

 Dive Into Design Pat­terns

v2021-2.34

Purchased by Saahil Ali
programmer290399@gmail.com (#98645)

 A Few Words on Copy­right

[image: Alexander Shvets]
Hi! My name is Alexan­der Shvets. I’m the author of the book Dive Into Design Pat­terns and the online course Dive Into Refac­tor­ing.

This book is for your per­son­al use only. Please don’t share it with any third par­ties except your fam­i­ly mem­bers. If you’d like to share the book with a friend or col­league, buy and send them a new copy. You can also buy a site license for your whole team or the entire company.

All prof­it from the sale of my books and cours­es is spent on the devel­op­ment of Refac­tor­ing.Guru. Each copy sold helps the project immense­ly and brings the moment of a new book release a lit­tle bit clos­er.

 Alexan­der Shvets, Refac­tor­ing.Guru, 2021

 sup­port@refac­tor­ing.guru

 Illus­tra­tions: Dmit­ry Zhart

 Edit­ing: Andrew Wet­more, Rhyan Solomon

 I ded­i­cate this book to my wife, Maria. If it hadn’t been for her, I’d prob­a­bly have fin­ished the book some 30 years later.

 Table of Contents

Table of Con­tents

How to Read This Book

Intro­duc­tion to OOP

Basics of OOP

Pil­lars of OOP

Rela­tions Between Objects

Intro­duc­tion to Design Pat­terns

What’s a Design Pat­tern?

Why Should I Learn Pat­terns?

Soft­ware Design Prin­ci­ples

Fea­tures of Good Design

Design Prin­ci­ples

Encap­su­late What Varies

Pro­gram to an Inter­face, not an Imple­men­ta­tion

Favor Com­po­si­tion Over Inher­i­tance

SOLID Prin­ci­ples

Sin­gle Respon­si­bil­i­ty Prin­ci­ple

Open/Closed Prin­ci­ple

Liskov Sub­sti­tu­tion Prin­ci­ple

Inter­face Seg­re­ga­tion Prin­ci­ple

Depen­den­cy Inver­sion Prin­ci­ple

Cat­a­log of Design Pat­terns

Cre­ation­al Design Pat­terns

Fac­to­ry Method

Abstract Fac­to­ry

Builder

Pro­to­type

Sin­gle­ton

Struc­tur­al Design Pat­terns

Adapter

Bridge

Com­pos­ite

Dec­o­ra­tor

Facade

Fly­weight

Proxy

Behav­ioral Design Pat­terns

Chain of Respon­si­bil­i­ty

Com­mand

Iter­a­tor

Medi­a­tor

Memen­to

Observ­er

State

Strat­e­gy

Tem­plate Method

Vis­i­tor

Con­clu­sion

A small piece of advice

[image: Turn on scrolling mode in iBooks]

When you read the book in iBooks, I rec­om­mend enabling scrolling mode. The book con­tains tons of illus­tra­tions and long code list­ings that don’t look good with ran­dom pagination.

A small piece of advice

If your e-read­er sup­ports scrolling mode, I rec­om­mend enabling it.

[image: Turn on scrolling mode]

The book con­tains lots of illus­tra­tions and long code list­ings that don’t look good with ran­dom pagination.

How to Read This Book

This book con­tains the descrip­tions of 22 clas­sic design pat­terns for­mu­lat­ed by the “Gang of Four” (or sim­ply GoF) in 1994.

Each chap­ter explores a par­tic­u­lar pat­tern. There­fore, you can read from cover to cover or by pick­ing the pat­terns you’re inter­est­ed in.

Many pat­terns are relat­ed, so you can eas­i­ly jump from topic to topic using numer­ous anchors. The end of each chap­ter has a list of links between the cur­rent pat­tern and oth­ers. If you see the name of a pat­tern that you haven’t seen yet, just keep read­ing—this item will appear in one of the next chapters.

Design pat­terns are uni­ver­sal. There­fore, all code sam­ples in this book are writ­ten in pseudocode that doesn’t con­strain the mate­r­i­al to a par­tic­u­lar pro­gram­ming language.

Prior to study­ing pat­terns, you can refresh your mem­o­ry by going over the key terms of object-ori­ent­ed pro­gram­ming. That chap­ter also explains the basics of UML dia­grams, which is use­ful because the book has tons of them. Of course, if you already know all of that, you can pro­ceed to learn­ing pat­terns right away.

 Intro­duc­tion
to OOP

 Basics of OOP

 Object-orient­ed program­ming is a par­a­digm based on the con­cept of wrap­ping pieces of data, and behav­ior relat­ed to that data, into spe­cial bun­dles called objects, which are con­struct­ed from a set of “blue­prints”, defined by a pro­gram­mer, called class­es.

Objects, class­es

Do you like cats? I hope you do because I’ll try to explain the OOP con­cepts using var­i­ous cat examples.

[image: UML class diagram]
This is a UML class dia­gram. You’ll see a lot of such dia­grams in the book.

Say you have a cat named Oscar. Oscar is an object, an instance of the Cat class. Every cat has a lot of stan­dard attrib­ut­es: name, sex, age, weight, color, favorite food, etc. These are the class’s fields.

All cats also behave sim­i­lar­ly: they breathe, eat, run, sleep and meow. These are the class’s meth­ods. Col­lec­tive­ly, fields and meth­ods can be ref­er­enced as the mem­bers of their class.

Data stored inside the object’s fields is often ref­er­enced as state, and all the object’s meth­ods define its behav­ior.

[image: Objects are instances of classes]
Objects are instances of classes.

Luna, your friend’s cat, is also an instance of the Cat class. It has the same set of attrib­ut­es as Oscar. The dif­fer­ence is in val­ues of these attrib­ut­es: its sex is female, it has a dif­fer­ent color, and weighs less.

So a class is like a blue­print that defines the struc­ture for objects, which are con­crete instances of that class.

Class hier­ar­chies

Every­thing’s fine and dandy when we talk about one class. Nat­u­ral­ly, a real pro­gram con­tains more than a sin­gle class. Some of these class­es might be orga­nized into class hier­ar­chies. Let’s find out what that means.

Say your neigh­bor has a dog called Fido. It turns out, dogs and cats have a lot in com­mon: name, sex, age, and color are attrib­ut­es of both dogs and cats. Dogs can breathe, sleep and run the same way cats do. So it seems that we can define the base Animal class that would list the com­mon attrib­ut­es and behaviors.

[image: UML diagram of a simple class hierarchy]
UML dia­gram of a class hier­ar­chy. All class­es in this dia­gram are part of the Animal class hierarchy.

