(), difftime(), timespec_get()

28.3 difftime()

Compute the difference between two times

Synopsis
#include <time.h>

double difftime(time_t timel, time_t timeO);

Description

330

Since the time_t type is technically opaque, you can’t just straight-up subtract to get the difference

between two of them?. Use this function to do it.

There is no guarantee as to the resolution of this difference, but it’s probably to the second.

Return Value

Returns the difference between two time_ts in seconds.

Example

#include <stdio.h>
#include <time.h>

int main(void)
{
// April 12, 1982 and change
struct tm time_a = { .tm_year=82, .tm_mon=3, .tm_mday=12,
.tm_hour=4, .tm_min=00, .tm_sec=04, .tm_isdst=-1,

Y

// November 15, 2020 and change
struct tm time_b = { .tm_year=120, .tm_mon=10, .tm_mday=15,
.tm_hour=16, .tm_min=27, .tm_sec=00, .tm_isdst=-1,

DB

3Unless you’re on a POSIX system where time_t is definitely an integer, in which case you can subtract. But you should still

use difftime() for maximum portability.

20

21

22

23

24

Chapter 28. <time.h> Date and Time Functions 331

time_t cal_a = mktime(&time_a);
time_t cal_b = mktime(&time_b);

double diff = difftime(cal_b, cal_a);
double years = diff / 60 / 60 / 24 / 365.2425; // close enough

printf("%f seconds (%f years) between events\n", diff, years);

}

Output:
1217996816.000000 seconds (38.596783 years) between events

See Also

time(), mktime()

28.4 mktime()

Converta struct tmintoa time_t

Synopsis
#include <time.h>

time_t mktime(struct tm *timeptr);

Description

If you have a local date and time and want it converted to a time_t (so that you can difftime() it or
whatever), you can convert it with this function.

Basically you fill out the fields in your struct tmin local time and mktime () will convert those to the
UTC time_t equivalent.

A couple notes:
* Don’t bother filling out tm_wday or tm_yday. mktime () will fill these out for you.

* You can set tm_isdst to 0 to indicate your time isn’t Daylight Saving Time (DST), 1 to indicate it
is, and -1 to have mktime() fill it in according to your locale’s preference.

If you need input in UTC, see the non-standard functions timegm()* for Unix-likes and _mkgmtime()®
for Windows.

Return Value
Returns the local time in the struct tmas a time_t calendar time.

Returns (time_t)(-1) on error.

“https://man.archlinux.org/man/timegm.3.en
Shttps://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/mkgmtime-mkgmtime32-mkgmtime64?view=msvc-160

https://man.archlinux.org/man/timegm.3.en
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/mkgmtime-mkgmtime32-mkgmtime64?view=msvc-160

20

21

22

23

24

25

26

27

28

Chapter 28. <time.h> Date and Time Functions

Example

In the following example, we have mktime () tell us if that time was DST or not.

#include <stdio.h>
#include <time.h>

int

{

}

main(void)

struct tm broken_down_time = {
.tm_year=82, // years since 1900
.tm_mon=3, // months since January -- [0, 11]
.tm_mday=12, // day of the month -- [1, 31]
.tm_hour=4, // hours since midnight -- [0, 23]
.tm_min=00, // minutes after the hour -- [0, 59]
.tm_sec=04, // seconds after the minute -- [0, 60]
.tm_isdst=-1, // Daylight Saving Time flag

Y

time_t calendar_time = mktime(&broken_down_time);

char *days[] = {"Sunday", "Monday", "Tuesday",
"Wednesday", "Furzeday", "Friday", "Saturday"};

// This will print what was in broken_down_time

printf("Local time : %s", asctime(localtime(&calendar_time)));
printf("Is DST : %d\n", broken_down_time.tm_isdst);
printf("Day of week: %s\n\n", days[broken_down_time.tm_wday]);

// This will print UTC for the local time, above
printf("UTC © %s", asctime(gmtime(&calendar_time)));

Output (for me in Pacific Time—UTC is 8 hours ahead):
Local time : Mon Apr 12 04:00:04 1982

Is DST 10

Day of week: Monday

uTC Mon Apr 12 12:00:04 1982
See Also

localtime(), gmtime()

28.5 time()

Get the current calendar time

Synopsis

#include <time.h>

time_t time(time_t *timer);

332

Chapter 28. <time.h> Date and Time Functions 333

Description
Returns the current calendar time right now. I mean, now. No, now!
If timer is not NULL, it gets loaded with the current time, as well.

This can be converted into a struct tm with localtime() or gmtime(), or printed directly with
ctime().
Return Value

Returns the current calendar time. Also loads timer with the current time if it’s not NULL.

Orreturns (time_t) (-1) if the time isn’t available because you’ve fallen out of the space-time continuum
and/or the system doesn’t support times.

Example

#include <stdio.h>
#include <time.h>

int main(void)

{

time_t now = time(NULL);

printf("The local time is %s", ctime(&now));

}

Example output:
The local time is Mon Mar 1 18:45:14 2021

See Also

localtime(), gmtime(), ctime()

28.6 timespec_get()

Get a higher resolution time, probably now

Synopsis
#include <time.h>

int timespec_get(struct timespec *ts, int base);

Description

This function loads the current time UTC (unless directed otherwise) into the given struct timespec,
ts.

That structure has two fields:

struct timespec {
time_t tv_sec; // Whole seconds
long tv_nsec; // Nanoseconds, 0-999999999

Chapter 28. <time.h> Date and Time Functions 334

Nanoseconds are billionths of a second. You can divide by 1000000000.0 to convert to seconds.

The base parameter has only one defined value, by the spec: TIME_UTC. So portably make it that. This
will load ts with the current time in seconds since a system-defined Epoch®, often January 1, 1970 at
00:00 UTC.

Your implementation might define other values for base.

Return Value
When base is TIME_UTC, loads ts with the current UTC time.

On success, returns base, valid values for which will always be non-zero. On error, returns 0.

Example

struct timespec ts;
timespec_get(&ts, TIME_UTC);
printf("%ld s, %1ld ns\n", ts.tv_sec, ts.tv_nsec);

double float_time = ts.tv_sec + ts.tv_nsec/1000000000.0;
printf("%f seconds since epoch\n", float_time);

Example output:

1614654187 s, 825540756 ns
1614654187.825541 seconds since epoch

Here’s a helper function to add valuestoa struct timespec that handles negative values and nanosecond
overflow.

#include <stdlib.h>

// Add delta seconds and delta nanoseconds to ts.

// Negative values are allowed. Each component is added individually.
//

// Subtract 1.5 seconds from the current value:

//

// timespec_add(&ts, -1, -500000000L);

struct timespec *timespec_add(struct timespec *ts, long dsec, long dnsec)
{

long sec = (long)ts->tv_sec + dsec;

long nsec = ts->tv_nsec + dnsec;

ldiv_t gr = ldiv(nsec, 1000000000L);

if (gr.rem < 0) {
nsec = 1000000000L + qr.rem;
sec += qr.quot - 1;
} else {
nsec = qgr.rem;
sec += (r.quot;

ts->tv_sec = sec;
ts->tv_nsec = nsec;

Shttps://en.wikipedia.org/wiki/Unix_time

https://en.wikipedia.org/wiki/Unix_time

Chapter 28. <time.h> Date and Time Functions 335

return ts;

}

And here are some functions to convert from long double to struct timespec and back, just in case
you like thinking in decimals. This is more limited in significant figures than using the integer values.

#include <math.h>

// Convert a struct timespec into a long double
long double timespec_to_ld(struct timespec *ts)

{
return ts->tv_sec + ts->tv_nsec / 1000000000.0;

// Convert a long double to a struct timespec
struct timespec ld_to_timespec(long double t)

{
long double f;
struct timespec ts;
ts.tv_nsec = modfl(t, &f) * 1000000000L;
ts.tv_sec = f;
return ts;
}
See Also

time(), mtx_timedlock(), cnd_timedwait()

28.7 asctime()

Return a human-readable version of a struct tm

Synopsis
#include <time.h>

char *asctime(const struct tm *timeptr)

Description

This takes a time in a struct tm and returns a string with that date in the form:
Sun Sep 16 01:03:52 1973

with a newline included at the end, rather unhelpfully. (strftime() will give you more flexibility.)
It’s just like ctime (), except it takes a struct tm instead of a time_t.

WARNING: This function returns a pointer to a static char* region that isn’t thread-safe and might be
shared with the ctime () function. If you need thread safety, use strftime() or use a mutex that covers
ctime() and asctime().

Behavior is undefined for:

* Years less than 1000
* Years greater than 9999
+ Any members of timeptr are out of range

Chapter 28. <time.h> Date and Time Functions 336

Return Value

Returns a pointer to the human-readable date string.

Example

#include <stdio.h>
#include <time.h>

int main(void)

{
time_t now = time(NULL);
printf("Local: %s'", asctime(localtime(&now)));
printf("UTC : %s", asctime(gmtime(&now)));

}

Sample output:

Local: Mon Mar 1 21:17:34 2021
UTC : Tue Mar 2 05:17:34 2021

See Also

ctime(), localtime(), gmtime()

28.8 ctime()

Return a human-readable version of a time_t

Synopsis
#include <time.h>

char *ctime(const time_t *timer);

Description

This takes a time in a time_t and returns a string with the local time and date in the form:
Sun Sep 16 01:03:52 1973

with a newline included at the end, rather unhelpfully. (strftime() will give you more flexibility.)
It’s just like asctime(), except it takes a time_t instead of a struct tm.

WARNING: This function returns a pointer to a static char* region that isn’t thread-safe and might
be shared with the asctime() function. If you need thread safety, use strftime() or use a mutex that
covers ctime() and asctime().

Behavior is undefined for:

* Years less than 1000
* Years greater than 9999
* Any members of timeptr are out of range

Return Value

A pointer to the human-readable local time and data string.

Chapter 28. <time.h> Date and Time Functions 337

Example

time_t now = time(NULL);
printf("Local: %s", ctime(&now));
Sample output:

Local: Mon Mar 1 21:32:23 2021

See Also

asctime()

28.9 ¢gmtime()

Convert a calendar time into a UTC broken-down time

Synopsis
#include <time.h>

struct tm *gmtime(const time_t *timer);

Description

If you have a time_t, you can run it through this function to get a struct tm back full of the correspond-
ing broken-down UTC time information.

This is just like localtime(), except it does UTC instead of local time.
Once you have that struct tm, you can feed it to strftime() to print it out.

WARNING: This function returns a pointer to a static struct tm* region that isn’t thread-safe and
might be shared with the localtime() function. If you need thread safety use a mutex that covers
gmtime() and localtime().

Return Value

Returns a pointer to the broken-down UTC time, or NULL if it can’t be obtained.

Example

#include <stdio.h>
#include <time.h>

int main(void)

{
time_t now = time(NULL);
printf("UTC : %s", asctime(gmtime(&now)));
printf("Local: %s", asctime(localtime(&now)));
}

Sample output:

UTC : Tue Mar 2 05:40:05 2021
Local: Mon Mar 1 21:40:05 2021

Chapter 28. <time.h> Date and Time Functions 338

See Also

localtime(), asctime(), strftime()

28.10 localtime()

Convert a calendar time into a broken-down local time

Synopsis
#include <time.h>

struct tm *localtime(const time_t *timer);

Description

If you have a time_t, you can run it through this function to get a struct tmback full of the correspond-
ing broken-down local time information.

This is just like gmtime (), except it does local time instead of UTC.
Once you have that struct tm, you can feed it to strftime() to print it out.

WARNING: This function returns a pointer to a static struct tm* region that isn’t thread-safe and
might be shared with the gmtime () function. If you need thread safety use a mutex that covers gmtime ()
and localtime().

Return Value
Returns a pointer to the broken-down local time, or NULL if it can’t be obtained.
Example

#include <stdio.h>
#include <time.h>

int main(void)

{
time_t now = time(NULL);
printf("Local: %s", asctime(localtime(&now)));
printf("UTC : %s'", asctime(gmtime(&now)));

}

Sample output:

Local: Mon Mar 1 21:40:05 2021
UTC : Tue Mar 2 05:40:05 2021

See Also

gmtime(), asctime(), strftime()

28.11 strftime()

Formatted date and time output

Chapter 28. <time.h> Date and Time Functions 339

Synopsis
#inc lude <time.h>

size_t strftime(char * restrict s, size_t maxsize,
const char * restrict format,
const struct tm * restrict timeptr);

Description
This is the sprintf() of date and time functions. It’ll take a struct tm and produce a string in just
about whatever form you desire, for example:

2021-03-01
Monday, March 1 at 9:54 PM
It's Monday!

It’s a super flexible version of asctime (). And thread-safe, besides, since it doesn’t rely on a static buffer
to hold the results.

Basically what you do is give it a destination, s, and its max size in bytes in maxsize. Also, provide a
format string that’s analogous to printf()’s format string, but with different format specifiers. And
lastly, a struct tm with the broken-down time information to use for printing.

The format string works like this, for example:

"It's %A, %B %d!"

Which produces:
It's Monday, March 1!

The %A is the full day-of-week name, the %B is the full month name, and the %d is the day of the month.
strftime() substitutes the right thing to produce the result. Brilliant!

So what are all the format specifiers? Glad you asked!

I’'m going to be lazy and just drop this table in right from the spec.

Specifier =~ Description

%a Locale’s abbreviated weekday name. [tm_wday]

%A Locale’s full weekday name. [tm_wday]

%b Locale’s abbreviated month name. [tm_mon]

%B Locale’s full month name. [tm_mon]

%C Locale’s appropriate date and time representation.

%C Year divided by 100 and truncated to an integer, as a decimal number (00-99). [tm_year]

%d Day of the month as a decimal number (01-31). [tm_mday]

%D Equivalent to "%m/%d/%y". [tm_mon, tm_mday, tm_year]

%e Day of the month as a decimal number (1-31); a single digit is preceded by a space.
[tm_mday]

%F Equivalent to “%Y-%m-%d” (the ISO 8601 date format). [tm_year, tm_mon, tm_mday]

%9 Last 2 digits of the week-based year (see below) as a decimal number (00-99). [tm_year,
tm_wday, tm_yday]

%G Week-based year (see below) as a decimal number (e.g., 1997). [tm_year, tm_wday,
tm_yday]

%h Equivalent to “%b”. [tm_mon]

%H Hour (24-hour clock) as a decimal number (00-23). [tm_hour]

%I Hour (12-hour clock) as a decimal number (01-12). [tm_hour]

%] Day of the year as a decimal number (001-366). [tm_yday]

%m Month as a decimal number (01-12).

%M Minute as a decimal number (00-59). [tm_min]

%N A new-line character.

Chapter 28. <time.h> Date and Time Functions 340

Specifier ~ Description

%p Locale’s equivalent of the AM/PM designations associated with a 12-hour clock.
[tm_hour]

%I Locale’s 12-hour clock time. [tm_hour, tm_min, tm_sec]

%R Equivalent to "%H:%M". [tm_hour, tm_min]

%S Second as a decimal number (00-60). [tm_sec]

%t A horizontal-tab character.

%T Equivalent to "%H:%M:%S" (the ISO 8601 time format). [tm_hour, tm_min, tm_sec]

%u ISO 8601 weekday as a decimal number (1-7), where Monday is 1. [tm_wday]

%U Week number of the year (the first Sunday as the first day of week 1) as a decimal number
(00-53). [tm_year, tm_wday, tm_yday]

%V ISO 8601 week number (see below) as a decimal number (01-53). [tm_year, tm_wday,
tm_yday]

%w Weekday as a decimal number (0—6), where Sunday is 0.

%W Week number of the year (the first Monday as the first day of week 1) as a decimal number
(00-53). [tm_year, tm_wday, tm_yday]

%X Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Last 2 digits of the year as a decimal number (00-99). [tm_year]

%Y Year as a decimal number (e.g., 1997). [tm_year]

%z Offset from UTC in the ISO 8601 format " -0430" (meaning 4 hours 30 minutes behind
UTC, west of Greenwich), or by no characters if no time zone is determinable. [tm_isdst]

%Z Locale’s time zone name or abbreviation, or by no characters if no time zone is
determinable. [tm_isdst]

%% A plain oI’ %

Phew. That’s love.

%G, %4, and %v are a little funky in that they use something called the ISO 8601 week-based year. I’d never
heard of it. But, again stealing from the spec, these are the rules:

%g, %G, and %V give values according to the ISO 8601 week-based year. In this system, weeks
begin on a Monday and week 1 of the year is the week that includes January 4th, which is also
the week that includes the first Thursday of the year, and is also the first week that contains at
least four days in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding
days are part of the last week of the preceding year; thus, for Saturday 2nd January 1999, %G
is replaced by 1998 and %V is replaced by 53. If December 29th, 30th, or 31st is a Monday,
it and any following days are part of week 1 of the following year. Thus, for Tuesday 30th
December 1997, %G is replaced by 1998 and %V is replaced by 01.

Learn something new every day! If you want to know more, Wikipedia has a page on it’.

If you’re in the “C” locale, the specifiers produce the following (again, stolen from the spec):

Specifier Description

%a The first three characters of %A.

%A One of Sunday, Monday, ..., Saturday.

%b The first three characters of %B.

%B One of January, February, ..., December.
%C Equivalent to %a %b %e %T %Y.

%p One of AM or PM.

%r Equivalent to %I :%M:%S %p.

%X Equivalent to %m/%d/%y.

%X Equivalent to %T.

%Z Implementation-defined.

7https://en.wikipedia.org/wiki/ISO_week_date

https://en.wikipedia.org/wiki/ISO_week_date

20

21

22

23

24

25

26

27

28

29

30

31

Chapter 28. <time.h> Date and Time Functions 341

There are additional variants of the format specifiers that indicate you want to use a locale’s alternative
format. These don’t exist for all locales. It’s one of the format specifies above, with either an E or 0 prefix:

%EC %EC %EX %EX %Ey %EY %0d %0e %0H %0I
%0m %0M %0S %0u %0U %0V %0w %O0W %0y

The E and 0 prefixes are ignored in the “C” locale.
Return Value

Returns the total number of bytes put into the result string, not including the NUL terminator.