A par­ent class, like the one we’ve just defined, is called a super­class. Its chil­dren are sub­class­es. Sub­class­es inher­it state and behav­ior from their par­ent, defin­ing only attrib­ut­es or behav­iors that dif­fer. Thus, the Cat class would have the meow method, and the Dog class the bark method.

Assum­ing that we have a relat­ed busi­ness require­ment, we can go even fur­ther and extract a more gen­er­al class for all liv­ing Organisms which will become a super­class for Animals and Plants. Such a pyra­mid of class­es is a hier­ar­chy. In such a hier­ar­chy, the Cat class inher­its every­thing from both the Animal and Organism classes.

[image: UML diagram of a complex class hierarchy]
Class­es in a UML dia­gram can be sim­pli­fied if it’s more impor­tant to show their rela­tions than their contents.

Sub­class­es can over­ride the behav­ior of meth­ods that they inher­it from par­ent class­es. A sub­class can either com­plete­ly replace the default behav­ior or just enhance it with some extra stuff.

 Pillars of OOP

 Object-ori­ent­ed pro­gram­ming is based on four pil­lars, con­cepts that dif­fer­en­ti­ate it from other pro­gram­ming paradigms.

[image: Pillar concepts of OOP]
Abstrac­tion

Most of the time when you’re cre­at­ing a pro­gram with OOP, you shape objects of the pro­gram based on real-world objects. How­ev­er, objects of the pro­gram don’t rep­re­sent the orig­i­nals with 100% accu­ra­cy (and it’s rarely required that they do). Instead, your objects only model attrib­ut­es and behav­iors of real objects in a spe­cif­ic con­text, ignor­ing the rest.

For exam­ple, an Airplane class could prob­a­bly exist in both a flight sim­u­la­tor and a flight book­ing appli­ca­tion. But in the for­mer case, it would hold details relat­ed to the actu­al flight, where­as in the lat­ter class you would care only about the seat map and which seats are available.

[image: Abstraction]
Dif­fer­ent mod­els of the same real-world object.

Abstrac­tion is a model of a real-world object or phe­nom­e­non, lim­it­ed to a spe­cif­ic con­text, which rep­re­sents all details rel­e­vant to this con­text with high accu­ra­cy and omits all the rest.

Encap­su­la­tion

To start a car engine, you only need to turn a key or press a but­ton. You don’t need to con­nect wires under the hood, rotate the crank­shaft and cylin­ders, and ini­ti­ate the power cycle of the engine. These details are hid­den under the hood of the car. You have only a sim­ple inter­face: a start switch, a steer­ing wheel and some ped­als. This illus­trates how each object has an inter­face—a pub­lic part of an object, open to inter­ac­tions with other objects.

Encap­su­la­tion is the abil­i­ty of an object to hide parts of its state and behav­iors from other objects, expos­ing only a lim­it­ed inter­face to the rest of the program.

To encap­su­late some­thing means to make it private, and thus acces­si­ble only from with­in the meth­ods of its own class. There’s a lit­tle bit less restric­tive mode called protected that makes a mem­ber of a class avail­able to sub­class­es as well.

Inter­faces and abstract class­es/meth­ods of most pro­gram­ming lan­guages are based on the con­cepts of abstrac­tion and encap­su­la­tion. In mod­ern object-ori­ent­ed pro­gram­ming lan­guages, the inter­face mech­a­nism (usu­al­ly declared with the interface or protocol key­word) lets you define con­tracts of inter­ac­tion between objects. That’s one of the rea­sons why the inter­faces only care about behav­iors of objects, and why you can’t declare a field in an interface.

The fact that the word inter­face stands for a pub­lic part of an object, while there’s also the interface type in most pro­gram­ming lan­guages, is very con­fus­ing. I’m with you on that.

Imag­ine that you have a FlyingTransport inter­face with a method fly(origin, destination, passengers). When design­ing an air trans­porta­tion sim­u­la­tor, you could restrict the Airport class to work only with objects that imple­ment the FlyingTransport inter­face. After this, you can be sure that any object passed to an air­port object, whether it’s an Airplane, a Helicopter or a freak­ing DomesticatedGryphon would be able to arrive or depart from this type of airport.

[image: Encapsulation]
UML dia­gram of sev­er­al class­es imple­ment­ing an interface.

You could change the imple­men­ta­tion of the fly method in these class­es in any way you want. As long as the sig­na­ture of the method remains the same as declared in the inter­face, all instances of the Airport class can work with your fly­ing objects just fine.

Inher­i­tance

Inher­i­tance is the abil­i­ty to build new class­es on top of exist­ing ones. The main ben­e­fit of inher­i­tance is code reuse. If you want to cre­ate a class that’s slight­ly dif­fer­ent from an exist­ing one, there’s no need to dupli­cate code. Instead, you extend the exist­ing class and put the extra func­tion­al­i­ty into a result­ing sub­class, which inher­its fields and meth­ods of the superclass.

The con­se­quence of using inher­i­tance is that sub­class­es have the same inter­face as their par­ent class. You can’t hide a method in a sub­class if it was declared in the super­class. You must also imple­ment all abstract meth­ods, even if they don’t make sense for your subclass.

[image: Inheritance]
UML dia­gram of extend­ing a sin­gle class ver­sus imple­ment­ing mul­ti­ple inter­faces at the same time.

In most pro­gram­ming lan­guages a sub­class can extend only one super­class. On the other hand, any class can imple­ment sev­er­al inter­faces at the same time. But, as I men­tioned before, if a super­class imple­ments an inter­face, all of its sub­class­es must also imple­ment it.

Poly­mor­phism

Let’s look at some ani­mal exam­ples. Most Animals can make sounds. We can antic­i­pate that all sub­class­es will need to over­ride the base makeSound method so each sub­class can emit the cor­rect sound; there­fore we can declare it abstract right away. This lets us omit any default imple­men­ta­tion of the method in the super­class, but force all sub­class­es to come up with their own.

[image: Polymorphism]
Imag­ine that we’ve put sev­er­al cats and dogs into a large bag. Then, with closed eyes, we take the ani­mals one-by-one out of the bag. After tak­ing an ani­mal from the bag, we don’t know for sure what it is. How­ev­er, if we cud­dle it hard enough, the ani­mal will emit a spe­cif­ic sound of joy, depend­ing on its con­crete class.

bag = [new Cat(), new Dog()];

foreach (Animal a : bag)

 a.makeSound()

// Meow!

// Woof!

The pro­gram doesn’t know the con­crete type of the object con­tained inside the a vari­able; but, thanks to the spe­cial mech­a­nism called poly­mor­phism, the pro­gram can trace down the sub­class of the object whose method is being exe­cut­ed and run the appro­pri­ate behavior.

Poly­mor­phism is the abil­i­ty of a pro­gram to detect the real class of an object and call its imple­men­ta­tion even when its real type is unknown in the cur­rent context.

You can also think of poly­mor­phism as the abil­i­ty of an object to “pre­tend” to be some­thing else, usu­al­ly a class it extends or an inter­face it imple­ments. In our exam­ple, the dogs and cats in the bag were pre­tend­ing to be gener­ic animals.

 Relations Between Objects

 In addi­tion to inher­i­tance and imple­men­ta­tion that we’ve already seen, there are other types of rela­tions between objects that we haven’t talked about yet.

Depen­den­cy

[image: Dependency]
UML Depen­den­cy. Pro­fes­sor depends on the course materials.

Depen­den­cy is the most basic and the weak­est type of rela­tions between class­es. There is a depen­den­cy between two class­es if some changes to the def­i­n­i­tion of one class might result in mod­i­fi­ca­tions to anoth­er class. Depen­den­cy typ­i­cal­ly occurs when you use con­crete class names in your code. For exam­ple, when spec­i­fy­ing types in method sig­na­tures, when instan­ti­at­ing objects via con­struc­tor calls, etc. You can make a depen­den­cy weak­er if you make your code depen­dent on inter­faces or abstract class­es instead of con­crete classes.

Usu­al­ly, a UML dia­gram doesn’t show every depen­den­cy—there are far too many of them in any real code. Instead of pol­lut­ing the dia­gram with depen­den­cies, you should be very selec­tive and show only those that are impor­tant to what­ev­er it is you are com­mu­ni­cat­ing.

Asso­ci­a­tion

[image: Association]
UML Asso­ci­a­tion. Pro­fes­sor com­mu­ni­cates with students.

Asso­ci­a­tion is a rela­tion­ship in which one object uses or inter­acts with anoth­er. In UML dia­grams, the asso­ci­a­tion rela­tion­ship is shown by a sim­ple arrow drawn from an object and point­ing to the object it uses. By the way, hav­ing a bi-direc­tion­al asso­ci­a­tion is a com­plete­ly nor­mal thing. In this case, the arrow has a point at each end. Asso­ci­a­tion can be seen as a spe­cial­ized kind of depen­den­cy, where an object always has access to the objects with which it inter­acts, where­as sim­ple depen­den­cy doesn’t estab­lish a per­ma­nent link between objects.

In gen­er­al, you use an asso­ci­a­tion to rep­re­sent some­thing like a field in a class. The link is always there, in that you can always ask an order for its cus­tomer. But it doesn’t always have to be a field. If you are mod­el­ing your class­es from an inter­face per­spec­tive, it can just indi­cate the pres­ence of a method that will return the order’s customer.

To solid­i­fy your under­stand­ing of the dif­fer­ence between asso­ci­a­tion and depen­den­cy, let’s look at a com­bined exam­ple. Imag­ine that we have a Professor class:

class Professor is

 field Student student

 // ...

 method teach(Course c) is

 // ...

 this.student.remember(c.getKnowledge())

Take a look at the teach method. It takes an argu­ment of the Course class, which is then used in the body of the method. If some­one changes the getKnowledge method of the Course class (alters its name, or adds some required para­me­ters, etc.) our code will break. This is called a dependency.

Now, look at the student field and how it’s used in the teach method. We can say for sure that the Student class is also a depen­den­cy for the Professor: if the method remember changes, the Professor’s code will break. How­ev­er, since the student field is always acces­si­ble to any method of the Professor, the Student class is not just a depen­den­cy, but also an association.

Aggre­ga­tion

[image: Aggregation]
UML Aggre­ga­tion. Depart­ment con­tains professors.

Aggre­ga­tion is a spe­cial­ized type of asso­ci­a­tion that rep­re­sents “one-to-many”, “many-to-many” or “whole-part” rela­tions between mul­ti­ple objects.

Usu­al­ly, under aggre­ga­tion, an object “has” a set of other objects and serves as a con­tain­er or col­lec­tion. The com­po­nent can exist with­out the con­tain­er and can be linked to sev­er­al con­tain­ers at the same time. In UML the aggre­ga­tion rela­tion­ship is shown by a line with an empty dia­mond at the con­tain­er end and an arrow at the end point­ing toward the component.

While we talk about rela­tions between objects, keep in mind that UML rep­re­sents rela­tions between class­es. It means that a uni­ver­si­ty object might con­sist of mul­ti­ple depart­ments even though you see just one “block” for each enti­ty in the dia­gram. UML nota­tion can rep­re­sent quan­ti­ties on both sides of rela­tion­ships, but it’s okay to omit them if the quan­ti­ties are clear from the context.

Com­po­si­tion

[image: Composition]
UML Com­po­si­tion. Uni­ver­si­ty con­sists of departments.

Com­po­si­tion is a spe­cif­ic kind of aggre­ga­tion, where one object is com­posed of one or more instances of the other. The dis­tinc­tion between this rela­tion and oth­ers is that the com­po­nent can only exist as a part of the con­tain­er. In UML the com­po­si­tion rela­tion­ship is drawn the same as for aggre­ga­tion, but with a filled dia­mond at the arrow’s base.

Note that many peo­ple often use the term “com­po­si­tion” when they real­ly mean both the aggre­ga­tion and com­po­si­tion. The most noto­ri­ous exam­ple for this is the famous prin­ci­ple “choose com­po­si­tion over inher­i­tance.” It’s not because peo­ple are igno­rant about the dif­fer­ence, but rather because the word “com­po­si­tion” (e.g. “object com­po­si­tion”) sounds more nat­ur­al in the Eng­lish language.

The big pic­ture

Now that we know all types of rela­tions between objects let’s see how they all are con­nect­ed. Hope­ful­ly, this will guide you through ques­tions like “what is the dif­fer­ence between aggre­ga­tion and com­po­si­tion” or “is inher­i­tance a type of depen­den­cy?”

	
Depen­den­cy: Class А can be affect­ed by changes in class B.

	
Asso­ci­a­tion: Object А knows about object B. Class A depends on B.

	
Aggre­ga­tion: Object А knows about object B, and con­sists of B. Class A depends on B.

	
Com­po­si­tion: Object А knows about object B, con­sists of B, and man­ages B’s life cycle. Class A depends on B.