If the result doesn’t fit in the string, zero is returned and the value in s is indeterminate.

Example

#include <stdio.h>
#include <time.h>

int main(void)

{
char s[128];
time_t now = time(NULL);
// %c: print date as per current locale
strftime(s, sizeof s, "%c", localtime(&now));
puts(s); // Sun Feb 28 22:29:00 2621
// %A: full weekday name
// %B: full month name
// %d: day of the month
strftime(s, sizeof s, "%A, %B %d", localtime(&now));
puts(s); // Sunday, February 28
// %I: hour (12 hour clock)
// %M: minute
// %S: second
// %p: AM or PM
strftime(s, sizeof s, "It's %I:%M:%S %p", localtime(&now));
puts(s); // It's 10:29:00 PM
// %F: ISO 8601 yyyy-mm-dd
// %T: ISO 8601 hh:mm:ss
// %z: ISO 8601 time zone offset
strftime(s, sizeof s, "ISO 8601: %FT%T%z", localtime(&now));
puts(s); // IS0 8601: 2021-02-28T22:29:00-0800
}
See Also

ctime(), asctime()

Chapter 29

<uchar . h> Unicode utility functions

Function Description

ci6rtomb() Convert a char16_t to a multibyte character
c32rtomb() Convert a char32_t to a multibyte character
mbrtoc16() Convert a multibyte character to a char16_t
mbrtoc32() Convert a multibyte character to a char32_t

These functions are restartable, meaning multiple threads can safely call them at once. They handle this
by having their own conversion state variable (of type mbstate_t) per call.

29.1 Types

This header file defines four types.

Type Description

chari6_t Type to hold 16-bit characters

char32_t Type to hold 32-bit characters

mbstate_t Holds the conversion state for restartable funcitons (also defined in <wchar . h>)
size_t To hold various counts (also defined in <stddef.h>)

String literals for the character types are u for char16_t and U for char32_t.

char16_t *strl = u"Hello, world!";
char32_t *str2 = U"Hello, world!";

char16_t *chri
char32_t *chr2

U’A‘;
U|B|;

Note that char16_t and char32_t might contain Unicode. Or not. If _ STDC_UTF_16__ or
__STDC_UTF_32__ is defined as 1, then char16_t and char32_t use Unicode, respectively. Otherwise
they don’t and the actual value stored depend on the locale. And if you’re not using Unicode, you have
my comimiserations.

29.2 OS X issue

This header file doesn’t exist on OS X—bummer. If you just want the types, you can:

342

Chapter 29. <uchar . h> Unicode utility functions 343

#include <stdint.h>

typedef int_least16_t charil6_t;
typedef int_least32_t char32_t;

But if you also want the functions, that’s all on you.

29.3 mbrtoc16() mbrtoc32()

Convert a multibyte character to a char16_t or char32_t restartably

Synopsis
#inc lude <uchar.h>

size_t mbrtocl6(char16_t * restrict pcl6, const char * restrict s, size_t n,
mbstate_t * restrict ps);

size_t mbrtoc32(char32_t * restrict pc32, const char * restrict s, size_t n,
mbstate_t * restrict ps);

Description

Given a source string s and a destination buffer pc16 (or pc32 formbrtoc32()), convert the first character
of the source to char16_ts (or char32_ts for mbrtoc32()).

Basically you have a regular character and you want it as char16_t or char32_t. Use these functions to
do it. Note that only one character is converted no matter how many characters in s.

As the functions scan s, you don’t want them to overrun the end. So you pass in n as the maximum number
of bytes to inspect. The functions will quit after that many bytes or when they have a complete multibyte
character, whichever comes first.

Since they’re restartable, pass in a conversion state variable for the functions to do their work.

And the result will be placed in pc16 (or pc32 for mbrtoc32()).

Return Value

When successful this function returns a number between 1 and n inclusive representing the number of
bytes that made up the multibyte character.

Or, also in the success category, they can return 0 if the source character is the NUL character (value 0).

When not entirely successful, they can return a variety of codes. These are all of type size_t, but negative
values cast to that type.

Return Value Description

(size_t)(-1) Encoding error—this isn’t a valid sequence of bytes. errno is set to EILSEQ.

(size_t)(-2) n bytes were examined and were a partial valid character, but not a complete
one.

(size_t)(-3) A subsequent value of a character that can’t be represented as a single value.
See below.

Case (size_t)(-3) is an odd one. Basically there are some characters that can’t be represented with 16
bits and so can’t be stored in a char16_t. These characters are store in something called (in the Unicode

Chapter 29. <uchar . h> Unicode utility functions 344

world) surrogate pairs. That is, there are two 16-bit values back to back that represent a larger Unicode
value.

For example, if you want to read the Unicode character \U0@01fbc5 (which is a stick figure!—I’m just
not putting it in the text because my font doesn’t render it) that’s more than 16 bits. But each call to
mbrtoc16() only returns a single char16_t!

So subsequent calls to mbrtoc16 () resolves the next value in the surrogate pair and returns (size_t)(-
3) to let you know this has happened.

You can also pass NULL for pc16 or pc32. This will cause no result to be stored, but you can use it if
you’re only interested in the return value from the functions.

Finally, if you pass NULL for s, the call is equivalent to:
mbrtoc16(NULL, "", 1, ps)

Since the character is a NUL in that case, this has the effect of setting the state in ps to the initial conversion
state.

Example

Normal use case example where we get the first two character values from the multibyte string "€zil-
lion":

#include <uchar.h>

#include <stdio.h> // for printf()

#include <locale.h> // for setlocale()

#include <string.h> // for memset()

int main(void)
{
char *s = "\u20aczillion"; // 20ac is "€"
char16_t pc16;
size_t r;
mbstate_t mbs;

setlocale(LC_ALL, "");
memset (&mbs, 0, sizeof mbs);

// Examine the next 8 bytes to see if there's a character in there
r = mbrtoc16(&pcl6, s, 8, &mbs);

printf("%zu\n", r); // Prints a value >= 1 (3 in UTF-8 locale)
printf("%#x\n", pc16); // Prints 0x20ac for "€"

s += r; // Move to next character

// Examine the next 8 bytes to see if there's a character in there
r = mbrtocl16(&pcl6, s, 8, &mbs);

printf("%zu\n", r); // Prints 1
printf("%#x\n", pcl6); // Prints Ox5a for "Z"
}

Example with a surrogate pair. In this case we read plenty to get the entire character, but the result must
be stored in two char16_ts, requiring two calls to get them both.

#include <uchar.h>
#include <stdio.h> // for printf()
#include <string.h> // for memset()

!https://en.wikipedia.org/wiki/Symbols_for_Legacy_Computing

https://en.wikipedia.org/wiki/Symbols_for_Legacy_Computing

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Chapter 29. <uchar . h> Unicode utility functions

#include <locale.h> // for setlocale()

int main(void)

{
char *s = "\U00O1fbc5*"; // Stick figure glyph, more than 16 bits
char16_t pc16;
mbstate_t mbs;
size_t r;
setlocale(LC_ALL, "");
memset (&mbs, 0, sizeof mbs);
r = mbrtoc16(&pcl6, s, 8, &mbs);
printf("%zd\n", r); // r 1s 4 bytes in UTF-8 locale
printf("%#x\n", pcl6); // First value of surrogate pair
s += r; // Move to next character
r = mbrtocl16(&pcl6, s, 8, &mbs);
printf("%zd\n", r); // r is (size t)(-3) here to indicate...
printf("%#x\n", pclé); // ...Second value of surrogate pair
// Since r is -3, it means we're still processing the same
// character, so DON'T move to the next character this time
//s += r; // Commented out
r = mbrtocl16(&pcl6, s, 8, &mbs);
printf("%zd\n", r); // 1 byte for "*"
printf("%#x\n", pcl6); // 0x2a for "*"

}

345

Output on my system, indicating the first character is represented by the pair (0xd83e, 0xdfc5) and the

second character is represented by 0x2a:

4
0xd83e
-3
oxdfch
1

0Ox2a

See Also

clértomb(), c32rtomb()

29.4 ci16rtomb() c32rtomb()

Convert a char16_t or char32_t to a multibyte character restartably

Synopsis

#inc lude <uchar.h>

20

21

22

23

24

Chapter 29. <uchar . h> Unicode utility functions 346

size_ t cil6rtomb(char * restrict s, charl16_t c16, mbstate_t * restrict ps);

size_t c32rtomb(char * restrict s, char32_t c32, mbstate_t * restrict ps);

Description

If you have a character in a char16_t or char32_t, use these functions to convert them into a multibyte
character.

These functions figure out how many bytes are needed for the multibyte character in the current locale
and stores them in the buffer pointed to by s.

But how big to make that buffer? Luckily there is a macro to help: it needs be no larger than MB_CUR_MAX.

As a special case, if s is NULL, it’s the same as calling

clértomb(buf, L'\0', ps); // or...
c32rtomb(buf, L'\O@', ps);

where buf is a buffer maintained by the system that you don’t have access to.

This has the effect of setting the ps state to the initial state.

Finally for surrogate pairs (where the character has been split into two chari16_ts), you call this once
with the first of the pair—at this point, the function will return 6. Then you call it again with the second
of the pair, and the function will return the number of bytes and store the result in the array s.

Return Value
Returns the number of bytes stored in the array pointed to by s.
Returns 0 if processing is not yet complete for the current character, as in the case of surrogate pairs.

If there is an encoding error, the functions return (size_t)(-1) and errno is set to EILSEQ.

Example

#include <uchar.h>

#include <stdlib.h> // for MB_CUR_MAX
#include <stdio.h> // for printf()
#include <string.h> // for memset()
#include <locale.h> // for setlocale()

int main(void)
{
char16_t c16 = 0x20ac; // Unicode for Euro symbol
char dest[MB_CUR_MAX];
size_t r;
mbstate_t mbs;

setlocale(LC_ALL, "");
memset (&mbs, 0, sizeof mbs); // Reset conversion state

// Convert
r = clértomb(dest, c16, &mbs);

printf("r == %zd\n", r); // r == 3 on my system

// And this should print a Euro symbol
printf("dest == \"%s\"\n", dest);

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

Chapter 29. <uchar . h> Unicode utility functions 347

Output on my system:

r

dest == "g"

This is a more complex example that converts a large-valued character in a multibyte string into a surrogate
pair (as in the mbrtoc16 () example, above) and then converts it back again into a multibyte string to print.

#include <uchar.h>

#include <stdlib.h> // for MB_CUR_MAX
#include <stdio.h> // for printf()
#include <string.h> // for memset()
#include <locale.h> // for setlocale()

int main(void)

{

char *src = "\U00O1fbc5*"; // Stick figure glyph, more than 16 bits
char dest[MB_CUR_MAX];

char16_t surrogate@, surrogatel;

mbstate_t mbs;

size_t r;

setlocale(LC_ALL, "");
memset(&mbs, 0, sizeof mbs); // Reset conversion state

// Get first surrogate character
r = mbrtocl6(&surrogate®, src, 8, &mbs);

// Get next surrogate character
src += r; // Move to next character
r = mbrtocl6(&surrogatel, src, 8, &mbs);

printf("Surrogate pair: %#x, %#x\n", surrogate®, surrogatel);

// Now reverse it
memset (&mbs, 0, sizeof mbs); // Reset conversion state

// Process first surrogate character
r = clértomb(dest, surrogate®, é&mbs);

// r should be 0 at this point, because the character hasn't been
// processed yet. And dest won't have anything useful... yet!
printf("r == %zd\n", r); //r ==

// Process second surrogate character
r = clértomb(dest, surrogatel, &mbs);

// Now we should be in business. r should have the number of
// bytes, and dest should hold the character.
printf("r == %zd\n", r); // r == 4 on my system

// And this should print a stick figure, if your font supports it
printf("dest == \"%s\"\n", dest);

See Also

mbrtoc16(), mbrtoc32()

Chapter 30

<wchar . h> Wide Character Handling

Function Description

btowc () Convert a single byte character to a wide character
fgetwc() Get a wide character from a wide stream

fgetws() Read a wide string from a wide stream

fputwc() Write a wide character to a wide stream

fputws() Write a wide string to a wide stream

fwide() Get or set the orientation of the stream

fwprintf() Formatted wide output to a wide stream

fwscanf() Formatted wide input from a wide stream
getwchar () Get a wide character from stdin

getwc() Get a wide character from stdin

mbrlen() Compute the number of bytes in a multibyte character restartably
mbrtowc () Convert multibyte to wide characters restartably
mbsinit() Test if an mbstate_t is in the initial conversion state

mbsrtowcs()
putwchar ()
putwc ()
swprintf ()
swscanf ()
ungetwc ()
vfwprintf()
vfwscanf()
vswprintf()
vswscanf ()
vwprintf()
vwscanf ()
wcscat()
wcschr()
wcsemp()
wcscoll()
wescpy ()
wcscspn()
wcsftime()
wcslen()
wcsncat()
wesncemp ()
wecsnepy ()
wcspbrk()
wcsrchr()
wcsrtombs()

Convert a multibyte string to a wide character string restartably
Write a wide character to stdout

Write a wide character to stdout

Formatted wide output to a wide string

Formatted wide input from a wide string

Pushes a wide character back into the input stream

Variadic formatted wide output to a wide stream

Variadic formatted wide input from a wide stream

Variadic formatted wide output to a wide string

Variadic formatted wide input from a wide string

Variadic formatted wide output

Variadic formatted wide input

Concatenate wide strings dangerously

Find a wide character in a wide string

Compare wide strings

Compare two wide strings accounting for locale

Copy a wide string dangerously

Count characters not from a start at the front of a wide string
Formatted date and time output

Returns the length of a wide string

Concatenate wide strings more safely

Compare wide strings, length limited

Copy a wide string more safely

Search a wide string for one of a set of wide characters

Find a wide character in a wide string from the end

Convert a wide character string to a multibyte string restartably

348

Chapter 30. <wchar . h> Wide Character Handling 349

Function Description

wcsspn() Count characters from a set at the front of a wide string
wesstr() Find a wide string in another wide string

wcstod() Convert a wide string to a double

wcstof () Convert a wide string to a float

wcstok() Tokenize a wide string

wcstold() Convert a wide string to a long double

wcstoll() Convert a wide string to a long long

wcstol() Convert a wide string to a long

wcstoull() Convert a wide string to an unsigned long long
wcstoul() Convert a wide string to an unsigned long
wesxfrm() Transform a wide string for comparing based on locale
wctob() Convert a wide character to a single byte character
wctombr () Convert wide to multibyte characters restartably
wmemcmp () Compare wide characters in memory

wmemcpy () Copy wide character memory

wmemmove () Copy wide character memory, potentially overlapping
wprintf() Formatted wide output

wscanf () Formatted wide input

These are the wide character variants of the functions found in <stdio.h>.

Remember that you can’t mix-and-match multibyte output functions (like printf()) with wide character
output functions (like wprintf()). The output stream has an orientation to either multibyte or wide that
gets set on the first I/O call to that stream. (Or it can be set with fwide().)

So choose one or the other and stick with it.

And you can specify wide character constants and string literals by prefixing L to the front of it:

wchar_t *s = L"Hello, world!";
wchar_t ¢ = L'B';

This header also introduces a type wint_t that is used by the character I/O functions. It’s a type that can
hold any single wide character, but also the macro WEOF to indicate wide end-of-file.

30.1 Restartable Functions

Finally, a note on the “restartable” functions that are included here. When conversion is happening, some
encodings require C to keep track of some state about the progress of the conversion so far.

For a lot of the functions, C uses an internal variable for the state that is shared between function calls.
The problem is if you’re writing multithreaded code, this state might get trampled by other threads.

To avoid this, each thread needs to maintain its own state in a variable of the opaque type mbstate_t.
And the “restartable” functions allow you to pass in this state so that each thread can use their own.

30.2 wprintf(), fwprintf (), swprintf()

Formatted output with a wide string

Synopsis

#include <stdio.h> // For fwprintf()
#include <wchar.h>

Chapter 30. <wchar . h> Wide Character Handling 350

int wprintf(const wchar_t * restrict format, ...);
int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);

int swprintf(wchar_t * restrict s, size_t n,
const wchar_t * restrict format, ...);

Description

These are the wide versions of printf(), fprintf()](#man-printf), and [sprintf()‘.

See those pages for exact substantial usage.

These are the same except the format string is a wide character string instead of a multibyte string.

And that swprintf() is analogous to snprintf() in that they both take the size of the destination array
as an argument.

And one more thing: the precision specified for a %s specifier corresponds to the number of wide characters
printed, not the number of bytes. If you know of other difference, let me know.

Return Value

Returns the number of wide characters outputted, or -1 if there’s an error.

Example

#include <stdio.h>
#include <wchar.h>

int main(void)

{
char *mbs = "multibyte";
wchar_t *ws = L"wide";
wprintf(L"We're all wide for %s and %ls!\n", mbs, ws);
double pi = 3.14159265358979;
wprintf(L"pi = %f\n", pi);
}
Output:

We're all wide for multibyte and wide!
pi = 3.141593

See Also

printf(), vwprintf()

30.3 wscanf() fwscanf() swscanf()

Scan a wide stream or wide string for formatted input

Synopsis

Chapter 30. <wchar . h> Wide Character Handling

#include <stdio.h> // for fwscanf()
#include <wchar.h>

int wscanf(const wchar_t * restrict format, ...);
int fwscanf(FILE * restrict stream, const wchar_t * restrict format,

int swscanf(const wchar_t * restrict s, const wchar_t * restrict format,

Description
These are the wide variants of scanf (), fscanf(), and sscanf().

See the scanf () page for all the details.

Return Value
Returns the number of items successfully scanned, or EOF on some kind of input failure.

Example

#include <stdio.h>
#include <wchar.h>

int main(void)

{
int quantity;
wchar_t item[100];
wprintf(L"Enter \"quantity: item\"\n");
if (wscanf(L"%d:%991s", &quantity, item) != 2)
wprintf(L"Malformed input!\n");
else
wprintf(L"You entered: %d %ls\n", quantity, item);
}

Output (input of 12: apples):
Enter "quantity: item"
12: apples

You entered: 12 apples

See Also

scanf (), vwscanf ()

30.4 vwprintf() vfwprintf() vswprintf()
wprintf () variants using variable argument lists (va_list)

Synopsis

#include <stdio.h> // For vfwprintf()
#include <stdarg.h>

1)l

351

-);

20

21

22

23

24

25

26

27

28

29

30

31

32

Chapter 30. <wchar . h> Wide Character Handling 352

#inc lude <wchar.h>
int vwprintf(const wchar_t * restrict format, va_list arg);

int vswprintf(wchar_t * restrict s, size_ t n,
const wchar_t * restrict format, va_list arg);

int vfwprintf(FILE * restrict stream, const wchar_t * restrict format,
va_list arg);

Description

These functions are the wide character variants of the vprintf (), functions. You can refer to that refer-
ence page for more details.

Return Value

Returns the number of wide characters stored, or a negative value on error.

Example

In this example, we make our own version of wprintf () called wlogger () that timestamps output. No-
tice how the calls to wlogger () have all the bells and whistles of wprintf().

#1include <stdarg.h>
#inc lude <wchar.h>
#include <time.h>

int wlogger(wchar_t *format, ...)

{
va_list va;
time_t now_secs = time(NULL);
struct tm *now = gmtime(&now_secs);

// Output timestamp in format "YYYY-MM-DD hh:mm:ss : "

wprintf(L"%04d-%02d-%02d %02d:%02d:%02d : ",
now->tm_year + 1900, now->tm_mon + 1, now->tm_mday,
now->tm_hour, now->tm_min, now->tm_sec);

va_start(va, format);
int result = vwprintf(format, va);
va_end(va);

wprintf(L"\n");

return result;

}
int main(void)
{
int x = 12;
float y = 3.2;
wlogger(L"Hello!");
wlogger(L"x = %d and y = %.2f", X, y);
}

Output:

Chapter 30. <wchar . h> Wide Character Handling 353

2021-03-30 04:25:49 : Hello!
2021-03-30 04:25:49 : x = 12 and y = 3.20

See Also

printf(), vprintf()

30.5 vwscanf(), vfwscanf (), vswscanf()

wscanf () variants using variable argument lists (va_list)

Synopsis

#include <stdio.h> // For vfwscanf()
#include <stdarg.h>
#1include <wchar.h>

int vwscanf(const wchar_t * restrict format, va_list arg);

int vfwscanf(FILE * restrict stream, const wchar_t * restrict format,
va_list arg);

int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format,
va_list arg);

Description

These are the wide counterparts to the vscanf () collection of functions. See their reference page for
details.

Return Value

Returns the number of items successfully scanned, or EOF on some kind of input failure.

Example

I have to admit I was wracking my brain to think of when you’d ever want to use this. The best example
I could find was one on Stack Overflow! that error-checks the return value from scanf() against the
expected. A variant of that is shown below.

#include <stdarg.h>
#include <wchar.h>
#include <assert.h>

int error_check_wscanf(int expected_count, wchar_t *format, ...)

{

va_list va;

va_start(va, format);
int count = vwscanf(format, va);
va_end(va);

// This line will crash the program if the condition is false:
assert(count == expected_count);

Uhttps://stackoverflow.com/questions/17017331/c99-vscanf-for-dummies/17018046#17018046

https://stackoverflow.com/questions/17017331/c99-vscanf-for-dummies/17018046#17018046

20

21

22

23

24

25

26

1

2

3

Chapter 30. <wchar . h> Wide Character Handling

return count;

}
int main(void)
{
int a, b;
float c;
error_check_wscanf (3, L"%d, %d/%f", &a, &b, &c);
error_check_wscanf(2, L"%d", &a);
}
See Also
wscanf ()

30.6 getwc() fgetwc() getwchar ()

Get a wide character from an input stream

Synopsis

#include <stdio.h> // For getwc() and fgetwc()
#include <wchar.h>

wint_t getwchar(void);
wint_t getwc(FILE *stream);

wint_t fgetwc(FILE *stream);

Description

These are the wide variants of fgetc().

354

fgetwc () and getwc() are identical except that getwc () might be implemented as a macro and is al-

lowed to evaluate stream multiple times.

getwchar () is identical to getwc () with stream set to stdin.

I don’t know why you’d ever use getwc () instead of fgetwc (), but if anyone knows, drop me a line.

Return Value

Returns the next wide character in the input stream. Return WEOF on end-of-file or error.

If an I/O error occurs, the error flag is also set on the stream.

If an invalid byte sequence is encountered, errno is set to ILSEQ.

Example

Reads all the characters from a file, outputting only the letter ’b’s it finds in the file:

#include <stdio.h>
#include <wchar.h>

Chapter 30. <wchar . h> Wide Character Handling

int main(void)

{
FILE *fp;
wint_t c;
fp = fopen("datafile.txt", "r"); // error check this!
// this while-statement assigns into c, and then checks against EOF:
while((c = fgetc(fp)) !'= WEOF)
if (c == L'b")
fputwc(c, stdout);
fclose(fp);
}
See Also

fputwc, fgetws, errno

30.7 fgetws()

Read a wide string from a file

Synopsis

#inc lude <stdio.h>
#include <wchar.h>

wchar_t *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);

Description
This is the wide version of fgets(). See its reference page for details.

A wide NUL character is used to terminate the string.

Return Value

Returns s on success, or a NULL pointer on end-of-file or error.

Example

The following example reads lines from a file and prepends them with numbers:

#include <stdio.h>
#inc lude <wchar.h>

#define BUF_SIZE 1024
int main(void)
{
FILE *fp;
wchar_t buf[BUF_SIZE];

fp = fopen("textfile.txt", "r"); // error check this!

355

Chapter 30. <wchar . h> Wide Character Handling 356

int line_count = 0;

while ((fgetws(buf, BUF_SIZE, fp)) != NULL)
wprintf(L"%04d: %ls", ++line_count, buf);

fclose(fp);

Example output for a file with these lines in them (without the prepended numbers):

0001: line 1
0002: line 2
0003: something
0004: 1line 4

See Also

fgetwc(), fgets()

30.8 putwchar() putwc() fputwc()

Write a single wide character to the console or to a file

Synopsis

#include <stdio.h> // For putwc() and fputwc()
#include <wchar.h>

wint_t putwchar(wchar_t c);
wint_t putwc(wchar_t c, FILE *stream);

wint_t fputwc(wchar_t c, FILE *stream);

Description

These are the wide character equivalents to the ‘fputc()’ group of functions. You can find more information
‘in that reference section’.

fputwe () and putwc() are identical except that putwc () might be implemented as a macro and is al-
lowed to evaluate stream multiple times.

putwchar () is identical to putwc () with stream set to stdin.

I don’t know why you’d ever use putwc () instead of fputwc (), but if anyone knows, drop me a line.

Return Value
Returns the wide character written, or WEOF on error.
If it’s an I/O error, the error flag will be set for the stream.

If it’s an encoding error, errno will be set to EILSEQ.

Example

Read all characters from a file, outputting only the letter *b’s it finds in the file:

Chapter 30. <wchar . h> Wide Character Handling 357

#include <stdio.h>
#inc lude <wchar.h>

int main(void)

{
FILE *fp;
wint_t c;
fp = fopen("datafile.txt", "r"); // error check this!
// this while-statement assigns into c, and then checks against EOF:
while((c = fgetc(fp)) !'= WEOF)
if (c == L'b")
fputwc(c, stdout);
fclose(fp);
}
See Also

fgetwc(), fputc(), errno

30.9 fputws()

Write a wide string to a file

Synopsis

#include <stdio.h>
#inc lude <wchar.h>

int fputws(const wchar_t * restrict s, FILE * restrict stream);

Description
This is the wide version of fputs().

Pass in a wide string and an output stream, and it will so be written.

Return Value

Returns a non-negative value on success, or EQF on error.

Example

#include <stdio.h>
#inc lude <wchar.h>

int main(void)

{
fputws(L"Hello, world!\n", stdout);

Chapter 30. <wchar . h> Wide Character Handling 358

See Also

fputwc () fputs()

30.10 fwide()

Get or set the orientation of the stream

Synopsis

#include <stdio.h>
#include <wchar.h>

int fwide(FILE *stream, int mode);

Description

Streams can be either wide-oriented (meaning the wide functions are in use) or byte-oriented (that the
regular multibyte functions are in use). Or, before an orientation is chosen, unoriented.

There are two ways to set the orientation of an unoriented stream:

+ Implicitly: just use a function like printf() (byte oriented) or wprintf() (wide oriented), and
the orientation will be set.

+ Explicitly: use this function to set it.

You can set the orientation for the stream by passing different numbers to mode:

mode Description

0 Do not alter the orientation
-1 Set stream to byte-oriented
1 Set stream to wide-oriented

(I said -1 and 1 there, but really it could be any positive or negative number.)

Most people choose the wide or byte functions (printf() or wprintf()) and just start using them and
never use fwide () to set the orientation.

And once the orientation is set, you can’t change it. So you can’t use fwide() for that, either.
So what can you use it for?

You can test to see what orientation a stream is in by passing 0 as the mode and checking the return value.

Return Value
Returns greater than zero if the stream is wide-oriented.
Returns less than zero if the stream is byte-oriented.

Returns zero if the stream is unoriented.

Example

Example setting to byte-oriented:

Chapter 30. <wchar . h> Wide Character Handling

#include <stdio.h>
#inc lude <wchar.h>

int main(void)

' printf("Hello world!\n"); // Implicitly set to byte

int mode = fwide(stdout, 0);

printf("Stream is %s-oriented\n", mode < 0? "byte": "wide");
}
Output:

Hello world!
Stream is byte-oriented

Example setting to wide-oriented:

#include <stdio.h>
#include <wchar.h>

int main(void)

' wprintf(L"Hello world!\n"); // Implicitly set to wide

int mode = fwide(stdout, 0);

wprintf(L"Stream is %ls-oriented\n", mode < 0? L"byte": L"wide");
}
Output:

Hello world!
Stream is wide-oriented

30.11 ungetwc()

Pushes a wide character back into the input stream

Synopsis

#include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t c, FILE *stream);

Description

This is the wide character variant of ungetc().

It performs the reverse operation of fgetwc (), pushing a character back on the input stream.

359

The spec guarantees you can do this one time in a row. You can probably do it more times, but it’s up to
the implementation. If you do too many calls without an intervening read, an error could be returned.

Setting the file position discards any characters pushed by ungetwc () without being subsequently read.

The end-of-file flag is cleared after a successful call.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Chapter 30. <wchar . h> Wide Character Handling 360

Return Value

Returns the value of the pushed character on success, or WEOF on failure.

Example
This example reads a piece of punctuation, then everything after it up to the next piece of punctuation. It
returns the leading punctuation, and stores the rest in a string.

#include <stdio.h>
#include <wctype.h>
#include <wchar.h>

wint_t read_punctstring(FILE *fp, wchar_t *s)

{
wint_t origpunct, c;
origpunct = fgetwc(fp);
if (origpunct == WEOF) // return EOF on end-of-file
return WEOF;
while (c = fgetwc(fp), !iswpunct(c) && c != WEOF)
*s++ = c; // save it in the string
*s = L'\0'; // nul-terminate the string
// if we read punctuation last, ungetc it so we can fgetc it next
// time:
if (iswpunct(c))
ungetwc(c, fp);
return origpunct;
}
int main(void)
{
wchar_t s[128];
wint_t c;
while ((c = read_punctstring(stdin, s)) != WEOF) {
wprintf(L"%lc: %Lls\n", c, s);
}
}

Sample Input:

| foo#bar*baz

Sample output:

1. foo
#: bar
*: baz
See Also

fgetwc (), ungetc()

Chapter 30. <wchar . h> Wide Character Handling 361

30.12 wcstod() westof() westold()

Convert a wide string to a floating point number

Synopsis

#include <wchar.h>

double wcstod(const wchar_t * restrict nptr, wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

long double wcstold(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Description

These are the wide counterparts to the strtod() family of functions. See their reference pages for details.

Return Value
Returns the string converted to a floating point value.
Returns 0 if there’s no valid number in the string.

On overflow, returns an apporpriately-signed HUGE_VAL, HUGE_VALF. or HUGE_VALL depending on the
return type, and errno is set to ERANGE.

On underflow, returns a number no greater than the smallest normalized positive number, appropriately
signed. The implemention might set errno to ERANGE.

Example

#inc lude <wchar.h>

int main(void)

{
wchar_t *inp = L" 123.4567beej";
wchar_t *badchar;

double val = wcstod(inp, &badchar);

wprintf(L"Converted string to %f\n", val);
wprintf(L"Encountered bad characters: %ls\n", badchar);

val = wcstod(L"987.654321beej", NULL);
wprintf(L"Ignoring bad chars: %f\n", val);

val = wcstod(L"11.2233", &badchar);

if (*badchar == L'\0")
wprintf(L"No bad chars: %f\n", val);
else
wprintf(L"Found bad chars: %f, %ls\n", val, badchar);

}

Output:

Converted string to 123.456700
Encountered bad characters: beej

Chapter 30. <wchar . h> Wide Character Handling 362

Ignoring bad chars: 987.654321
No bad chars: 11.223300

See Also

wcstol(), strtod(), errno

30.13 wcstol() westoll() westoul() westoull()

Convert a wide string to an integer value

Synopsis
#include <wchar.h>

long int wcstol(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

long long int wcstoll(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

unsigned long int wcstoul(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

unsigned long long int wcstoull(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

Description

These are the wide counterparts to the strtol() family of functions, so see their reference pages for the
details.

Return Value
Returns the integer value of the string.
If nothing can be found, 0 is returned.

If the result is out of range, the value returned is one of LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX,
ULONG_MAX or ULLONG_MAX, as appropriate. And errno is set to ERANGE.

Example

#inc lude <wchar.h>

int main(void)

{
// All output in decimal (base 10)

wprintf(L"%1ld\n", wcstol(L"123", NULL, 0)); // 123
wprintf(L"%1ld\n", wcstol(L"123", NULL, 10)); // 123
wprintf(L"%1ld\n", wcstol(L"101010", NULL, 2)); // binary, 42
wprintf(L"%ld\n", wcstol(L"123", NULL, 8)); // octal, 83
wprintf(L"%1ld\n", wcstol(L"123", NULL, 16)); // hex, 291

Chapter 30. <wchar . h> Wide Character Handling 363

wprintf(L"%1ld\n", wcstol(L"0123", NULL, 0)); // octal, 83
wprintf(L"%1ld\n", wcstol(L"0x123", NULL, Q)); // hex, 291

wchar_t *badchar;
long int x = wecstol(L" 1234beej", &badchar, 0);

wprintf(L"Value is %ld\n", x); // Value is 1234
wprintf(L"Bad chars at \"%ls\"\n", badchar); // Bad chars at "beej"

Output:

123

123

42

83

291

83

291

Value is 1234

Bad chars at "beej"

See Also

wcstod(), strtol(), errno, wcstoimax(), wcstoumax()

30.14 wcscpy() wesnepy()

Copy a wide string

Synopsis
#inc lude <wchar.h>
wchar_t *wcscpy(wchar_t * restrict si1, const wchar_t * restrict s2);

wchar_t *wcsncpy(wchar_t * restrict si,
const wchar_t * restrict s2, size_t n);

Description
These are the wide versions of strcpy() and strncpy().

They’1l copy a string up to a wide NUL. Or, in the case of the safer wecsncpy(), until then or until n wide
characters are copied.

If the string in s1 is shorter than n, wesncpy () will pad s2 with wide NUL characters until the nth wide
character is reached.

Even thoughwcsncpy () is safer because it will never overrun the end of s2 (assuming you set n correctly),
it’s still unsafe a NUL is not found in s1 in the first n characters. In that case, s2 will not be NUL-
terminated. Always make sure n is greater than the string length of s1!

Return Value

Returns s1.

Chapter 30. <wchar . h> Wide Character Handling

Example

#include <wchar.h>

int main(void)

{
wchar_t *s1 = L"Hello!";
wchar_t s2[10];
wcsncpy(s2, s1, 10);
wprintf(L"\"%Lls\"\n", s2); // "Hello!"
}
See Also

wmemcpy (), wmemmove() strcpy(), strncpy()

30.15 wmemcpy () wmemmove()

Copy wide characters
Synopsis
#include <wchar.h>

wchar_t *wmemcpy(wchar_t * restrict si,
const wchar_t * restrict s2,

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

Description
These are the wide versions of memcpy () and memmove().

They copy n wide characters from s2 to s1.

size_t n);

364

They’re the same except that wnemmove () is guaranteed to work with overlapping memory regions, and

wmemcpy () is not.

Return Value

Both functions return the pointer s1.

Example

#inc lude <wchar.h>

int main(void)

{
wchar_t s[100] = L"Goats";
wchar_t t[100];

wmemcpy(t, s, 6);

// Copy non-overlapping memory

wmemmove(s + 2, s, 6); // Copy overlapping memory

Chapter 30. <wchar . h> Wide Character Handling 365

wprintf(L"s is \"%1ls\"\n", s);
wprintf(L"t is \"%Lls\"\n", t);
}

Output:

s is "GoGoats"
t is "Goats"

See Also

wcscpy(), wesnepy (), memcpy (), memmove ()

30.16 wcscat() wesncat()

Concatenate wide strings

Synopsis
#include <wchar.h>

wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);

wchar_t *wcsncat(wchar_t * restrict si,
const wchar_t * restrict s2, size_t n);

Description

These are the wide variants of strcat () and strncat().