	
Imple­men­ta­tion: Class А defines meth­ods declared in inter­face B. Objects A can be treat­ed as B. Class A depends on B.

	
Inher­i­tance: Class А inher­its inter­face and imple­men­ta­tion of class B but can extend it. Objects A can be treat­ed as B. Class A depends on B.

[image: All relations]
Rela­tions between objects and class­es: from weak­est to strongest.

 Intro­duc­tion
to Pat­terns

 What's a Design Pattern?

 Design pat­terns are typ­i­cal solu­tions to com­mon­ly occur­ring prob­lems in soft­ware design. They are like pre-made blue­prints that you can cus­tomize to solve a recur­ring design prob­lem in your code.

You can’t just find a pat­tern and copy it into your pro­gram, the way you can with off-the-shelf func­tions or libraries. The pat­tern is not a spe­cif­ic piece of code, but a gen­er­al con­cept for solv­ing a par­tic­u­lar prob­lem. You can fol­low the pat­tern details and imple­ment a solu­tion that suits the real­i­ties of your own program.

Pat­terns are often con­fused with algo­rithms, because both con­cepts describe typ­i­cal solu­tions to some known prob­lems. While an algo­rithm always defines a clear set of actions that can achieve some goal, a pat­tern is a more high-level descrip­tion of a solu­tion. The code of the same pat­tern applied to two dif­fer­ent pro­grams may be different.

An anal­o­gy to an algo­rithm is a cook­ing recipe: both have clear steps to achieve a goal. On the other hand, a pat­tern is more like a blue­print: you can see what the result and its fea­tures are, but the exact order of imple­men­ta­tion is up to you.

 What does the pat­tern con­sist of?

Most pat­terns are described very for­mal­ly so peo­ple can repro­duce them in many con­texts. Here are the sec­tions that are usu­al­ly present in a pat­tern description:

	
Intent of the pat­tern briefly describes both the prob­lem and the solution.

	
Moti­va­tion fur­ther explains the prob­lem and the solu­tion the pat­tern makes possible.

	
Struc­ture of class­es shows each part of the pat­tern and how they are related.

	
Code exam­ple in one of the pop­u­lar pro­gram­ming lan­guages makes it eas­i­er to grasp the idea behind the pattern.

Some pat­tern cat­a­logs list other use­ful details, such as applic­a­bil­i­ty of the pat­tern, imple­men­ta­tion steps and rela­tions with other patterns.

 Clas­si­fi­ca­tion of pat­terns

Design pat­terns dif­fer by their com­plex­i­ty, level of detail and scale of applic­a­bil­i­ty to the entire sys­tem being designed. I like the anal­o­gy to road con­struc­tion: you can make an inter­sec­tion safer by either installing some traf­fic lights or build­ing an entire multi-level inter­change with under­ground pas­sages for pedestrians.

The most basic and low-level pat­terns are often called idioms. They usu­al­ly apply only to a sin­gle pro­gram­ming language.

The most uni­ver­sal and high-level pat­terns are archi­tec­tur­al pat­terns. Devel­op­ers can imple­ment these pat­terns in vir­tu­al­ly any lan­guage. Unlike other pat­terns, they can be used to design the archi­tec­ture of an entire application.

In addi­tion, all pat­terns can be cat­e­go­rized by their intent, or pur­pose. This book cov­ers three main groups of patterns:

	
Cre­ation­al pat­terns pro­vide object cre­ation mech­a­nisms that increase flex­i­bil­i­ty and reuse of exist­ing code.

	
Struc­tur­al pat­terns explain how to assem­ble objects and class­es into larg­er struc­tures, while keep­ing the struc­tures flex­i­ble and efficient.

	
Behav­ioral pat­terns take care of effec­tive com­mu­ni­ca­tion and the assign­ment of respon­si­bil­i­ties between objects.

 Who invent­ed pat­terns?

That’s a good, but not a very accu­rate, ques­tion. Design pat­terns aren’t obscure, sophis­ti­cat­ed con­cepts—quite the oppo­site. Pat­terns are typ­i­cal solu­tions to com­mon prob­lems in object-ori­ent­ed design. When a solu­tion gets repeat­ed over and over in var­i­ous projects, some­one even­tu­al­ly puts a name to it and describes the solu­tion in detail. That’s basi­cal­ly how a pat­tern gets discovered.

The con­cept of pat­terns was first described by Christo­pher Alexan­der in A Pat­tern Lan­guage: Towns, Build­ings, Con­struc­tion 1. The book describes a “lan­guage” for design­ing the urban envi­ron­ment. The units of this lan­guage are pat­terns. They may describe how high win­dows should be, how many lev­els a build­ing should have, how large green areas in a neigh­bor­hood are sup­posed to be, and so on.

The idea was picked up by four authors: Erich Gamma, John Vlis­sides, Ralph John­son, and Richard Helm. In 1994, they pub­lished Design Pat­terns: Ele­ments of Reusable Object-Ori­ent­ed Soft­ware 2, in which they applied the con­cept of design pat­terns to pro­gram­ming. The book fea­tured 23 pat­terns solv­ing var­i­ous prob­lems of object-ori­ent­ed design and became a best-sell­er very quick­ly. Due to its lengthy name, peo­ple start­ed to call it “the book by the gang of four” which was soon short­ened to sim­ply “the GoF book”.

Since then, dozens of other object-ori­ent­ed pat­terns have been dis­cov­ered. The “pat­tern approach” became very pop­u­lar in other pro­gram­ming fields, so lots of other pat­terns now exist out­side of object-ori­ent­ed design as well.

 Why Should I Learn Patterns?

 The truth is that you might man­age to work as a pro­gram­mer for many years with­out know­ing about a sin­gle pat­tern. A lot of peo­ple do just that. Even in that case, though, you might be imple­ment­ing some pat­terns with­out even know­ing it. So why would you spend time learn­ing them?

	
Design pat­terns are a toolk­it of tried and test­ed solu­tions to com­mon prob­lems in soft­ware design. Even if you never encounter these prob­lems, know­ing pat­terns is still use­ful because it teach­es you how to solve all sorts of prob­lems using prin­ci­ples of object-ori­ent­ed design.

	
Design pat­terns define a com­mon lan­guage that you and your team­mates can use to com­mu­ni­cate more effi­cient­ly. You can say, “Oh, just use a Sin­gle­ton for that,” and every­one will under­stand the idea behind your sug­ges­tion. No need to explain what a sin­gle­ton is if you know the pat­tern and its name.

 Soft­ware Design Prin­ci­ples

 Features of Good Design

 Before we pro­ceed to the actu­al pat­terns, let’s dis­cuss the process of design­ing soft­ware archi­tec­ture: things to aim for and things you’d bet­ter avoid.