They concatenate s2 onto the end of s1.

They’re the same except wecsncat () gives you the option to limit the number of wide characters appended.

Note that wesncat () always adds a NUL terminator to the end, even if n characters were appended. So
be sure to leave room for that.

Return Value

Both functions return the pointer s1.

Example

#include <wchar.h>

int main(void)

{
wchar_t dest[30] = L"Hello";
wchar_t *src = L", World!";
wchar_t numbers[] = L"12345678";

wprintf(L"dest before strcat: \"%Lls\"\n", dest); // "Hello"

wcscat(dest, src);
wprintf(L"dest after strcat: \"%ls\"\n", dest); // "Hello, world!"

Chapter 30. <wchar . h> Wide Character Handling 366

wcsncat (dest, numbers, 3); // strcat first 3 chars of numbers
wprintf(L"dest after strncat: \"%ls\"\n", dest); // "Hello, world!123"

See Also

strcat(), strncat()

30.17 wcscmp(), wesncmp (), wmememp ()

Compare wide strings or memory

Synopsis

#inc lude <wchar.h>

int wcscmp(const wchar_t *si1, const wchar_t *s2);

int wesncmp(const wchar_t *s1, const wchar_t *s2, size t n);

int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description

These are the wide variants of memcmp (), strcmp(), and strncmp().

wcscmp () and wesnemp () both compare strings until a NUL character.

wecsncmp () also has the additional restriction that it will only compare the first n characters.
wmemcmp () is like wesncmp (') except it won’t stop at a NUL.

The comparison is done against the character value (which might (or might not) be its Unicode code point).

Return Value
Returns zero if both regions are equal.
Returns a negative number if the region pointed to by s1 is less than s2.

Returns a positive number if the region pointed to by s1 is greater than s2.

Example

#inc lude <wchar.h>

int main(void)

{
wchar_t *s1 = L"Muffin";
wchar_t *s2 L"Muffin Sandwich";
wchar_t *s3 = L"Muffin";

wprintf(L"%d\n", wcscmp(L"Biscuits", L"Kittens")); // <0 since 'B' < 'K'
wprintf(L"%d\n", wcscmp(L"Kittens", L"Biscuits")); // >0 since 'K' > 'B'

if (wcscmp(sl, s2) == 0)
wprintf(L"This won't get printed because the strings differ\n");

20

21

22

23

24

25

26

27

28

29

1

2

Chapter 30. <wchar . h> Wide Character Handling

if

//
V4
/7
//
/7

if

if
}
Output:
-1
1

(wcscmp(s1, s3) == 0)
wprintf(L"This will print because s1 and s3 are the same\n");

this is a little weird...but if the strings are the same, it'll
return zero, which can also be thought of as "false". Not-false
is "true", so (!wcscmp()) will be true if the strings are the
same. yes, it's odd, but you see this all the time in the wild
so you might as well get used to it:

('wecscmp(sl, s3))
wprintf(L"The strings are the same!\n");

('wecsnemp(sl, s2, 6))
wprintf(L"The first 6 characters of s1 and s2 are the same\n");

This will print because s1 and s3 are the same
The strings are the same!
The first 6 characters of s1 and s2 are the same

See Also

wcscoll(), memcmp(), stremp(), strncmp()

30.18 wcscoll()

Compare two wide strings accounting for locale

Synopsis

#include <wchar.h>

int wcscoll(const wchar_t *s1, const wchar_t *s2);

Description

This is the wide version of strcoll(). See that reference page for details.

This is slower than wescmp(), so only use it if you need the locale-specific compare.

Return Value

Returns zero if both regions are equal in this locale.

Returns a negative number if the region pointed to by s1 is less than s2 in this locale.

Returns a positive number if the region pointed to by s1 is greater than s2 in this locale.

Example

#inc lude <wchar.h>
#include <locale.h>

367

Chapter 30. <wchar . h> Wide Character Handling 368

int main(void)

{
setlocale(LC_ALL, "");
// If your source character set doesn't support "é" in a string
// you can replace it with "\u@0e9 ', the Unicode code point
// for "é".
wprintf(L"%d\n", wcscmp(L"e", L"f")); // Reports é > f, yuck.
wprintf(L"%d\n", wcscoll(L"e", L"f")); // Reports € < f, yay!
}
See Also

wesemp (), wesxfrm(), strcoll()

30.19 wcsxfrm()

Transform a wide string for comparing based on locale

Synopsis

#inc lude <wchar.h>

size_t wesxfrm(wchar_t * restrict si,

const wchar_t * restrict s2, size t n);

Description

This is the wide variant of strxfrm(). See that reference page for details.

Return Value

Returns the length of the transformed wide string in wide characters.

If the return value is greater than n, all bets are off for the result in s1.

Example

#inc lude <wchar.h>
#include <locale.h>
#include <stdlib.h>

// Transform a string for comparison, returning a malloc'd
// result
wchar_t *get_xfrm_str(wchar_t *s)

{

int len = wesxfrm(NULL, s, 0) + 1;
wchar_t *d = malloc(len * sizeof(wchar_t));

wesxfrm(d, s, len);

return d;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chapter 30. <wchar . h> Wide Character Handling 369

// Does half the work of a regular wcscoll() because the second
// string arrives already transformed.
int half_wcscoll(wchar_t *si1, wchar_t *s2_transformed)

{
wchar_t *s1_transformed = get_xfrm_str(sl1);
int result = wcscmp(sl_transformed, s2_transformed);
free(sl_transformed);
return result;

}

int main(void)

{
setlocale(LC_ALL, "");
// Pre-transform the string to compare against
wchar_t *s = get_xfrm_str(L"efg");
// Repeatedly compare against "éfg"
wprintf(L"%d\n", half_wcscoll(L"fgh", s)); // "fgh" > "éfg"
wprintf(L"%d\n", half_wcscoll(L"abc", s)); // "abc" < "éfg"
wprintf(L"%d\n", half_wcscoll(L"hij", s)); // "hij" > "eéfg"
free(s);

}

Output:

1

-1

1

See Also

wesemp (), wescoll(), strxfrm()

30.20 wcschr() wesrchr()

Find a wide character in a wide string

Synopsis

#include <wchar.h>

wchar_t *wcschr(const wchar_t *s, wchar_t c);
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

Description

These are the wide equivalents to strchr (), strrchr (), and memchr ().

20

21

22

23

Chapter 30. <wchar . h> Wide Character

They search for wide characters in a wide string from the front (wcschr()), the end (wcsrchr()) or for

Handling

an arbitrary number of wide characters (wmemchr ()).

Return Value

All three functions return a pointer to the wide character found, or NULL if the character, sadly, isn’t found.

Example

#inc lude <wchar.h>

int main(void)

// repeatedly find all occurrences of the letter

{
// "Hello, world!"
// A A A
// A B (03
wchar_t *str = L"Hello, worl
wchar_t *p;
p = wcschr(str, ',");
p = wcsrchr(str, 'o0');
p = wmemchr(str, '!'', 13);
str = L"A BIG BROWN BAT BIT
for(p = wcschr(str, 'B'); p
wprintf(L"Found a 'B'
}
}
Output:
Found a 'B' here: BIG BROWN BAT
Found a 'B' here: BROWN BAT BIT
Found a 'B' here: BAT BIT BEEJ
Found a 'B' here: BIT BEEJ
Found a 'B' here: BEEJ
See Also

strchr(), strrchr(), memchr ()

dr";

// p now points at position A
// p now points at position B
// p now points at position C

IBI
BEEJ";

I= NULL; p = weschr(p + 1,

here: %1ls\n", p);

BIT BEEJ
BEEJ

30.21 wcsspn() wescspn()

Return the length of a wide string consisting entirely of a set of wide characters, or of not a set of wide

characters

Synopsis
#inc lude <wchar.h>

size_t wcsspn(const wchar_t *si,

const wchar_t *s2);

'B')) {

Chapter 30. <wchar . h> Wide Character Handling 371

size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

Description

The are the wide character counterparts to [strspn()] (#man-strspn)and strcspn().

They compute the length of the string pointed to by s1 consisting entirely of the characters found in s2.
Or, in the case of wcscspn(), the characters not found in s2.

Return Value

The length of the string pointed to by s1 consisting solely of the characters in s2 (in the case of wecsspn())
or of the characters not in s2 (in th ecase of wcscspn()).

Example

#inc lude <wchar.h>

int main(void)

{
wchar_t stri[] = L"a banana";
wchar_t str2[] = L"the bolivian navy on maneuvers in the south pacific";
int n;
// how many letters in strl until we reach something that's not a vowel?
n = wcsspn(strl, L"aeiou");
wprintf(L"%d\n", n);, // n == 1, just "a"
// how many letters in strl until we reach something that's not a, b,
// or space?
n = wcsspn(strli, L"ab ");
wprintf(L"%d\n", n);, // n == 4, "a ba"
// how many letters in str2 before we get a "y"?
n = wcscspn(str2, L"y");
wprintf(L"%d\n", n); // n = 16, "the bolivian nav"
}
See Also

wcschr(),wesrchr(), strspn()

30.22 wcspbrk()

Search a wide string for one of a set of wide characters

Synopsis

#inc lude <wchar.h>

wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

Chapter 30. <wchar . h> Wide Character Handling 372

Description
This is the wide character variant of strpbrk().

It finds the first occurrance of any of a set of wide characters in a wide string.

Return Value
Returns a pointer to the first character in the string s1 that exists in the string s2.

Or NULL if none of the characters in s2 can be found in s1.

Example

#inc lude <wchar.h>

int main(void)

{
// p points here after wcspbrk
// v
wchar_t *s1 = L"Hello, world!";
wchar_t *s2 = L"dow!"; // Match any of these chars
wchar_t *p = wcspbrk(sl, s2); // p points to the o
wprintf(L"%Lls\n", p); // "o, world!"

}

See Also

wcschr (), wmemchr (), strpbrk()

30.23 wcsstr()

Find a wide string in another wide string

Synopsis
#include <wchar.h>

wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

Description
This is the wide variant of strstr().

It locates a substring in a string.

Return Value
Returns a pointer to the location in s1 that contains s2.

Or NULL if s2 cannot be found in s1.

Chapter 30. <wchar . h> Wide Character Handling 373

Example

#inc lude <wchar.h>

int main(void)

{
wchar_t *str = L"The quick brown fox jumped over the lazy dogs.";
wchar_t *p;
p = wecsstr(str, L"lazy");
wprintf(L"%1ls\n", p == NULL? L"null": p); // "lazy dogs."
// p 1is NULL after this, since the string "wombat" isn't in str:
p = wcsstr(str, L"wombat");
wprintf(L"%1ls\n", p == NULL? L"null": p); // "null"
}
See Also

wcschr(),wesrchr (), wesspn(),wcscspn(), strstr()

30.24 wcstok()

Tokenize a wide string

Synopsis

#inc lude <wchar.h>
wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2,
wchar_t ** restrict ptr);

Description
This is the wide version of strtok().
And, like that one, it modifies the string s1. So make a copy of it first if you want to preserve the original.

One key difference is that westok() can be threadsafe because you pass in the pointer ptr to the current
state of the transformation. This gets initializers for you when s1 is initially passed in as non-NULL.
(Subsequent calls with a NULL s1 cause the state to update.)

Return Value
Example

#include <wchar.h>
int main(void)

// break up the string into a series of space or
// punctuation-separated words

wchar_t str[] = L"Where is my bacon, dude?";
wchar_t *token;

wchar_t *state;

// Note that the following if-do-while construct is very very

Chapter 30. <wchar . h> Wide Character Handling

// very very very common to see when using strtok().

// grab the first token (making sure there is a first token!)
if ((token = wcstok(str, L".,?! ", &state)) != NULL) {
do {
wprintf(L"word: \"%Lls\"\n", token);

// now, the while continuation condition grabs the
// next token (by passing NULL as the first param)
// and continues if the token's not NULL:
} while ((token = wcstok(NULL, L".,?! ", &state)) != NULL);

}
}
Output:
Word: "Where"
Word: "is"
word: "my"
Word: "bacon"
wWord: "dude"
See Also
strtok()

30.25 wcslen()

Returns the length of a wide string

Synopsis

#inc

size

lude <wchar.h>

_t weslen(const wchar_t *s);

Description

This is the wide counterpart to strlen().

Return Value

Returns the number of wide characters before the wide NUL terminator.

Exa

mple

#inc lude <wchar.h>

int

{

main(void)
wchar_t *s = L"Hello, world!"; // 13 characters

// prints "The string is 13 characters long.":

374

Chapter 30. <wchar . h> Wide Character Handling

wprintf(L"The string is %zu characters long.\n", wcslen(s));

See Also

strlen()

30.26 wcsftime()

Formatted date and time output

Synopsis

#include <time.h>
#inc lude <wchar.h>

size_ t wcsftime(wchar_t * restrict s, size_t maxsize,

const wchar_t * restrict format,
const struct tm * restrict timeptr);

Description

This is the wide equivalent to strftime(). See that reference page for details.

maxsize here refers to the maximum number of wide characters that can be in the result string.

Return Value

If successful, returns the number of wide characters written.

If not successful because the result couldn’t fit in the space alloted, 0 is returned and the contents of the

string could be anything.

Example

#inc lude <wchar.h>
#include <time.h>

#define BUFSIZE 128

int main(void)

{
wchar_t s[BUFSIZE];
time_t now = time(NULL);

// %c: print date as per current locale
wcsftime(s, BUFSIZE, L"%c'", localtime(&now));

wprintf(L"%1ls\n", s); // Sun Feb 28 22:29:00 2021

// %A: full weekday name
// %B: full month name
// %d: day of the month

wcsftime(s, BUFSIZE, L"%A, %B %d", localtime(&now));

wprintf(L"%1ls\n", s); // Sunday, February 28

21

22

23

24

25

26

27

28

29

30

31

32

33

Chapter 30. <wchar . h> Wide Character Handling

// %I: hour (12 hour clock)

// %M: minute

// %S: second

// %p: AM or PM

wcsftime(s, BUFSIZE, L"It's %I:%M:%S %p", localtime(&now));
wprintf(L"%1ls\n", s); // It's 10:29:00 PM

// %F: ISO 8601 yyyy-mm-dd

// %T: ISO 8601 hh:mm:ss

// %z: ISO 8601 time zone offset

wcsftime(s, BUFSIZE, L"ISO 8601: %FT%T%z", localtime(&now));
wprintf(L"%1ls\n", s); // IS0 8601: 2021-02-28T22:29:00-0800

See Also

strftime()

30.27 btowc() wctob()

Convert a single byte character to a wide character
Synopsis

#include <wchar.h>

wint_t btowc(int c);

int wctob(wint_t c);

Description

These functions convert between single byte characters and wide characters, and vice-versa.

376

Even though ints are involved, don’t let this mislead you; they’re effectively converted to unsigned

chars internally.

The characters in the basic character set are guaranteed to be a single byte.

Return Value

btowc () returns the single-byte character as a wide character. Returns WEOF if EOF is passed in, or if the

byte doesn’t correspond to a valid wide character.

wctob () returns the wide character as a single-byte character. Returns EOF if WEOF is passed in, or if the

wide character doesn’t correspond to a value single-byte character.

See mbtowc () and wetomb () for multibyte to wide character conversion.

Example

#include <wchar.h>

int main(void)

{

wint_t wc = btowc('B'); // Convert single byte to wide char

Chapter 30. <wchar . h> Wide Character Handling 377

wprintf(L"wide character: %lc\n", wc);
unsigned char c¢ = wctob(wc); // Convert back to single byte

wprintf(L"Single-byte character: %c\n", c);
}

Output:

wWide character: B
Single-byte character: B

See Also

mbtowc (), wctomb()

30.28 mbsinit()

Test if an mbstate_t is in the initial conversion state

Synopsis
#include <wchar.h>

int mbsinit(const mbstate_t *ps);

Description

For a given conversion state in a mbstate_t variable, this function determines if it’s in the initial conver-
sion state.

Return Value
Returns non-zero if the value pointed to by ps is in the initial conversion state, or if ps is NULL.

Returns 0 if the value pointed to by ps is not in the initial conversion state.

Example

For me, this example doesn’t do anything exciting, saying that the mbstate_t variable is always in the
initial state. Yay.

But if have a stateful encoding like 2022-JP, try messing around with this to see if you can get into an
intermediate state.

This program has a bit of code at the top that reports if your locale’s encoding requires any state.

#include <locale.h> // For setlocale()
#include <string.h> // For memset()
#include <stdlib.h> // For mbtowc()
#include <wchar.h>

int main(void)

{
mbstate_t state;
wchar_t wc[128];

20

21

22

23

24

Chapter 30. <wchar . h> Wide Character Handling 378

setlocale(LC_ALL, "");

int is_state_dependent = mbtowc(NULL, NULL, 0);

wprintf(L"Is encoding state dependent? %d\n", is_state_dependent);
memset (&state, O, sizeof state); // Set to initial state
wprintf(L"In initial conversion state? %d\n", mbsinit(&state));
mbrtowc(wc, "B", 5, &state);

wprintf(L"In initial conversion state? %d\n", mbsinit(&state));

See Also

mbtowc (), wctomb (), mbrtowc(), wcrtomb()

30.29 mbrlen()

Compute the number of bytes in a multibyte character, restartably

Synopsis
#inc lude <wchar.h>

size_t mbrlen(const char * restrict s, size_t n, mbstate_t * restrict ps);

Description

This is the restartable version of mblen().

It inspects at most n bytes of the string s to see how many bytes in this character.
The conversion state is stored in ps.

This function doesn’t have the functionality of mblen () that allowed you to query if this character encod-
ing was stateful and to reset the internal state.

Return Value
Returns the number of bytes required for this multibyte character.
Returns (size_t)(-1) if the data in s is not a valid multibyte character.

Returns (size_t)(-2) if the data is s is a valid but not complete multibyte character.

Example
If your character set doesn’t support the Euro symbol “€”, substitute the Unicode escape sequence \u20ac,
below.

#include <locale.h> // For setlocale()
#include <string.h> // For memset()
#include <wchar.h>

int main(void)

Chapter 30. <wchar . h> Wide Character Handling 379

‘ mbstate_t state;
int len;
setlocale(LC_ALL, "");
memset (&state, O, sizeof state); // Set to initial state
len = mbrlen("B", 5, &state);
wprintf(L"Length of 'B' is %d byte(s)\n", 1len);
len = mbrlen("€", 5, &state);
wprintf(L"Length of '€' is %d byte(s)\n", 1len);
}
Output:

Length of 'B' is 1 byte(s)
Length of '€' is 3 byte(s)

See Also

mblen()

30.30 mbrtowc()

Convert multibyte to wide characters restartably

Synopsis
#include <wchar.h>

size_t mbrtowc(wchar_t * restrict pwc, const char * restrict s,
size_t n, mbstate_t * restrict ps);

Description
This is the restartable counterpart to mbtowc ().

It converts individual characters from multibyte to wide, tracking the conversion state in the variable
pointed to by ps.

At most n bytes are inspected for conversion to a wide character.
These two variants are identical and cause the state pointed to by ps to be set to the initial conversion
state:

mbrtowc(NULL, NULL, O, é&state);
mbrtowc(NULL, "", 1, &state);

Also, if you’re just interested in the length in bytes of the multibyte character, you can pass NULL for pwc
and nothing will be stored for the wide character:

int len = mbrtowc(NULL, "€", 5, &state);

This function doesn’t have the functionality of mbtowc () that allowed you to query if this character en-
coding was stateful and to reset the internal state.

Chapter 30. <wchar . h> Wide Character Handling 380

Return Value

On success, returns a positive number corresponding to the number of bytes in the multibyte character.

Returns 0 if the character encoded is a wide NUL character.

Returns (size_t)(-1) if the data in s is not a valid multibyte character.

Returns (size_t)(-2) if the data is s is a valid but not complete multibyte character.

Example

If your character set doesn’t support the Euro symbol “€”, substitute the Unicode escape sequence \u20ac,
below.

#include <string.h> // For memset()
#include <stdlib.h> // For mbtowc()
#include <locale.h> // For setlocale()
#include <wchar.h>

int main(void)

{

}

mbstate_t state;

memset(&state, 0, sizeof state);

setlocale(LC_ALL, "");

wprintf(L"State dependency: %d\n", mbtowc(NULL, NULL, 0));

wchar_t wc;
int bytes;

bytes = mbrtowc(&wc, "€", 5, &state);

wprintf(L"L'%lc' takes %d bytes as multibyte char '€'\n", wc, bytes);

Output on my system:

State dependency: 0
L'€' takes 3 bytes as multibyte char '€'

See Also

mbtowc (), wcrtomb()

30.31 wcrtomb()

Convert wide to multibyte characters restartably

Synopsis

#include <wchar.h>

size_t wcrtomb(char * restrict s, wchar_t wc, mbstate_t * restrict ps);

Chapter 30. <wchar . h> Wide Character Handling 381

Description
This is the restartable counterpart to wctomb ().

It converts individual characters from wide to multibyte, tracking the conversion state in the variable
pointed to by ps.

The destination array s should be at least MB_CUR_MAX? bytes in size—you won’t get anything bigger back
from this function.

Note that the values in this result array won’t be NUL-terminated.

If you pass a wide NUL character in, the result will contain any bytes needed to restore the conversion
state to its initial state followed by a NUL character, and the state pointed to by ps will be reset to its
initial state:

// Reset state
wcrtomb(mb, L'\0@', &state)

If you don’t care about the results (i.e. you’re just interested in resetting the state or getting the return
value), you can do this by passing NULL for s:

wcrtomb(NULL, L'\@', &state); // Reset state
int byte_count = wctomb(NULL, "X'", &state); // Count bytes in 'X'

This function doesn’t have the functionality of wctomb () that allowed you to query if this character en-
coding was stateful and to reset the internal state.

Return Value
On success, returns the number of bytes needed to encode this wide character in the current locale.

If the input is an invalid wide character, errno will be set to EILSEQ and the function returns (size_t)(-
1). If this happens, all bets are off for the conversion state, so you might as well reset it.

Example

If your character set doesn’t support the Euro symbol “€”, substitute the Unicode escape sequence \u20ac,
below.

#include <string.h> // For memset()
#include <stdlib.h> // For mbtowc()
#include <locale.h> // For setlocale()
#include <wchar.h>

int main(void)

‘ mbstate_t state;

memset (&state, 0, sizeof state);

setlocale(LC_ALL, "");

wprintf(L"State dependency: %d\n", mbtowc(NULL, NULL, 0));

char mb[10] = {0};

int bytes = wcrtomb(mb, L'€', &state);

wprintf(L"L'€' takes %d bytes as multibyte char '%s'\n", bytes, mb);
}

2This is a variable, not a macro, so if you use it to define an array, it’ll be a variable-length array.

Chapter 30. <wchar . h> Wide Character Handling 382

See Also

mbrtowc(), wctomb(), errno

30.32 mbsrtowcs()

Convert a multibyte string to a wide character string restartably

Synopsis
#inc lude <wchar.h>

size_t mbsrtowcs(wchar_t * restrict dst, const char ** restrict src,
size_t len, mbstate_t * restrict ps);

Description
This is the restartable version of mbstowcs().
It converts a multibyte string to a wide character string.

The result is put in the buffer pointed to by dst, and the pointer src is updated to indicate how much of
the string was consumed (unless dst is NULL).

At most len wide characters will be stored.
This also takes a pointer to its own mbstate_t variable in ps for holding the conversion state.

You can set dst to NULL if you only care about the return value. This could be useful for getting the
number of characters in a multibyte string.

In the normal case, the src string will be consumed up to the NUL character, and the results will be stored
in the dst buffer, including the wide NUL character. In this case, the pointer pointed to by src will be
set to NULL. And the conversion state will be set to the initial conversion state.

If things go wrong because the source string isn’t a valid sequence of characters, conversion will stop and
the pointer pointed to by src will be set to the address just after the last successfully-translated multibyte
character.

Return Value
If successful, returns the number of characters converted, not including any NUL terminator.

If the multibyte sequence is invalid, the function returns (size_t)(-1) and errno is set to EILSEQ.

Example

Here we’ll convert the string “€5 + n” into a wide character string:

#include <locale.h> // For setlocale()
#include <string.h> // For memset()
#include <wchar.h>

#define WIDE_STR_SIZE 10
int main(void)
{

const char *mbs = "€5 + m"; // That's the exact price range

wchar_t wcs[WIDE_STR_SIZE];

20

21

22

23

24

25

Chapter 30. <wchar . h> Wide Character Handling 383

setlocale(LC_ALL, "");

mbstate_t state;
memset (&state, 0, sizeof state);

size_t count = mbsrtowcs(wcs, &mbs, WIDE_STR_SIZE, &state);

wprintf(L"wide string L\"%1ls\" is %d characters\n", wcs, count);

}

Output:

Wide string L"€5 £ m" is 6 characters

Here’s another example of using mbsrtowcs () to get the length in characters of a multibyte string even if
the string is full of multibyte characters. This is in contrast to strlen(), which returns the total number
of bytes in the string.

#include <stdio.h> // For printf()
#include <locale.h> // For setlocale()

#include <string.h> // For memset()
#include <stdint.h> // For SIZE_MAX

#inc lude <wchar.h>

size_t mbstrlen(const char *mbs)

{
mbstate_t state;
memset (&state, 0, sizeof state);
return mbsrtowcs(NULL, &mbs, SIZE_MAX, &state);
}
int main(void)
{
setlocale(LC_ALL, "");
char *mbs = "€5 + n"; // That's the exact price range
printf("\"%s\" is %zu characters...\n", mbs, mbstrlen(mbs));
printf("but it's %zu bytes!\n", strlen(mbs));
}

Output on my system:

"€5 + m" is 6 characters...
but it's 10 bytes!

See Also

mbrtowc (), mbstowcs(), wcsrtombs(), strlen(), errno

30.33 wcsrtombs()

Convert a wide character string to a multibyte string restartably

Chapter 30. <wchar . h> Wide Character Handling 384

Synopsis
#include <wchar.h>

size_t wcsrtombs(char * restrict dst, const wchar_t ** restrict src,
size_t len, mbstate_t * restrict ps);

Description

If you have a wide character string, you can convert it to a multibyte character string in the current locale
using this function.

At most len bytes of data will be stored in the buffer pointed to by dst. Conversion will stop just after
the NUL terminator is copied, or len bytes get copied, or some other error occurs.

If dst is a NULL pointer, no result is stored. You might do this if you’re just interested in the return value
(nominally the number of bytes this would use in a multibyte string, not including the NUL terminator).

If dst is not a NULL pointer, the pointer pointed to by src will get modified to indicate how much of the
data was copied. If it contains NULL at the end, it means everything went well. In this case, the state ps
will be set to the initial conversion state.

If 1en was reached or an error occurred, it’ll point one address past dst+1en.

Return Value

If everything goes well, returns the number of bytes needed for the multibyte string, not counting the NUL
terminator.

If any character in the string doesn’t correspond to a valid multibyte character in the currently locale, it
returns (size_t)(-1) and EILSEQ is stored in errno.

Example

Here we’ll convert the wide string “€5 + n” into a multibyte character string:
#include <locale.h> // For setlocale()

#include <string.h> // For memset()

#include <wchar.h>

#define MB_STR_SIZE 20

int main(void)

' const wchar_t *wcs = L"€5 £ m"; // That's the exact price range
char mbs[MB_STR_SIZE];
setlocale(LC_ALL, "");
mbstate_t state;
memset (&state, 0, sizeof state);
size_t count = wcsrtombs(mbs, &wcs, MB_STR_SIZE, &state);
wprintf(L"Multibyte string \"%s\" is %d bytes\n", mbs, count);

}

Here’s another example helper function that malloc()s just enough memory to hold the converted string,
then returns the result. (Which must later be freed, of course, to prevent leaking memory.)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

Chapter 30. <wchar . h> Wide Character Handling

#include <stdlib.h> // For malloc()
#include <locale.h> // For setlocale()
#include <string.h> // For memset()
#include <stdint.h> // For SIZE_MAX
#include <wchar.h>

char *get_mb_string(const wchar_t *wcs)
{
setlocale(LC_ALL, "");

mbstate_t state;
memset (&state, 0, sizeof state);

// Need a copy of this because wcsrtombs changes it
const wchar_t *p = wcs;

// Compute the number of bytes needed to hold the result
size_t bytes_needed = wcsrtombs(NULL, &p, SIZE MAX, &state);

// If we didn't get a good full conversion, forget it
if (bytes_needed == (size_t)(-1))
return NULL;

// Allocate space for result
char *mbs = malloc(bytes_needed + 1); // +1 for NUL terminator

// Set conversion state to initial state
memset (&state, 0, sizeof state);

// Convert and store result
wcsrtombs(mbs, &wcs, bytes_needed + 1, &state);

// Make sure things went well
if (wcs !'= NULL) {

free(mbs);
return NULL;

// Success!
return mbs;
int main(void)
char *mbs = get_mb_string(L"€5 + m");
wprintf(L"Multibyte result: \"%s\"\n", mbs);

free(mbs);

See Also

wcrtomb (), wcstombs(), mbsrtowcs(), errno

385

Chapter 31

<wctype.h> Wide Character
Classification and Transformation

Function

Description

iswalnum()
iswalpha()
iswblank()
iswentrl()
iswctype()
iswdigit()
iswgraph()
iswlower ()
iswprint()
iswpunct()
iswspace()
iswupper ()
iswxdigit()
towctrans()
towlower ()
towupper ()
wctrans()

wctype()

Test if a wide character is alphanumeric.

Tests if a wide character is alphabetic

Tests if this is a wide blank character

Tests if this is a wide control character.

Determine wide character classification

Test if this wide character is a digit

Test to see if a wide character is a printable non-space
Tests if a wide character is lowercase

Tests if a wide character is printable

Test if a wide character is punctuation

Test if a wide character is whitespace

Tests if a wide character is uppercase

Tests if a wide character is a hexadecimal digit
Convert wide characters to upper or lowercase
Convert an uppercase wide character to lowercase
Convert a lowercase wide character to uppercase
Helper function for towctrans()

Helper function for iswctype()

This is like <ctype . h> except for wide characters.

With it you can test for character classifications (like “is this character whitespace?”) or do basic character
conversions (like “force this character to lowercase”).

31.1 iswalnum()

Test if a wide character is alphanumeric.

Synopsis
#inc lude <wctype.h>

int iswalnum(wint_t wc);

386

Chapter 31. <wctype.h> Wide Character Classification and Transformation

Description

Basically tests if a character is alphabetic (A-Z or a-z) or a digit (6-9). But some other characters might

also qualify based on the locale.

This is equivalent to testing if iswalpha() or iswdigit() is true.

Return Value

Returns true if the character is alphanumeric.

Example

#inc lude <wchar.h>
#include <wctype.h>

int main(void)

s {
6 // testing this char
7 // "4
8 wprintf(L"%1ls\n", iswalnum(L'a')? L"yes": L"no"); // yes
wprintf(L"%1ls\n", iswalnum(L'B')? L"yes": L"no"),; // yes
wprintf(L"%1ls\n", iswalnum(L'5')? L"yes": L"no"); // yes
wprintf(L"%Lls\n", iswalnum(L'?"')? L"yes": L"no"); // no
}
See Also

iswalpha(), iswdigit(), isalnum()

31.2 iswalpha()

Tests if a wide character is alphabetic

Synopsis
#inc lude <wctype.h>

int iswalpha(wint_t wc);

Description

Basically tests if a character is alphabetic (A-Z or a-z). But some other characters might also qualify based
on the locale. (If other characters qualify, they won’t be control characters, digits, punctuation, or spaces.)

This is the same as testing for iswupper () or iswlower ().

Return Value

Returns true if the character is alphabetic.

Example

1 #include <wchar.h>
> #include <wctype.h>

3

Chapter 31. <wctype.h> Wide Character Classification and Transformation

int main(void)

{
//
//
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%Lls\n",

See Also

iswalnum(), isalpha()

testing this char
v
iswalpha(L'a')? L"yes":
iswalpha(L'B')? L"yes":
iswalpha(L'5"')? L"yes":
iswalpha(L'?"')? L"yes":

L"nO");
L"nO");
L"nO");
L"I’]O");

// yes
// yes
// no
// no

31.3 iswblank()

Tests if this is a wide blank character

Synopsis

#inc lude <wctype.h>

int iswblank(wint_t wc);

Description

388

Blank characters are whitespace that are also used as word separators on the same line. In the “C” locale,
the only blank characters are space and tab.

Other locales might define other blank characters.

Return Value

Returns true if this is a blank character.

Example

#inc lude <wchar.h>
#inc lude <wctype.h>

int main(void)

{
//
//
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%Lls\n",

See Also

iswspace(), isblank()

testing this char
v
iswblank(L' "')? L"yes":

iswblank(L'\t')? L"yes": L"no");
iswblank(L'\n')? L"yes": L"no");

iswblank(L'a')? L"yes":
iswblank(L'?")? L"yes":

L"nO");

L"nO");
L"nO");

// yes
// yes
// no
// no
// no

Chapter 31. <wctype.h> Wide Character Classification and Transformation

31.4 iswentrl()

Tests if this is a wide control character.

Synopsis

#include <wctype.h>

int iswcntrl(wint_t wc);

Description

The spec is pretty barren, here. But I’m just going to assume that it works like the non-wide version. So

let’s look at that.

A control character is a locale-specific non-printing character.

For the “C” locale, this means control characters are in the range 0x00 to 0x1F (the character right before

SPACE) and 0x7F (the DEL character).

Basically if it’s not an ASCII (or Unicode less than 128) printable character, it’s a control character in the

“C” locale.

Probably.

Return Value

Returns true if this is a control character.

Example

#inc lude <wchar.h>
#include <wctype.h>

int main(void)

{
/7
/7
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%Lls\n",
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",
wprintf(L"%1ls\n",

See Also

iscntrl()

testing this char

v
iswentrl(L'\t')?
iswentrl(L'\n")?
iswentrl(L'\r')?

iswentrl(L'

L"yes":
L"yes":
L"yes":
iswentrl(L'\a')? L"yes":
')? L"yes":
iswentrl(L'a')? L"yes":
iswentrl(L'?")? L"yes":

L"no");
L"no");
L"no");
L"no");
L"no");
L"no");
L"no");

//
/7
/7
/7

//
/7

yes
yes
yes
yes
no
no
no

31.5 iswdigit()

Test if this wide character is a digit

(tab)
(newline)
(return)
(bell)

Chapter 31. <wctype.h> Wide Character Classification and Transformation
Synopsis
#include <wctype.h>

int iswdigit(wint_t wc);

Description

Tests if the wide character is a digit (0-9).

Return Value
Returns true if the character is a digit.

Example

#inc lude <wchar.h>
#inc lude <wctype.h>

int main(void)

{
// testing this char
// v
wprintf(L"%ls\n", iswdigit(L'0"')? L"yes": L"no"); // yes
wprintf(L"%1ls\n", iswdigit(L'5')? L"yes": L"no"); // yes
wprintf(L"%1ls\n", iswdigit(L'a')? L"yes": L"no"); // no
wprintf(L"%1ls\n", iswdigit(L'B')? L"yes": L"no"); // no
wprintf(L"%1ls\n", iswdigit(L'?')? L"yes": L"no"); // no
}
See Also

iswalnum(), isdigit()

31.6 iswgraph()

Test to see if a wide character is a printable non-space

Synopsis
#1include <wctype.h>

int iswgraph(wint_t wc);

Description

Returns true if this is a printable (non-control) character and also not a whitespace character.