 Code reuse

Cost and time are two of the most valu­able met­rics when devel­op­ing any soft­ware prod­uct. Less time in devel­op­ment means enter­ing the mar­ket ear­li­er than com­peti­tors. Lower devel­op­ment costs mean more money is left for mar­ket­ing and a broad­er reach to poten­tial customers.

Code reuse is one of the most com­mon ways to reduce devel­op­ment costs. The intent is pret­ty obvi­ous: instead of devel­op­ing some­thing over and over from scratch, why don’t we reuse exist­ing code in new projects?

The idea looks great on paper, but it turns out that mak­ing exist­ing code work in a new con­text usu­al­ly takes extra effort. Tight cou­pling between com­po­nents, depen­den­cies on con­crete class­es instead of inter­faces, hard­cod­ed oper­a­tions—all of this reduces flex­i­bil­i­ty of the code and makes it hard­er to reuse it.

Using design pat­terns is one way to increase flex­i­bil­i­ty of soft­ware com­po­nents and make them eas­i­er to reuse. How­ev­er, this some­times comes at the price of mak­ing the com­po­nents more complicated.

Here’s a piece of wis­dom from Erich Gamma 3, one of the found­ing fathers of design pat­terns, about the role of design pat­terns in code reuse:

I see three lev­els of reuse.

At the low­est level, you reuse class­es: class libraries, con­tain­ers, maybe some class “teams” like con­tain­er/iter­a­tor.

Frame­works are at the high­est level. They real­ly try to dis­till your design deci­sions. They iden­ti­fy the key abstrac­tions for solv­ing a prob­lem, rep­re­sent them by class­es and define rela­tion­ships between them. JUnit is a small frame­work, for exam­ple. It is the “Hello, world” of frame­works. It has Test, TestCase, TestSuite and rela­tion­ships defined.

A frame­work is typ­i­cal­ly larg­er-grained than just a sin­gle class. Also, you hook into frame­works by sub­class­ing some­where. They use the so-called Hol­ly­wood prin­ci­ple of “don’t call us, we’ll call you.” The frame­work lets you define your cus­tom behav­ior, and it will call you when it’s your turn to do some­thing. Same with JUnit, right? It calls you when it wants to exe­cute a test for you, but the rest hap­pens in the framework.

There also is a mid­dle level. This is where I see pat­terns. Design pat­terns are both small­er and more abstract than frame­works. They’re real­ly a descrip­tion about how a cou­ple of class­es can relate to and inter­act with each other. The level of reuse increas­es when you move from class­es to pat­terns and final­ly frameworks.

What is nice about this mid­dle layer is that pat­terns offer reuse in a way that is less risky than frame­works. Build­ing a frame­work is high-risk and a sig­nif­i­cant invest­ment. Pat­terns let you reuse design ideas and con­cepts inde­pen­dent­ly of con­crete code.

 Exten­si­bil­i­ty

Change is the only con­stant thing in a pro­gram­mer’s life.

	You released a video game for Win­dows, but now peo­ple ask for a macOS version.

	You cre­at­ed a GUI frame­work with square but­tons, but sev­er­al months later round but­tons become a trend.

	You designed a bril­liant e-com­merce web­site archi­tec­ture, but just a month later cus­tomers ask for a fea­ture that would let them accept phone orders.

Each soft­ware devel­op­er has dozens of sim­i­lar sto­ries. There are sev­er­al rea­sons why this happens.

First, we under­stand the prob­lem bet­ter once we start to solve it. Often by the time you fin­ish the first ver­sion of an app, you’re ready to rewrite it from scratch because now you under­stand many aspects of the prob­lem much bet­ter. You have also grown pro­fes­sion­al­ly, and your own code now looks like crap.

Some­thing beyond your con­trol has changed. This is why so many dev teams pivot from their orig­i­nal ideas into some­thing new. Every­one who relied on Flash in an online appli­ca­tion has been rework­ing or migrat­ing their code as brows­er after brows­er drops sup­port for Flash.

The third rea­son is that the goal­posts move. Your client was delight­ed with the cur­rent ver­sion of the appli­ca­tion, but now sees eleven “lit­tle” changes he’d like so it can do other things he never men­tioned in the orig­i­nal plan­ning ses­sions. These aren’t friv­o­lous changes: your excel­lent first ver­sion has shown him that even more is possible.

There’s a bright side: if some­one asks you to change some­thing in your app, that means some­one still cares about it.

That’s why all sea­soned devel­op­ers try to pro­vide for pos­si­ble future changes when design­ing an appli­ca­tion’s architecture.

 Design Principles

 What is good soft­ware design? How would you mea­sure it? What prac­tices would you need to fol­low to achieve it? How can you make your archi­tec­ture flex­i­ble, sta­ble and easy to under­stand?

These are the great ques­tions; but, unfor­tu­nate­ly, the answers are dif­fer­ent depend­ing on the type of appli­ca­tion you’re build­ing. Nev­er­the­less, there are sev­er­al uni­ver­sal prin­ci­ples of soft­ware design that might help you answer these ques­tions for your own project. Most of the design pat­terns list­ed in this book are based on these principles.

 Encapsulate What Varies

Iden­ti­fy the aspects of your appli­ca­tion that vary and sep­a­rate them from what stays the same.

The main goal of this prin­ci­ple is to min­i­mize the effect caused by changes.

Imag­ine that your pro­gram is a ship, and changes are hideous mines that linger under water. Struck by the mine, the ship sinks.

Know­ing this, you can divide the ship’s hull into inde­pen­dent com­part­ments that can be safe­ly sealed to limit dam­age to a sin­gle com­part­ment. Now, if the ship hits a mine, the ship as a whole remains afloat.

In the same way, you can iso­late the parts of the pro­gram that vary in inde­pen­dent mod­ules, pro­tect­ing the rest of the code from adverse effects. As a result, you spend less time get­ting the pro­gram back into work­ing shape, imple­ment­ing and test­ing the changes. The less time you spend mak­ing changes, the more time you have for imple­ment­ing features.

Encap­su­la­tion on a method level

Say you’re mak­ing an e-com­merce web­site. Some­where in your code, there’s a getOrderTotal method that cal­cu­lates a grand total for the order, includ­ing taxes.

We can antic­i­pate that tax-relat­ed code might need to change in the future. The tax rate depends on the coun­try, state or even city where the cus­tomer resides, and the actu­al for­mu­la may change over time due to new laws or reg­u­la­tions. As a result, you’ll need to change the getOrderTotal method quite often. But even the method’s name sug­gests that it doesn’t care about how the tax is calculated.

method getOrderTotal(order) is

 total = 0

 foreach item in order.lineItems

 total += item.price * item.quantity

 if (order.country == "US")

 total += total * 0.07 // US sales tax

 else if (order.country == "EU"):

 total += total * 0.20 // European VAT

 return total

BEFORE: tax cal­cu­la­tion code is mixed with the rest of the method’s code.

You can extract the tax cal­cu­la­tion logic into a sep­a­rate method, hid­ing it from the orig­i­nal method.

method getOrderTotal(order) is

 total = 0

 foreach item in order.lineItems

 total += item.price * item.quantity

 total += total * getTaxRate(order.country)

 return total

method getTaxRate(country) is

 if (country == "US")

 return 0.07 // US sales tax

 else if (country == "EU")

 return 0.20 // European VAT

 else

 return 0

AFTER: you can get the tax rate by call­ing a des­ig­nat­ed method.

Tax-relat­ed changes become iso­lat­ed inside a sin­gle method. More­over, if the tax cal­cu­la­tion logic becomes too com­pli­cat­ed, it’s now eas­i­er to move it to a sep­a­rate class.

Encap­su­la­tion on a class level

Over time you might add more and more respon­si­bil­i­ties to a method which used to do a sim­ple thing. These added behav­iors often come with their own helper fields and meth­ods that even­tu­al­ly blur the pri­ma­ry respon­si­bil­i­ty of the con­tain­ing class. Extract­ing every­thing to a new class might make things much more clear and simple.

BEFORE: cal­cu­lat­ing tax in Order class.

Objects of the Order class del­e­gate all tax-relat­ed work to a spe­cial object that does just that.

AFTER: tax cal­cu­la­tion is hid­den from the Order class.

 Program to an Interface, not an Implementation

Pro­gram to an inter­face, not an imple­men­ta­tion. Depend on abstrac­tions, not on con­crete classes.

You can tell that the design is flex­i­ble enough if you can eas­i­ly extend it with­out break­ing any exist­ing code. Let’s make sure that this state­ment is cor­rect by look­ing at anoth­er cat exam­ple. A Cat that can eat any food is more flex­i­ble than one that can eat just sausages. You can still feed the first cat with sausages because they are a sub­set of “any food”; how­ev­er, you can extend that cat’s menu with any other food.

When you want to make two class­es col­lab­o­rate, you can start by mak­ing one of them depen­dent on the other. Hell, I often start by doing that myself. How­ev­er, there’s anoth­er, more flex­i­ble way to set up col­lab­o­ra­tion between objects:

	Deter­mine what exact­ly one object needs from the other: which meth­ods does it exe­cute?

	Describe these meth­ods in a new inter­face or abstract class.

	Make the class that is a depen­den­cy imple­ment this interface.

	Now make the sec­ond class depen­dent on this inter­face rather than on the con­crete class. You still can make it work with objects of the orig­i­nal class, but the con­nec­tion is now much more flexible.

Before and after extract­ing the inter­face. The code on the right is more flex­i­ble than the code on the left, but it’s also more complicated.

After mak­ing this change, you won’t prob­a­bly feel any imme­di­ate ben­e­fit. On the con­trary, the code has become more com­pli­cat­ed than it was before. How­ev­er, if you feel that this might be a good exten­sion point for some extra func­tion­al­i­ty, or that some other peo­ple who use your code might want to extend it here, then go for it.

Exam­ple

Let’s look at anoth­er exam­ple which illus­trates that work­ing with objects through inter­faces might be more ben­e­fi­cial than depend­ing on their con­crete class­es. Imag­ine that you’re cre­at­ing a soft­ware devel­op­ment com­pa­ny sim­u­la­tor. You have dif­fer­ent class­es that rep­re­sent var­i­ous employ­ee types.

BEFORE: all class­es are tight­ly coupled.

In the begin­ning, the Company class is tight­ly cou­pled to con­crete class­es of employ­ees. How­ev­er, despite the dif­fer­ence in their imple­men­ta­tions, we can gen­er­al­ize var­i­ous work-relat­ed meth­ods and then extract a com­mon inter­face for all employ­ee classes.

After doing that, we can apply poly­mor­phism inside the Company class, treat­ing var­i­ous employ­ee objects via the Employee interface.

BET­TER: poly­mor­phism helped us sim­pli­fy the code, but the rest of the Company class still depends on the con­crete employ­ee classes.

The Company class remains cou­pled to the employ­ee class­es. This is bad because if we intro­duce new types of com­pa­nies that work with other types of employ­ees, we’ll need to over­ride most of the Company class instead of reusing that code.

To solve this prob­lem, we could declare the method for get­ting employ­ees as abstract. Each con­crete com­pa­ny will imple­ment this method dif­fer­ent­ly, cre­at­ing only those employ­ees that it needs.

AFTER: the pri­ma­ry method of the Company class is inde­pen­dent from con­crete employ­ee class­es. Employ­ee objects are cre­at­ed in con­crete com­pa­ny subclasses.

After this change, the Company class has become inde­pen­dent from var­i­ous employ­ee class­es. Now you can extend this class and intro­duce new types of com­pa­nies and employ­ees while still reusing a por­tion of the base com­pa­ny class. Extend­ing the base com­pa­ny class doesn’t break any exist­ing code that already relies on it.

By the way, you’ve just seen apply­ing a design pat­tern in action! That was an exam­ple of the Fac­to­ry Method pat­tern. Don’t worry: we’ll dis­cuss it later in detail.

 Favor Composition Over Inheritance

 Inher­i­tance is prob­a­bly the most obvi­ous and easy way of reusing code between class­es. You have two class­es with the same code. Cre­ate a com­mon base class for these two and move the sim­i­lar code into it. Piece of cake!

Unfor­tu­nate­ly, inher­i­tance comes with caveats that often become appar­ent only after your pro­gram already has tons of class­es and chang­ing any­thing is pret­ty hard. Here’s a list of those problems.

	
A sub­class can’t reduce the inter­face of the super­class. You have to imple­ment all abstract meth­ods of the par­ent class even if you won’t be using them.

	
When over­rid­ing meth­ods you need to make sure that the new behav­ior is com­pat­i­ble with the base one. It’s impor­tant because objects of the sub­class may be passed to any code that expects objects of the super­class and you don’t want that code to break.