Basically if iswprint() is true and iswspace() is false.

Return Value

Returns true if this is a printable non-space character.

390

Chapter 31. <wctype.h> Wide Character Classification and Transformation

Example

#include <wchar.h>
#include <wctype.h>

int main(void)

{
// testing this char
// v
wprintf(L"%1ls\n", iswgraph(L'0")? L"yes":
wprintf(L"%1ls\n", iswgraph(L'a')? L"yes":
wprintf(L"%Lls\n", iswgraph(L'B')? L'"yes":
wprintf(L"%Lls\n", iswgraph(L'?"')? L"yes":
wprintf(L"%1ls\n", iswgraph(L' ')? L"yes":

wprintf(L"%1ls\n", iswgraph(L'\n')? L"yes":

See Also

iswprint(), iswspace(), isgraph()

L"no");
L"no");
L"no");
L"no");
L"no");
L"no");

// yes
// yes
// yes
// yes
// no
// no

31.7 iswlower()

Tests if a wide character is lowercase

Synopsis
#include <wctype.h>

int iswlower (wint_t wc);

Description

Tests if a character is lowercase, in the range a-z.

In other locales, there could be other lowercase characters. In all cases, to be lowercase, the following

must be true:

liswentrl(c) && !iswdigit(c) && !iswpunct(c) && !iswspace(c)

Return Value

Returns true if the wide character is lowercase.

Example

#inc lude <wchar.h>
#include <wctype.h>

int main(void)

{
// testing this char
// v
wprintf(L"%1ls\n", iswlower(L'c')? L"yes":
wprintf(L"%1ls\n", iswlower(L'0"')? L"yes":

L"nO"),‘
L"nO");

// yes
// no

Chapter 31. <wctype.h> Wide Character Classification and Transformation

wprintf(L"%1ls\n", iswlower(L'B')? L"yes": L"no");
wprintf(L"%1ls\n", iswlower(L'?')? L"yes": L"no");
wprintf(L"%Lls\n", iswlower(L' ")? L"yes": L"no");

See Also

islower (), iswupper (), iswalpha(), towupper(), towlower()

// no
// no
// no

31.8 iswprint()

Tests if a wide character is printable

Synopsis
#inc lude <wctype.h>

int iswprint(wint_t wc);

Description

Tests if a wide character is printable, including space (' '). So like isgraph(), except space isn’t left

out in the cold.

Return Value
Returns true if the wide character is printable, including space (' ').

Example

#include <wchar.h>
#include <wctype.h>

int main(void)

{
// testing this char
// v
wprintf(L"%Lls\n", iswprint(L'c')? L"yes": L"no");
wprintf(L"%Lls\n", iswprint(L'0"')? L"yes": L"no");
wprintf(L"%Lls\n", iswprint(L' ')? L"yes": L"no");
wprintf(L"%1ls\n", iswprint(L'\r')? L"yes": L"no");
}
See Also

isprint(), iswgraph(), iswcntr1()

// yes
// yes
// yes
// no

31.9 iswpunct()

Test if a wide character is punctuation

Chapter 31. <wctype.h> Wide Character Classification and Transformation

Synopsis
#include <wctype.h>

int iswpunct(wint_t wc);

Description
Tests if a wide character is punctuation.

This means for any given locale:

lisspace(c) && !isalnum(c)

Return Value

True if the wide character is punctuation.

Example

Results may vary based on locale.

#inc lude <wchar.h>
#inc lude <wctype.h>

int main(void)

{
// testing this
// v
wprintf(L"%Lls\n", iswpunct(L',6 ')?
wprintf(L"%Lls\n", iswpunct(L'!"')?
wprintf(L"%1ls\n", iswpunct(L'c')?
wprintf(L"%1ls\n", iswpunct(L'0"')?
wprintf(L"%1ls\n", iswpunct(L' ')?

See Also

ispunct(), iswspace(), iswalnum()

char

L"yes":
L"yes":
L"yes":
L"yes":
L"yes":
wprintf(L"%Lls\n", iswpunct(L'\n')? L"yes":

L"no");
L"no");
L"no");
L"no");
L"no");
L"no");

yes
yes
no
no
no
no

31.10 iswspace()

Test if a wide character is whitespace

Synopsis
#inc lude <wctype.h>

int iswspace(wint_t wc);

Description

Tests if c is a whitespace character. These are probably:

e Space (" ")
» Formfeed ('\f")

393

Chapter 31. <wctype.h> Wide Character Classification and Transformation

* Newline ('\n"')
 Carriage Return ('\r")
* Horizontal Tab ('\t")
* Vertical Tab ('\v"')

Other locales might specify other whitespace characters. iswalnum(), iswgraph(), and iswpunct()

are all false for all whitespace characters.

Return Value

True if the character is whitespace.

Example

Results may vary based on locale.

#inc lude <wchar.h>
#include <wctype.h>

int main(void)

{
// testing this char
// v
wprintf(L"%1ls\n", iswspace(L' ')? L"yes": L"no"); // yes
wprintf(L"%1ls\n", iswspace(L'\n')? L"yes": L"no"),; // yes
wprintf(L"%1ls\n", iswspace(L'\t')? L"yes": L"no"); // yes
wprintf(L"%1ls\n", iswspace(L',')? L"yes": L"no"); // no
wprintf(L"%Lls\n", iswspace(L'!")? L"yes": L"no"); // no
wprintf(L"%1ls\n", iswspace(L'c')? L"yes": L"no"); // no
}
See Also

isspace(), iswblank()

31.11 iswupper()

Tests if a wide character is uppercase

Synopsis
#include <wctype.h>

int iswupper(wint_t wc);

Description
Tests if a character is uppercase in the current locale.

To be uppercase, the following must be true:
liscntrl(c) && !isdigit(c) && !ispunct(c) && !isspace(c)

Return Value

Returns true if the wide character is uppercase.

Chapter 31. <wctype.h> Wide Character Classification and Transformation

Example

#inc lude <wchar.h>
#include <wctype.h>

int main(void)

{
// testing this
// v
wprintf(L"%1ls\n", iswupper(L'B')?
wprintf(L"%1ls\n", iswupper(L'c')?
wprintf(L"%Lls\n", iswupper(L'Q')?
wprintf(L"%Lls\n", iswupper(L'?')?
wprintf(L"%Lls\n", iswupper(L' ')?

See Also

char

L"yes":
L"yes":
L"yes":
L"yes":
L"yes":

L"nO");
L"nO");
L"nO");
L"nO");
L"nO");

isupper(), iswlower (), iswalpha(), towupper(), towlower ()

// yes
// no
// no
// no
// no

31.12 iswxdigit()

Tests if a wide character is a hexadecimal digit

Synopsis
#include <wctype.h>

int iswxdigit(wint_t wc);

Description

Returns true if the wide character is a hexadecimal digit. Namely if it’s 0-9, a-f, or A-F.

Return Value
True if the character is a hexadecimal digit.

Example

#inc lude <wchar.h>
#inc lude <wctype.h>

int main(void)

// testing this char

// v

wprintf(L"%1ls\n", iswxdigit(L'B')? L"yes":
wprintf(L"%1ls\n", iswxdigit(L'c')? L"yes":
wprintf(L"%1ls\n", iswxdigit(L'2')? L"yes":
wprintf(L"%1ls\n", iswxdigit(L'G')? L"yes":
wprintf(L"%1ls\n", iswxdigit(L'?')? L"yes":

L"no");
L"no");
L"no");
L"no");
L"no");

// yes
// yes
// yes
// no
// no

Chapter 31. <wctype.h> Wide Character Classification and Transformation 396

See Also

isxdigit(), iswdigit()

31.13 iswctype()

Determine wide character classification

Synopsis
#inc lude <wctype.h>

int iswctype(wint_t wc, wctype_t desc);

Description
This is the Swiss Army knife of classification functions; it’s all the other ones rolled into one.
You call it with something like this:

if (iswctype(c, wctype('"digit"))) // or "alpha" or "space'" or...

and it behaves just like you’d called:
if (iswdigit(c))

The difference is that you can specify the type of matching you want to do as a string at runtime, which
might be convenient.

iswctype() relies on the return value from the wctype () call to get its work done.

Stolen from the spec, here are the iswctype() calls and their equivalents:

iswctype() call

Hard-coded equivalent

iswctype(c, wctype("alnum")) iswalnum(c)
iswctype(c, wctype("alpha")) iswalpha(c)
iswctype(c, wctype("blank")) iswblank(c)
iswctype(c, wctype("cntrl")) iswentrl(c)
iswctype(c, wctype("digit")) iswdigit(c)
iswctype(c, wctype('"graph")) iswgraph(c)
iswctype(c, wctype("lower")) iswlower(c)
iswctype(c, wctype("print")) iswprint(c)
iswctype(c, wctype("punct")) iswpunct(c)
iswctype(c, wctype("space")) iswspace(c)
iswctype(c, wctype("upper")) iswupper(c)
iswctype(c, wctype('"xdigit")) iswxdigit(c)

See the wctype () documentation for how that helper function works.

Return Value

Returns true if the wide character wc matches the character class in desc.

Example

Test for a given character classification at when the classification isn’t known at compile time:

20

21

22

23

24

25

26

27

28

29

Chapter 31. <wctype.h> Wide Character Classification and Transformation

#include <stdio.h> // for fflush(stdout)
#1include <wchar.h>
#include <wctype.h>

int main(void)

{

wchar_t c; // Holds a single wide character (to test)

char desc[128]; // Holds the character class

// Get the character and classification from the user
wprintf(L"Enter a character and character class: ");
fflush(stdout);

wscanf(L"%lc %s'", &c, desc);

// Compute the type from the given class
wctype_t t = wctype(desc);

if (t == 0)
// If the type is 0, it's an unknown class
wprintf(L"Unknown character class: \"%s\"\n", desc);
else {
// Otherwise, let's test the character and see if its
// classification
if (iswctype(c, t))
wprintf(L"Yes! '%lc' is %s!'\n", c, desc);
else
wprintf(L"Nope! '%lc' is not %s.\n", c, desc);

}

Output:

Enter a character and character class: 5 digit
Yes! '5' is digit!

Enter a character and character class: b digit
Nope! 'b' is not digit.

Enter a character and character class: x alnum
Yes! 'x' is alnum!

See Also

wctype()

31.14 wctype()

Helper function for iswctype()

Synopsis
#include <wctype.h>

wctype_t wctype(const char *property);

that

397

20

21

22

23

24

25

26

27

28

29

Chapter 31. <wctype.h> Wide Character Classification and Transformation 398

Description

This function returns an opaque value for the given property that is meant to be passed as the second
argument to iswctype().

The returned value is of type wctype_t.

Valid properties in all locales are:

"alnum" "alpha" "blank" "cntrl"
"digit" "graph" "lower" "print"
"punct" "space" "upper" "xdigit"

Other properties might be defined as determined by the LC_CTYPE category of the current locale.

See the iswctype() reference page for more usage details.

Return Value
Returns the wetype_t value associated with the given property.

If an invalid value is passed for property, returns 0.

Example

Test for a given character classification at when the classification isn’t known at compile time:

#include <stdio.h> // for fflush(stdout)
#include <wchar.h>
#include <wctype.h>

int main(void)

{
wchar_t c; // Holds a single wide character (to test)
char desc[128]; // Holds the character class

// Get the character and classification from the user
wprintf(L"Enter a character and character class: ");
fflush(stdout);

wscanf(L"%lc %s", &c, desc);

// Compute the type from the given class
wctype_t t = wctype(desc);

if (t == 0)
// If the type is 0, it's an unknown class
wprintf(L"Unknown character class: \"%s\"\n", desc);
else {
// Otherwise, let's test the character and see if its that
// classification
if (iswctype(c, t))
wprintf(L"Yes! '%lc' is %s!\n", c, desc);
else
wprintf(L"Nope! '%1lc' is not %s.\n", c, desc);

}

Output:

Enter a character and character class: 5 digit
Yes! '5' is digit!

Enter a character and character class: b digit

Chapter 31. <wctype.h> Wide Character Classification and Transformation 399

Nope! 'b' is not digit.

Enter a character and character class: x alnum
Yes! 'x' is alnum!

See Also

iswctype()

31.15 towlower()

Convert an uppercase wide character to lowercase

Synopsis
#inc lude <wctype.h>

wint_t towlower (wint_t wc);

Description

If the character is upper (i.e. iswupper (c) is true), this function returns the corresponding lowercase
letter.

Different locales might have different upper and lowercase letters.

Return Value

If the letter wc is uppercase, a lowercase version of that letter will be returned according to the current
locale.

If the letter is not uppercase, wc is returned unchanged.
Example

#include <wchar.h>
#include <wctype.h>

int main(void)

{
// changing this char
// v
wprintf(L"%lc\n", towlower(L'B')); // b (made lowercase!)
wprintf(L"%lc\n", towlower(L'e')); // e (unchanged)
wprintf(L"%lc\n", towlower(L'!"')); // ! (unchanged)

}

See Also

tolower (), towupper (), iswlower (), iswupper()

Chapter 31. <wctype.h> Wide Character Classification and Transformation 400

31.16 towupper()

Convert a lowercase wide character to uppercase

Synopsis
#include <wctype.h>

wint_t towupper(wint_t wc);

Description

If the character is lower (i.e. iswlower(c) is true), this function returns the corresponding uppercase
letter.

Different locales might have different upper and lowercase letters.

Return Value

If the letter wc is lowercase, an uppercase version of that letter will be returned according to the current
locale.

If the letter is not lowercase, wc is returned unchanged.

Example

#inc lude <wchar.h>
#include <wctype.h>

int main(void)

{
// changing this char
// v
wprintf(L"%lc\n", towupper(L'B')); // B (unchanged)
wprintf(L"%lc\n", towupper(L'e')); // E (made uppercase!)
wprintf(L"%lc\n", towupper(L'!"')); // ! (unchanged)

}

See Also

toupper (), towlower (), iswlower (), iswupper()

31.17 towctrans()

Convert wide characters to upper or lowercase

Synopsis
#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

Chapter 31. <wctype.h> Wide Character Classification and Transformation 401

Description

This is the Swiss Army knife of character conversion functions; it’s all the other ones rolled into one. And
by “all the other ones” I mean towupper () and towlower (), since those are the only ones there are.

You call it with something like this:

if (towctrans(c, wctrans("toupper"))) // or "tolower"

and it behaves just like you’d called:
towupper(c);

The difference is that you can specify the type of conversion you want to do as a string at runtime, which
might be convenient.

towctrans() relies on the return value from the wctrans() call to get its work done.

towctrans() call Hard-coded equivalent

towctrans(c, wctrans("toupper")) towupper(c)
towctrans(c, wctrans("tolower")) towlower(c)

20

21

22

23

24

25

26

See the wctrans() documentation for how that helper function works.

Return Value

Returns the character we as if run through towupper () or towlower (), depending on the value of desc.

If the character already matches the classification, it is returned as-is.

Example

#include <stdio.h> // for fflush(stdout)
#include <wchar.h>
#include <wctype.h>

int main(void)

{

}

wchar_t c; // Holds a single wide character (to test)

char desc[128]; // Holds the conversion type

// Get the character and conversion type from the user

wprintf(L"Enter a character and conversion type: ");
fflush(stdout);
wscanf(L"%lc %s", &c, desc);

// Compute the type from the given conversion type
wctrans_t t = wctrans(desc);

if (t == 0)

// If the type is 0, it's an unknown conversion type

wprintf(L"Unknown conversion: \"%s\"\n", desc);
else {

// Otherwise, let's do the conversion

wint_t result = towctrans(c, t);

wprintf(L"'%lc' -> %s -> '%lc'\n", c, desc, result);

Output on my system:

Chapter 31. <wctype.h> Wide Character Classification and Transformation

Enter a character and conversion type: b toupper
'b' -> toupper -> 'B'

Enter a character and conversion type: B toupper
'B' -> toupper -> 'B'

Enter a character and conversion type: B tolower
'B' -> tolower -> 'b'

Enter a character and conversion type: ! toupper
"!' -> toupper -> '!'

See Also

wctrans(), towupper (), towlower ()

31.18 wctrans()

Helper function for towctrans()

Synopsis
#include <wctype.h>

wctrans_t wctrans(const char *property);

Description
This is a helper function for generating the second argument to towctrans().
You can pass in one of two things for the property:

* toupper to make towctrans() behave like towupper ()
* tolower to make towctrans() behave like towlower ()

Return Value
On success, returns a value that can be used as the desc argument to towctrans().

Otherwise, if the property isn’t recognized, returns 0.