	
Inher­i­tance breaks encap­su­la­tion of the super­class because the inter­nal details of the par­ent class become avail­able to the sub­class. There might be an oppo­site sit­u­a­tion where a pro­gram­mer makes a super­class aware of some details of sub­class­es for the sake of mak­ing fur­ther exten­sion easier.

	
Sub­class­es are tight­ly cou­pled to super­class­es. Any change in a super­class may break the func­tion­al­i­ty of subclasses.

	
Try­ing to reuse code through inher­i­tance can lead to cre­at­ing par­al­lel inher­i­tance hier­ar­chies. Inher­i­tance usu­al­ly takes place in a sin­gle dimen­sion. But when­ev­er there are two or more dimen­sions, you have to cre­ate lots of class com­bi­na­tions, bloat­ing the class hier­ar­chy to a ridicu­lous size.

There’s an alter­na­tive to inher­i­tance called com­po­si­tion. Where­as inher­i­tance rep­re­sents the “is a” rela­tion­ship between class­es (a car is a trans­port), com­po­si­tion rep­re­sents the “has a” rela­tion­ship (a car has an engine).

I should men­tion that this prin­ci­ple also applies to aggre­ga­tion—a more relaxed vari­ant of com­po­si­tion where one object may have a ref­er­ence to the other one but doesn’t man­age its life­cy­cle. Here’s an exam­ple: a car has a dri­ver, but he or she may use anoth­er car or just walk with­out the car.

Exam­ple

Imag­ine that you need to cre­ate a cat­a­log app for a car man­u­fac­tur­er. The com­pa­ny makes both cars and trucks; they can be either elec­tric or gas; all mod­els have either man­u­al con­trols or an autopilot.

[image: Inheritance]
INHER­I­TANCE: extend­ing a class in sev­er­al dimen­sions (cargo type × engine type × nav­i­ga­tion type) may lead to a com­bi­na­to­r­i­al explo­sion of subclasses.

As you see, each addi­tion­al para­me­ter results in mul­ti­ply­ing the num­ber of sub­class­es. There’s a lot of dupli­cate code between sub­class­es because a sub­class can’t extend two class­es at the same time.

You can solve this prob­lem with com­po­si­tion. Instead of car objects imple­ment­ing a behav­ior on their own, they can del­e­gate it to other objects.

The added ben­e­fit is that you can replace a behav­ior at run­time. For instance, you can replace an engine object linked to a car object just by assign­ing a dif­fer­ent engine object to the car.

[image: Composition]
COM­PO­SI­TION: dif­fer­ent “dimen­sions” of func­tion­al­i­ty extract­ed to their own class hierarchies.

This struc­ture of class­es resem­bles the Strat­e­gy pat­tern, which we’ll go over later in this book.

 SOLID Principles

 Now that you know the basic design prin­ci­ples, let’s take a look at five that are com­mon­ly known as the SOLID prin­ci­ples. Robert Mar­tin intro­duced them in the book Agile Soft­ware Devel­op­ment, Prin­ci­ples, Pat­terns, and Prac­tices 4.

SOLID is a mnemon­ic for five design prin­ci­ples intend­ed to make soft­ware designs more under­stand­able, flex­i­ble and maintainable.

As with every­thing in life, using these prin­ci­ples mind­less­ly can cause more harm than good. The cost of apply­ing these prin­ci­ples into a pro­gram’s archi­tec­ture might be mak­ing it more com­pli­cat­ed than it should be. I doubt that there’s a suc­cess­ful soft­ware prod­uct in which all of these prin­ci­ples are applied at the same time. Striv­ing for these prin­ci­ples is good, but always try to be prag­mat­ic and don’t take every­thing writ­ten here as dogma.

 Single Responsibility Principle

A class should have just one rea­son to change.

Try to make every class respon­si­ble for a sin­gle part of the func­tion­al­i­ty pro­vid­ed by the soft­ware, and make that respon­si­bil­i­ty entire­ly encap­su­lat­ed by (you can also say hid­den with­in) the class.

The main goal of this prin­ci­ple is reduc­ing com­plex­i­ty. You don’t need to invent a sophis­ti­cat­ed design for a pro­gram that only has about 200 lines of code. Make a dozen meth­ods pret­ty, and you’ll be fine.

The real prob­lems emerge when your pro­gram con­stant­ly grows and changes. At some point class­es become so big that you can no longer remem­ber their details. Code nav­i­ga­tion slows down to a crawl, and you have to scan through whole class­es or even an entire pro­gram to find spe­cif­ic things. The num­ber of enti­ties in pro­gram over­flows your brain stack, and you feel that you’re los­ing con­trol over the code.

There’s more: if a class does too many things, you have to change it every time one of these things changes. While doing that, you’re risk­ing break­ing other parts of the class which you didn’t even intend to change.

If you feel that it’s becom­ing hard to focus on spe­cif­ic aspects of the pro­gram one at a time, remem­ber the sin­gle respon­si­bil­i­ty prin­ci­ple and check whether it’s time to divide some class­es into parts.

Exam­ple

The Employee class has sev­er­al rea­sons to change. The first rea­son might be relat­ed to the main job of the class: man­ag­ing employ­ee data. How­ev­er, there’s anoth­er rea­son: the for­mat of the timesheet report may change over time, requir­ing you to change the code with­in the class.

[image: Violation of single responsibility principle]
BEFORE: the class con­tains sev­er­al dif­fer­ent behaviors.

Solve the prob­lem by mov­ing the behav­ior relat­ed to print­ing timesheet reports into a sep­a­rate class. This change lets you move other report-relat­ed stuff to the new class.

[image: Single responsibility principle in action]
AFTER: the extra behav­ior is in its own class.

 Open/Closed Principle

Class­es should be open for exten­sion but closed for modification.

The main idea of this prin­ci­ple is to keep exist­ing code from break­ing when you imple­ment new features.

A class is open if you can extend it, pro­duce a sub­class and do what­ev­er you want with it—add new meth­ods or fields, over­ride base behav­ior, etc. Some pro­gram­ming lan­guages let you restrict fur­ther exten­sion of a class with spe­cial key­words, such as final. After this, the class is no longer open. At the same time, the class is closed (you can also say com­plete) if it’s 100% ready to be used by other class­es—its inter­face is clear­ly defined and won’t be changed in the future.

When I first learned about this prin­ci­ple, I was con­fused because the words open & closed sound mutu­al­ly exclu­sive. But in terms of this prin­ci­ple, a class can be both open (for exten­sion) and closed (for mod­i­fi­ca­tion) at the same time.