Example

#include <stdio.h> // for fflush(stdout)
#include <wchar.h>
#inc lude <wctype.h>

int main(void)

{
wchar_t c; // Holds a single wide character (to test)
char desc[128]; // Holds the conversion type

// Get the character and conversion type from the user
wprintf(L"Enter a character and conversion type: ");
fflush(stdout);

wscanf(L"%lc %s'", &c, desc);

402

20

21

22

23

24

25

26

Chapter 31. <wctype.h> Wide Character Classification and Transformation

// Compute the type from the given conversion type

wctrans_t t = wctrans(desc);

if (t == 0)

// If the type is 0,

else {

// Otherwise,
wint_t result
wprintf(L" '%lc' -> %s ->

}

Output on my system:

Enter a character
'b' -> toupper ->

Enter a character
'B' -> toupper ->

Enter a character
'B' -> tolower ->

Enter a character
"' -> toupper ->

See Also

towctrans()

and
IBI

and
IBI

and
|bl

and

it's an unknown conversion type
wprintf(L"Unknown conversion: \"%s\"\n", desc);

let's do the conversion
= towctrans(c,

conversion

conversion

conversion

conversion

type:

type:

type:

type:

t);
'%lc'\n", c, desc,

b toupper

B toupper

B tolower

I toupper

403

Index

_Alignas() alignment specifier, 158
_Alignof() operator, 160

_Atomic type qualifier, 169
_Atomic () type specifier, 169
_Complex_I macro, 23

_Exit () function, 253
_Imaginary_I macro, 23
__STDC_NO_COMPLEX__, 22
__alignas_is_defined macro, 158
__alignof_is_defined macro, 158

abort () function, 250

abs () function, 259

acos () function, 99, 285
acosf () function, 99
acosh() function, 105, 285
acoshf() function, 105
acoshl() function, 105
acos() function, 99

Addition operator, see + addition operator

alignas() alignment specifier, 158
aligned_alloc() function, 246
alignof () operator, 160

and macro, 83

and_eq macro, 83

asctime() function, 335
asin() function, 100, 285
asinf () function, 100

asinh() function, 106, 285
asinhf () function, 106
asinhl() function, 106
asinl() function, 100
assert() macro, 18

assert.h header file, 18
at_quick_exit() function, 251
atan() function, 101, 285
atan2() function, 101, 285
atan2f() function, 101
atan21() function, 101

atanf () function, 101

atanh() function, 106, 285
atanhf() function, 106
atanhl() function, 106
atanl() function, 101
atexit() function, 251

atof() function, 237

atoi() function, 238

atol() function, 238

atol1() function, 238

atomic_bool type, 169
ATOMIC_BOOL_LOCK_FREE macro, 170
atomic_char type, 169
atomic_char16_t type, 169
ATOMIC_CHAR16_T_LOCK_FREE macro, 170
atomic_char32_t type, 169
ATOMIC_CHAR32_T_LOCK_FREE macro, 170
ATOMIC_CHAR_LOCK_FREE macro, 170
atomic_compare_exchange_* () function, 179
atomic_exchange() function, 178
atomic_fetch_*() function, 181
atomic_flag type, 170
atomic_flag_clear () function, 185
atomic_flag_test_and_set() function, 183
atomic_init () function, 171
atomic_int type, 169
atomic_int_fast16_t type, 169
atomic_int_fast32_t type, 169
atomic_int_fast64_t type, 169
atomic_int_fast8_t type, 169
atomic_int_least16_t type, 169
atomic_int_least32_t type, 169
atomic_int_least64_t type, 169
atomic_int_least8_t type, 169
ATOMIC_INT_LOCK_FREE macro, 170
atomic_intmax_t type, 169
atomic_intptr_t type, 169
atomic_is_lock_free() function, 175
atomic_1llong type, 169
ATOMIC_LLONG_LOCK_FREE macro, 170
atomic_load() function, 178
atomic_1long type, 169
ATOMIC_LONG_LOCK_FREE macro, 170
ATOMIC_POINTER_LOCK_FREE macro, 170
atomic_ptrdiff_t type, 169
atomic_schar type, 169

atomic_short type, 169
ATOMIC_SHORT_LOCK_FREE macro, 170
atomic_signal_fence() function, 174
atomic_size_t type, 169
atomic_store() function, 177
atomic_thread_fence() function, 173
atomic_uchar type, 169

atomic_uint type, 169
atomic_uint_fast16_t type, 169
atomic_uint_fast32_t type, 169
atomic_uint_fast64_t type, 169
atomic_uint_fast8_t type, 169
atomic_uint_least16_t type, 169

404

INDEX

atomic_uint_least32_t type, 169
atomic_uint_least64_t type, 169
atomic_uint_least8_t type, 169

atomic_uintmax_t type, 169
atomic_uintptr_t type, 169
atomic_ullong type, 169
atomic_ulong type, 169
atomic_ushort type, 169
ATOMIC_VAR_INIT() macro, 170
atomic_wchar_t type, 169

ATOMIC_WCHAR_T_LOCK_FREE macro, 170

Bell, see \a operator

bitand macro, 83

bitor macro, 83

bool macro, 187

Boolean AND, see && operator
Boolean NOT, see ! operator
Boolean OR, see | | operator
bsearch() function, 256
btowc () function, 376

ci6rtomb () function, 345
c32rtomb () function, 345
cabs() function, 35
cabsf () function, 35
cabs1() function, 35
cacos() function, 24
cacosf() function, 24
cacosh() function, 29
cacoshf () function, 29
cacoshl() function, 29
cacos1() function, 24
call_once() function, 289
calloc() function, 247
carg() function, 38, 286
cargf () function, 38
cargl() function, 38
Carriage return, see \r operator
casin() function, 24
casinf() function, 24
casinh() function, 30
casinhf() function, 30
casinhl() function, 30
casinl() function, 24
catan() function, 25
catanf() function, 25
catanh() function, 30
catanhf () function, 30
catanhl() function, 30
catanl() function, 25
cbrt() function, 121, 285
cbrtf() function, 121
cbrt1() function, 121
ccos () function, 26
ccosf () function, 26
ccosh() function, 31
ccoshf () function, 31
ccoshl() function, 31

ccos1() function, 26
ceil() function, 128, 285
ceilf() function, 128
ceill() function, 128
cexp() function, 34
cexpf () function, 34
cexpl() function, 34
chari16_t type, 342
char32_t type, 342
CHAR_BIT macro, 84
CHAR_MAX macro, 84
CHAR_MIN macro, 84
cimag() function, 39, 286
cimagf () function, 39
cimagl() function, 39
clearerr () function, 233
clock() function, 329
clog() function, 35
clogf () function, 35
clogl() function, 35
CMPLX() macro, 40
CMPLXF () macro, 40
CMPLXL () macro, 40
cnd_broadcast () function, 290
cnd_destroy() function, 292
cnd_init () function, 294
cnd_signal() function, 295
cnd_timedwait () function, 297
cnd_wait () function, 299
comp1 macro, 83
complex.h header file, 22
conj () function, 41, 286
conjf() function, 41
conj1() function, 41
copysign() function, 138, 285
copysignf () function, 138
copysignl() function, 138
cos() function, 102, 285
cosf () function, 102
cosh() function, 107, 285
coshf () function, 107
coshl() function, 107
cos1() function, 102
cpow() function, 36
cpowf () function, 36
cpowl() function, 36
cproj() function, 41, 286
cprojf() function, 41
cproj1() function, 41
creal() function, 43, 286
crealf() function, 43
creall() function, 43
csin() function, 27
csinf () function, 27
csinh() function, 32
csinhf() function, 32
csinhl() function, 32
csinl() function, 27

405

INDEX

csqrt () function, 37
csqrtf() function, 37
csqrt1() function, 37
ctan() function, 28
ctanf() function, 28
ctanh() function, 33
ctanhf() function, 33
ctanhl() function, 33
ctanl() function, 28
ctime() function, 336
ctype. h header file, 44
CX_LIMITED_RANGE macro, 23

DBL_DECIMAL_DIG macro, /3
DBL_DIG macro, 72
DBL_EPSILON macro, 71
DBL_HAS_SUBNORM macro, /2
DBL_MANT_DIG macro, 70
DBL_MAX macro, 71
DBL_MAX_10_EXP macro, 71
DBL_MAX_EXP macro, 70
DBL_MIN macro, 71
DBL_MIN_10_EXP macro, 70
DBL_MIN_EXP macro, 70
DBL_TRUE_MIN macro, 71
DECIMAL_DIG macro, 70
difftime() function, 330
div() function, 260

div_t type, 237

Division operator, see / division operator

double complex type, 23
double imaginary type, 23
double_t type, 95

erf() function, 125, 285
erfc() function, 126, 285
erfcf() function, 126
erfcl() function, 126
erff() function, 125
erf1() function, 125
errno variable, 56
errno.h header file, 56
exit () function, 253
EXIT_FAILURE macro, 237
EXIT_SUCCESS macro, 237
exp() function, 109, 285
exp2() function, 110, 286
exp2f () function, 110
exp21() function, 110
expf () function, 109
expl() function, 109
expml1() function, 111, 286
expmif () function, 111
expm1l() function, 111

fabs() function, 122, 285
fabsf () function, 122
fabs1() function, 122
false macro, 187

fclose() function, 201
fdim() function, 142, 285
fdimf () function, 142
fdiml() function, 142
FE_ALL_EXCEPT macro, 59
FE_DIVBYZERO macro, 59
FE_INEXACT macro, 59
FE_INVALID macro, 59
FE_OVERFLOW macro, 59
FE_UNDERFLOW macro, 59
feclearexcept () function, 60
fegetenv() function, 65

fegetexceptflag() function, 61

fegetround() function, 64
feholdexcept () function, 66
fenv. h header file, 59
FENV_ACCESS pragma, 60
fenv_t type, 59

feof () function, 233
feraiseexcept () function, 62
ferror () function, 233
fesetenv() function, 65

fesetexceptflag() function, 61

fesetround() function, 64
fetestexcept () function, 63
feupdateenv () function, 67
fexcept_t type, 59
fflush() function, 202
fgetc() function, 221
fgetpos() function, 229
fgets() function, 222
fgetwc () function, 354
fgetws() function, 355
FILE* type, 196

float complex type, 23
float imaginary type, 23
float.h header file, 70
float_t type, 95

floor () function, 129, 285
floorf() function, 129
floor1() function, 129
FLT_DECIMAL_DIG macro, 73
FLT_DIG macro, 72
FLT_EPSILON macro, 71

FLT_EVAL_METHOD macro, 70, 72, 95

FLT_HAS_SUBNORM macro, 72
FLT_MANT_DIG macro, 70
FLT_MAX macro, 71
FLT_MAX_10_EXP macro, 71
FLT_MAX_EXP macro, 70
FLT_MIN macro, 71
FLT_MIN_10_EXP macro, 70
FLT_MIN_EXP macro, 70
FLT_RADIX macro, 70
FLT_ROUNDS macro, 72
FLT_TRUE_MIN macro, 71
fma() function, 144, 285
fmaf () function, 144

406

INDEX

fmal() function, 144
fmax () function, 143, 285
fmaxf () function, 143
fmax1() function, 143
fmin() function, 143, 285
fminf () function, 143
fmin1l() function, 143
fmod () function, 135, 285
fmodf () function, 135
fmod1() function, 135
fopen() function, 203
FP_CONTRACT pragma, 96
fpclassify() function, 96
fprintf() function, 207
fputc() function, 224
fputwc () function, 356
fputws() function, 357
fread() function, 227
free() function, 248
freopen() function, 204
frexp() function, 111, 286
frexpf() function, 111
frexpl() function, 111
fscanf() function, 213
fseek() function, 230
fsetpos() function, 229
ftell() function, 232
fwide () function, 358
fwprintf () function, 349
fwrite() function, 228
fwscanf () function, 350

getc() function, 221
getchar () function, 221
getenv() function, 254
gets() function, 222
getwc () function, 354
getwchar () function, 354
gmtime() function, 337

Hexadecimal, see 6x hexadecimal
hypot () function, 122, 286
hypotf() function, 122
hypot1() function, 122

I macro, 23

ilogb() function, 112, 286
ilogbf () function, 112
ilogbl() function, 112
imaxabs () function, 78
imaxdiv() function, 79
INT_FASTn_MAX macros, 193
INT_FASTn_MIN macros, 193
int_fastN_t types, 192
INT_LEASTn_MAX macros, 193
INT_LEASTn_MIN macros, 193
int_leastN_t types, 192
INT_MAX macro, 84

INT_MIN macro, 84

INTMAX_C() macro, 194
INTMAX_MAX macros, 193
INTMAX_MIN macros, 193
intmax_t type, 193
INTn_C() macros, 194
INTn_MAX macros, 193
INTn_MIN macros, 193
intN_t types, 192
INTPTR_MAX macros, 193
INTPTR_MIN macros, 193
intptr_t type, 193
inttypes.h header file, 77
isalnum() function, 45
isalpha() function, 45
isblank() function, 46
iscntr1() function, 47
isdigit() function, 48
isfinite() function, 98
isgraph() function, 48
isgreater () function, 144
isgreaterequal() function, 144
isinf() function, 98
isless() function, 144
islessequal() function, 144
islessgreater () function, 145
islower () function, 49
isnan() function, 98
isnormal() function, 98
is0646.h header file, 83
isprint() function, 50
ispunct () function, 51
isspace() function, 52
isunordered() function, 146
isupper () function, 52
iswalnum() function, 386
iswalpha() function, 387
iswblank() function, 388
iswentr1() function, 389
iswctype() function, 396
iswdigit () function, 389
iswgraph() function, 390
iswlower () function, 391
iswprint () function, 392
iswpunct () function, 392
iswspace() function, 393
iswupper () function, 394
iswxdigit () function, 395
isxdigit () function, 53

kill_dependency() function, 172

labs() function, 259
LDBL_DECIMAL_DIG macro, 73
LDBL_DIG macro, 72
LDBL_EPSILON macro, /1
LDBL_HAS_SUBNORM macro, 72
LDBL_MANT_DIG macro, 70
LDBL_MAX macro, 71
LDBL_MAX_10_EXP macro, 71

407

INDEX

LDBL_MAX_EXP macro, 70
LDBL_MIN macro, 71
LDBL_MIN_10_EXP macro, 70
LDBL_MIN_EXP macro, 70
LDBL_TRUE_MIN macro, 71
ldexp () function, 113, 286
ldexpf () function, 113
ldexpl() function, 113
ldiv() function, 260
ldiv_t type, 237

lgamma() function, 127, 286
lgammaf () function, 127
lgammal() function, 127
limits.h header file, 84
1labs() function, 259
11div () function, 260
1ldiv_t type, 237
LLONG_MAX macro, 84
LLONG_MIN macro, 84
1lrint () function, 132, 286
1lrintf() function, 132
1lrint1() function, 132
1lround() function, 134, 286
11lroundf() function, 134
1lroundl() function, 134
locale.h. header file, 87
localeconv() function, 89
localtime () function, 338
log() function, 114, 285
log10() function, 115, 286
log10f() function, 115
log101() function, 115
logip() function, 116, 286
logipf () function, 116
logipl() function, 116
log2() function, 117, 286
log2f () function, 117
log21() function, 117
logb () function, 118, 286
logbf () function, 118
logb1() function, 118
logf () function, 114
logl() function, 114

long double complex type, 23
long double imaginary type, 23

LONG_MAX macro, 84
LONG_MIN macro, 84
longjmp() function, 150
lrint () function, 132, 286
lrintf() function, 132
lrint1() function, 132
lround() function, 134, 286
lroundf() function, 134
lround1() function, 134

malloc() function, 247
math.h header file, 93
MATH_ERREXCEPT macro, 96

408

math_errhandling variable, 95

MATH_ERRNO macro, 96

max_align_t type, 190

MB_CUR_MAX macro, 237

MB_LEN_MAX macro, 84

mblen() function, 261

mbrlen() function, 378

mbrtoc16 () function, 343

mbrtoc32() function, 343

mbrtowc () function, 379

mbsinit () function, 377

mbsrtowcs () function, 382

mbstate_t type, 342, 349

mbstowcs () function, 264

mbtowc () function, 262

memchr () function, 277

memcmp () function, 273

memcpy () function, 270

memmove () function, 270

memory_order_acq_rel enumerated type, 170

memory_order_acquire enumerated type, 170

memory_order_consume enumerated type, 170

memory_order_relaxed enumerated type, 170

memory_order_release enumerated type, 170

memory_order_seq_cst enumerated type, 170

memset () function, 282

mktime() function, 331

modf () function, 118

modff () function, 118

modf1() function, 118

Modulus operator, see % modulus operator

mtx_destroy() function, 300

mtx_init () function, 301

mtx_lock () function, 303

mtx_timedlock () function, 304

mtx_trylock() function, 306

mtx_unlock() function, 308

Multiplication operator, see * multiplication opera-
tor

NAN macro, 95

nan () function, 139

nanf () function, 139

nanl() function, 139

NDEBUG macro, 18

nearbyint () function, 130, 286
nearbyintf() function, 130
nearbyint1() function, 130
New line, see \n newline
nextafter () function, 140, 286
nextafterf() function, 140
nextafter1() function, 140
nexttoward() function, 141, 286
nexttowardf () function, 141
nexttowardl() function, 141
noreturn macro, 268

not macro, 83

not_eq macro, 83

INDEX

NULL macro, 237

offsetof operator, 191
or macro, 83
or_eq macro, 83

perror () function, 234
pow() function, 123, 285
powf () function, 123
powl() function, 123
PRIAFASTNn macros, 78
PRIALEASTn macros, 78
PRIdMAX macro, 78
PRIdn macros, 78
PRIAPTR macro, 78
PRIiFASTn macros, 78
PRIiLEASTn macros, 78
PRIiMAX macro, 78
PRIin macros, 78
PRIiPTR macro, 78
printf() function, 207
PRIOFASTnN macros, 78
PRIOLEASTN macros, 78
PRIOMAX macro, 78
PRIon macros, 78
PRIOPTR macro, 78
PRIUFASTn macros, 78
PRIULEASTn macros, 78
PRIUMAX macro, 78
PRIun macros, 78
PRIUPTR macro, 78
PRIXFASTn macros, 78
PRIXFASTn macros, 78
PRIXLEASTn macros, 78
PRIXLEASTn macros, 78
PRIXMAX macro, 78
PRIXMAX macro, 78
PRIXn macros, 78

PRIxn macros, 78
PRIXPTR macro, 78
PRIXPTR macro, 78
PTRDIFF_MAX macro, 194
PTRDIFF_MIN macro, 194
ptrdiff_t type, 189
putc() function, 224
putchar () function, 224
puts() function, 225
putwc () function, 356
putwchar () function, 356

gsort() function, 257
quick_exit() function, 253

raise() function, 156

rand() function, 243

RAND_MAX macro, 237
realloc() function, 249
remainder () function, 136, 286
remainderf () function, 136

409

remainder1() function, 136
remove () function, 197
remquo () function, 137, 286
remquof () function, 137
remquol() function, 137
rename () function, 198
rewind() function, 230
rint() function, 131, 286
rintf() function, 131
rint1() function, 131
round() function, 133, 286
roundf () function, 133
round1() function, 133

scalbln() function, 120, 286
scalblnf() function, 120
scalblnl() function, 120
scalbn() function, 120, 286
scalbnf () function, 120
scalbnl() function, 120
scanf () function, 213
SCHAR_MAX macro, 84
SCHAR_MIN macro, 84
SCNdFASTnN macros, 78
SCNALEASTNn macros, 78
SCNdMAX macro, 78

SCNdn macros, 78
SCNdPTR macro, 78
SCNiFASTn macros, 78
SCNiLEASTn macros, 78
SCNiMAX macro, 78

SCNin macros, 78
SCNiPTR macro, 78
SCNOFASTn macros, 78
SCNOLEASTN macros, 78
SCNOMAX macro, 78

SCNon macros, 78
SCNoPTR macro, 78
SCNUFASTn macros, 78
SCNULEASTNn macros, 78
SCNUMAX macro, 78

SCNun macros, 78
SCNuUPTR macro, 78
SCNXFASTn macros, 78
SCNXLEASTn macros, 78
SCNXMAX macro, 78

SCNxn macros, 78
SCNxPTR macro, 78
setbuf () function, 206
setjmp() function, 148
setjmp.h header file, 148
setlocale() function, 87
SHRT_MAX macro, 84
SHRT_MIN macro, 84
SIG_ATOMIC_MAX macro, 194
SIG_ATOMIC_MIN macro, 194
signal() function, 153
signal.h header file, 153

INDEX

signbit () function, 99
sin() function, 103, 285
sinf() function, 103
sinh() function, 108, 285
sinhf() function, 108
sinh1() function, 108
sinl() function, 103
SIZE_MAX macro, 194
size_t type, 189, 237, 342
snprintf () function, 207
sprintf() function, 207
sqrt () function, 124, 285
sqrtf() function, 124
sqrt1() function, 124
srand() function, 244
sscanf () function, 213
static_assert() macro, 20
stdalign.h header file, 158
stdarg.h header file, 162
stdatomic.h header file, 168
stdbool.h header file, 187
stddef . h header file, 189
stderr standard error, 197
stdin standard input, 196
stdint.h header file, 192
stdio.h header file, 195
stdlib.h header file, 236
stdnoreturn.h header file, 268
stdout standard output, 196
strcat () function, 272
strchr () function, 277
stremp() function, 273
strcoll() function, 274
strcpy() function, 270
strcspn() function, 278
strerror () function, 283
strftime() function, 338
String, see char *
string.h header file, 269
strlen() function, 284
strncat () function, 272
strncmp () function, 273
strncpy () function, 270
strpbrk() function, 279
strrchr () function, 277
strspn() function, 278
strstr() function, 280
strtod() function, 239
strtof() function, 239
strtoimax() function, 80
strtok() function, 281
strtol() function, 241
strtold() function, 239
strtoll() function, 241
strtoul() function, 241
strtoull() function, 241
strtoumax() function, 80
struct tm type, 328

410

strxfrm() function, 275

Subtraction operator, see - subtraction operator
swprintf() function, 349

swscanf () function, 350

system() function, 255

Tab (is better), see \t operator
tan() function, 104, 285
tanf () function, 104

tanh() function, 108, 285
tanhf () function, 108
tanhl() function, 108
tanl() function, 104

Ternary operator, see ?: ternary operator
tgamma() function, 128, 286
tgammaf () function, 128
tgammal() function, 128
tgmath.h header file, 285
thrd_create() function, 309
thrd_current () function, 311
thrd_detach() function, 312
thrd_equal() function, 313
thrd_exit () function, 315
thrd_join() function, 316
thrd_yield() function, 318
threads.h header file, 288
time() function, 332

time.h header file, 328
time_t type, 328
timespec_get () function, 333
tmpfile() function, 198
tmpnam() function, 199
tolower () function, 54
toupper () function, 55
towctrans() function, 400
towlower () function, 399
towupper () function, 400
true macro, 187

trunc() function, 135, 286
truncf () function, 135
truncl() function, 135
tss_create() function, 320
tss_delete() function, 322
tss_get () function, 324
tss_set () function, 325

UCHAR_MAX macro, 84
UINT_FASTNn_MAX macros, 193
UINT_LEASTNn_MAX macros, 193
UINT_MAX macro, 84
UINTMAX_C() macro, 194
UINTMAX_MAX macros, 193
uintmax_t type, 193
UINTNn_MAX macros, 193
UINTPTR_MAX macros, 193
uintptr_t type, 193
ULLONG_MAX macro, 84
ULONG_MAX macro, 84
ungetc() function, 226

INDEX

ungetwc () function, 359
USHRT_MAX macro, 84

va_arg() macro, 162
va_copy() macro, 163
va_end() macro, 165
va_list type, 162
va_start() macro, 166
vfprintf() function, 218
vfscanf () function, 220
vfwprintf () function, 351
vfwscanf () function, 353
vprintf() function, 218
vscanf () function, 220
vsnprintf() function, 218
vsprintf() function, 218
vsscanf () function, 220
vswprintf() function, 351
vswscanf () function, 353
vwprintf() function, 351
vwscanf () function, 353

wchar . h header file, 348
WCHAR_MAX macro, 194
WCHAR_MIN macro, 194
wchar_t type, 190, 237
wcrtomb () function, 380
wcscat () function, 365
wcschr () function, 369
wescmp () function, 366
wcscoll() function, 367
wcscpy () function, 363
wcscspn() function, 370
wcsftime() function, 375
wcslen() function, 374
wecsncat () function, 365
wcsncmp () function, 366
wcsnepy () function, 363
wcspbrk() function, 371
wesrchr () function, 369
wcsrtombs () function, 383
wesspn () function, 370
wcsstr () function, 372
wcstod() function, 361
wcstof () function, 361
wcstoimax () function, 81
westok () function, 373
wcstol() function, 362
wcstold() function, 361
wcstoll() function, 362
wcstombs () function, 266
westoul() function, 362
wcstoull() function, 362
wcstoumax () function, 81
wcsxfrm() function, 368
wctob () function, 376
wctomb () function, 263
wctrans () function, 402
wctype () function, 397

411

wctype. h header file, 386
WINT_MAX macro, 194
WINT_MIN macro, 194
wmemcmp () function, 366
wmemcpy () function, 364
wmemmove () function, 364
wprintf() function, 349
wscanf () function, 350

Xor macro, 83
XO0r_eq macro, 83

	Foreword
	Audience
	How to Read This Book
	Platform and Compiler
	Official Homepage
	Email Policy
	Mirroring
	Note for Translators
	Copyright and Distribution
	Dedication

	The C Language
	Background
	Comments
	Separators
	Expressions
	Statements
	Booleans
	Blocks
	Code Examples

	Operators
	Arithmetic Operators
	Pre- and Post-Increment and -Decrement
	Comparison Operators
	Pointer Operators
	Structure and Union Operators
	Array Operators
	Bitwise Operators
	Assignment Operators
	The sizeof Operator
	Type Casts
	_Alignof Operator
	Comma Operator

	Type Specifiers
	Constant Types
	Composite Types
	struct Types
	union Types
	enum Types

	Initializers
	Compound Literals
	Type Aliases
	Additional Type-Related Specifiers
	Storage Class Specifiers
	Type Qualifiers
	Function Specifiers
	Alignment Specifier

	if Statement
	for Statement
	while Statement
	do-while Statement
	switch Statement
	break Statement
	continue Statement
	goto Statement
	return Statement
	_Static_assert Statement
	Functions
	main() Function
	Variadic Functions

	<assert.h> Runtime and Compile-time Diagnostics
	Macros
	assert()
	static_assert()

	<complex.h> Complex Number Functionality
	cacos(), cacosf(), cacosl()
	casin(), casinf(), casinl()
	catan(), catanf(), catanl()
	ccos(), ccosf(), ccosl()
	csin(), csinf(), csinl()
	ctan(), ctanf(), ctanl()
	cacosh(), cacoshf(), cacoshl()
	casinh(), casinhf(), casinhl()
	catanh(), catanhf(), catanhl()
	ccosh(), ccoshf(), ccoshl()
	csinh(), csinhf(), csinhl()
	ctanh(), ctanhf(), ctanhl()
	cexp(), cexpf(), cexpl()
	clog(), clogf(), clogl()
	cabs(), cabsf(), cabsl()
	cpow(), cpowf(), cpowl()
	csqrt(), csqrtf(), csqrtl()
	carg(), cargf(), cargl()
	cimag(), cimagf(), cimagl()
	CMPLX(), CMPLXF(), CMPLXL()
	conj(), conjf(), conjl()
	cproj(), cproj(), cproj()
	creal(), crealf(), creall()

	<ctype.h> Character Classification and Conversion
	isalnum()
	isalpha()
	isblank()
	iscntrl()
	isdigit()
	isgraph()
	islower()
	isprint()
	ispunct()
	isspace()
	isupper()
	isxdigit()
	tolower()
	toupper()

	<errno.h> Error Information
	errno

	<fenv.h> Floating Point Exceptions and Environment
	Types and Macros
	Pragmas
	feclearexcept()
	fegetexceptflag() fesetexceptflag()
	feraiseexcept()
	fetestexcept()
	fegetround() fesetround()
	fegetenv() fesetenv()
	feholdexcept()
	feupdateenv()

	<float.h> Floating Point Limits
	Background
	FLT_ROUNDS Details
	FLT_EVAL_METHOD Details
	Subnormal Numbers
	How Many Decimal Places Can I Use?
	Comprehensive Example

	<inttypes.h> More Integer Conversions
	Macros
	imaxabs()
	imaxdiv()
	strtoimax() strtoumax()
	wcstoimax() wcstoumax()

	<iso646.h> Alternative Operator Spellings
	<limits.h> Numeric Limits
	CHAR_MIN and CHAR_MAX
	Choosing the Correct Type
	Whither Two's Complement?
	Demo Program

	<locale.h> locale handling
	setlocale()
	localeconv()

	<math.h> Mathematics
	Math Function Idioms
	Math Types
	Math Macros
	Math Errors
	Math Pragmas
	fpclassify()
	isfinite(), isinf(), isnan(), isnormal()
	signbit()
	acos(), acosf(), acosl()
	asin(), asinf(), asinl()
	atan(), atanf(), atanl(), atan2(), atan2f(), atan2l()
	cos(), cosf(), cosl()
	sin(), sinf(), sinl()
	tan(), tanf(), tanl()
	acosh(), acoshf(), acoshl()
	asinh(), asinhf(), asinhl()
	atanh(), atanhf(), atanhl()
	cosh(), coshf(), coshl()
	sinh(), sinhf(), sinhl()
	tanh(), tanhf(), tanhl()
	exp(), expf(), expl()
	exp2(), exp2f(), exp2l()
	expm1(), expm1f(), expm1l()
	frexp(), frexpf(), frexpl()
	ilogb(), ilogbf(), ilogbl()
	ldexp(), ldexpf(), ldexpl()
	log(), logf(), logl()
	log10(), log10f(), log10l()
	log1p(), log1pf(), log1pl()
	log2(), log2f(), log2l()
	logb(), logbf(), logbl()
	modf(), modff(), modfl()
	scalbn(), scalbnf(), scalbnl() scalbln(), scalblnf(), scalblnl()
	cbrt(), cbrtf(), cbrtl()
	fabs(), fabsf(), fabsl()
	hypot(), hypotf(), hypotl()
	pow(), powf(), powl()
	sqrt()
	erf(), erff(), erfl()
	erfc(), erfcf(), erfcl()
	lgamma(), lgammaf(), lgammal()
	tgamma(), tgammaf(), tgammal()
	ceil(), ceilf(), ceill()
	floor(), floorf(), floorl()
	nearbyint(), nearbyintf(), nearbyintl()
	rint(), rintf(), rintl()
	lrint(), lrintf(), lrintl(), llrint(), llrintf(), llrintl()
	round(), roundf(), roundl()
	lround(), lroundf(), lroundl() llround(), llroundf(), llroundl()
	trunc(), truncf(), truncl()
	fmod(), fmodf(), fmodl()
	remainder(), remainderf(), remainderl()
	remquo(), remquof(), remquol()
	copysign(), copysignf(), copysignl()
	nan(), nanf(), nanl()
	nextafter(), nextafterf(), nextafterl()
	nexttoward(), nexttowardf(), nexttowardl()
	fdim(), fdimf(), fdiml()
	fmax(), fmaxf(), fmaxl(), fmin(), fminf(), fminl()
	fma(), fmaf(), fmal()
	isgreater(), isgreaterequal(), isless(), islessequal()
	islessgreater()
	isunordered()

	<setjmp.h> Non-local Goto
	setjmp()
	longjmp()

	<signal.h> signal handling
	signal()
	raise()

	<stdalign.h> Macros for Alignment
	alignas() _Alignas()
	alignof() _Alignof()

	<stdarg.h> Variable Arguments
	va_arg()
	va_copy()
	va_end()
	va_start()

	<stdatomic.h> Atomic-Related Functions
	Atomic Types
	Lock-free Macros
	Atomic Flag
	Memory Order
	ATOMIC_VAR_INIT()
	atomic_init()
	kill_dependency()
	atomic_thread_fence()
	atomic_signal_fence()
	atomic_is_lock_free()
	atomic_store()
	atomic_load()
	atomic_exchange()
	atomic_compare_exchange_*()
	atomic_fetch_*()
	atomic_flag_test_and_set()
	atomic_flag_clear()

	<stdbool.h> Boolean Types
	Example
	_Bool?

	<stddef.h> A Few Standard Definitions
	ptrdiff_t
	size_t
	max_align_t
	wchar_t
	offsetof

	<stdint.h> More Integer Types
	Specific-Width Integers
	Other Integer Types
	Macros
	Other Limits
	Macros for Declaring Constants

	<stdio.h> Standard I/O Library
	remove()
	rename()
	tmpfile()
	tmpnam()
	fclose()
	fflush()
	fopen()
	freopen()
	setbuf(), setvbuf()
	printf(), fprintf(), sprintf(), snprintf()
	scanf(), fscanf(), sscanf()
	vprintf(), vfprintf(), vsprintf(), vsnprintf()
	vscanf(), vfscanf(), vsscanf()
	getc(), fgetc(), getchar()
	gets(), fgets()
	putc(), fputc(), putchar()
	puts(), fputs()
	ungetc()
	fread()
	fwrite()
	fgetpos(), fsetpos()
	fseek(), rewind()
	ftell()
	feof(), ferror(), clearerr()
	perror()

	<stdlib.h> Standard Library Functions
	<stdlib.h> Types and Macros
	atof()
	atoi(), atol(), atoll()
	strtod(), strtof(), strtold()
	strtol(), strtoll(), strtoul(), strtoull()
	rand()
	srand()
	aligned_alloc()
	calloc(), malloc()
	free()
	realloc()
	abort()
	atexit(), at_quick_exit()
	exit(), quick_exit(), _Exit()
	getenv()
	system()
	bsearch()
	qsort()
	abs(), labs(), llabs()
	div(), ldiv(), lldiv()
	mblen()
	mbtowc()
	wctomb()
	mbstowcs()
	wcstombs()

	<stdnoreturn.h> Macros for Non-Returning Functions
	<string.h> String Manipulation
	memcpy(), memmove()
	strcpy(), strncpy()
	strcat(), strncat()
	strcmp(), strncmp(), memcmp()
	strcoll()
	strxfrm()
	strchr(), strrchr(), memchr()
	strspn(), strcspn()
	strpbrk()
	strstr()
	strtok()
	memset()
	strerror()
	strlen()

	<tgmath.h> Type-Generic Math Functions
	Example

	<threads.h> Multithreading Functions
	call_once()
	cnd_broadcast()
	cnd_destroy()
	cnd_init()
	cnd_signal()
	cnd_timedwait()
	cnd_wait()
	mtx_destroy()
	mtx_init()
	mtx_lock()
	mtx_timedlock()
	mtx_trylock()
	mtx_unlock()
	thrd_create()
	thrd_current()
	thrd_detach()
	thrd_equal()
	thrd_exit()
	thrd_join()
	thrd_sleep()
	thrd_yield()
	tss_create()
	tss_delete()
	tss_get()
	tss_set()

	<time.h> Date and Time Functions
	Thread Safety Warning
	clock()
	difftime()
	mktime()
	time()
	timespec_get()
	asctime()
	ctime()
	gmtime()
	localtime()
	strftime()

	<uchar.h> Unicode utility functions
	Types
	OS X issue
	mbrtoc16() mbrtoc32()
	c16rtomb() c32rtomb()

	<wchar.h> Wide Character Handling
	Restartable Functions
	wprintf(), fwprintf(), swprintf()
	wscanf() fwscanf() swscanf()
	vwprintf() vfwprintf() vswprintf()
	vwscanf(), vfwscanf(), vswscanf()
	getwc() fgetwc() getwchar()
	fgetws()
	putwchar() putwc() fputwc()
	fputws()
	fwide()
	ungetwc()
	wcstod() wcstof() wcstold()
	wcstol() wcstoll() wcstoul() wcstoull()
	wcscpy() wcsncpy()
	wmemcpy() wmemmove()
	wcscat() wcsncat()
	wcscmp(), wcsncmp(), wmemcmp()
	wcscoll()
	wcsxfrm()
	wcschr() wcsrchr()
	wcsspn() wcscspn()
	wcspbrk()
	wcsstr()
	wcstok()
	wcslen()
	wcsftime()
	btowc() wctob()
	mbsinit()
	mbrlen()
	mbrtowc()
	wcrtomb()
	mbsrtowcs()
	wcsrtombs()

	<wctype.h> Wide Character Classification and Transformation
	iswalnum()
	iswalpha()
	iswblank()
	iswcntrl()
	iswdigit()
	iswgraph()
	iswlower()
	iswprint()
	iswpunct()
	iswspace()
	iswupper()
	iswxdigit()
	iswctype()
	wctype()
	towlower()
	towupper()
	towctrans()
	wctrans()