If a class is already devel­oped, test­ed, reviewed, and includ­ed in some frame­work or oth­er­wise used in an app, try­ing to mess with its code is risky. Instead of chang­ing the code of the class direct­ly, you can cre­ate a sub­class and over­ride parts of the orig­i­nal class that you want to behave dif­fer­ent­ly. You’ll achieve your goal but also won’t break any exist­ing clients of the orig­i­nal class.

This prin­ci­ple isn’t meant to be applied for all changes to a class. If you know that there’s a bug in the class, just go on and fix it; don’t cre­ate a sub­class for it. A child class shouldn’t be respon­si­ble for the par­ent’s issues.

Exam­ple

You have an e-com­merce appli­ca­tion with an Order class that cal­cu­lates ship­ping costs and all ship­ping meth­ods are hard­cod­ed inside the class. If you need to add a new ship­ping method, you have to change the code of the Order class and risk break­ing it.

[image: Violation of the open/closed principle]
BEFORE: you have to change the Order class when­ev­er you add a new ship­ping method to the app.

You can solve the prob­lem by apply­ing the Strat­e­gy pat­tern. Start by extract­ing ship­ping meth­ods into sep­a­rate class­es with a com­mon interface.

[image: Open/closed principle in action]
AFTER: adding a new ship­ping method doesn’t require chang­ing exist­ing classes.

Now when you need to imple­ment a new ship­ping method, you can derive a new class from the Shipping inter­face with­out touch­ing any of the Order class’ code. The client code of the Order class will link orders with a ship­ping object of the new class when­ev­er the user selects this ship­ping meth­ods in the UI.

As a bonus, this solu­tion let you move the deliv­ery time cal­cu­la­tion to more rel­e­vant class­es, accord­ing to the sin­gle respon­si­bil­i­ty prin­ci­ple.

 Liskov Sub­sti­tu­tion Prin­ci­ple 5

When extend­ing a class, remem­ber that you should be able to pass objects of the sub­class in place of objects of the par­ent class with­out break­ing the client code.

This means that the sub­class should remain com­pat­i­ble with the behav­ior of the super­class. When over­rid­ing a method, extend the base behav­ior rather than replac­ing it with some­thing else entirely.

The sub­sti­tu­tion prin­ci­ple is a set of checks that help pre­dict whether a sub­class remains com­pat­i­ble with the code that was able to work with objects of the super­class. This con­cept is crit­i­cal when devel­op­ing libraries and frame­works because your class­es are going to be used by other peo­ple whose code you can’t direct­ly access and change.

Unlike other design prin­ci­ples which are wide open for inter­pre­ta­tion, the sub­sti­tu­tion prin­ci­ple has a set of for­mal require­ments for sub­class­es, and specif­i­cal­ly for their meth­ods. Let’s go over this check­list in detail.

	
Para­me­ter types in a method of a sub­class should match or be more abstract than para­me­ter types in the method of the super­class. Sounds con­fus­ing? Let’s have an example.

	
Say there’s a class with a method that’s sup­posed to feed cats: feed(Cat c). Client code always pass­es cat objects into this method.

	
Good: Say you cre­at­ed a sub­class that over­rode the method so that it can feed any ani­mal (a super­class of cats): feed(Animal c). Now if you pass an object of this sub­class instead of an object of the super­class to the client code, every­thing would still work fine. The method can feed all ani­mals, so it can still feed any cat passed by the client.

	
Bad: You cre­at­ed anoth­er sub­class and restrict­ed the feed­ing method to only accept Ben­gal cats (a sub­class of cats): feed(BengalCat c). What will hap­pen to the client code if you link it with an object like this instead of with the orig­i­nal class? Since the method can only feed a spe­cif­ic breed of cats, it won’t serve gener­ic cats passed by the client, break­ing all relat­ed func­tion­al­i­ty.

	
The return type in a method of a sub­class should match or be a sub­type of the return type in the method of the super­class. As you can see, require­ments for a return type are inverse to require­ments for para­me­ter types.

	
Say you have a class with a method buyCat(): Cat. The client code expects to receive any cat as a result of exe­cut­ing this method.

	
Good: A sub­class over­rides the method as fol­lows: buyCat(): BengalCat. The client gets a Ben­gal cat, which is still a cat, so every­thing is okay.

	
Bad: A sub­class over­rides the method as fol­lows: buyCat(): Animal. Now the client code breaks since it receives an unknown gener­ic ani­mal (an alli­ga­tor? a bear?) that doesn’t fit a struc­ture designed for a cat.

Anoth­er anti-exam­ple comes from the world of pro­gram­ming lan­guages with dynam­ic typ­ing: the base method returns a string, but the over­rid­den method returns a number.

	
A method in a sub­class shouldn’t throw types of excep­tions which the base method isn’t expect­ed to throw. In other words, types of excep­tions should match or be sub­types of the ones that the base method is already able to throw. This rule comes from the fact that try-catch blocks in the client code tar­get spe­cif­ic types of excep­tions which the base method is like­ly to throw. There­fore, an unex­pect­ed excep­tion might slip through the defen­sive lines of the client code and crash the entire application.

In most mod­ern pro­gram­ming lan­guages, espe­cial­ly sta­t­i­cal­ly typed ones (Java, C#, and oth­ers), these rules are built into the lan­guage. You won’t be able to com­pile a pro­gram that vio­lates these rules.

	
A sub­class shouldn’t strength­en pre-con­di­tions. For exam­ple, the base method has a para­me­ter with type int. If a sub­class over­rides this method and requires that the value of an argu­ment passed to the method should be pos­i­tive (by throw­ing an excep­tion if the value is neg­a­tive), this strength­ens the pre-con­di­tions. The client code, which used to work fine when pass­ing neg­a­tive num­bers into the method, now breaks if it starts work­ing with an object of this subclass.

	
A sub­class shouldn’t weak­en post-con­di­tions. Say you have a class with a method that works with a data­base. A method of the class is sup­posed to always close all opened data­base con­nec­tions upon return­ing a value.

You cre­at­ed a sub­class and changed it so that data­base con­nec­tions remain open so you can reuse them. But the client might not know any­thing about your inten­tions. Because it expects the meth­ods to close all the con­nec­tions, it may sim­ply ter­mi­nate the pro­gram right after call­ing the method, pol­lut­ing a sys­tem with ghost data­base connections.

	
Invari­ants of a super­class must be pre­served. This is prob­a­bly the least for­mal rule of all. Invari­ants are con­di­tions in which an object makes sense. For exam­ple, invari­ants of a cat are hav­ing four legs, a tail, abil­i­ty to meow, etc. The con­fus­ing part about invari­ants is that while they can be defined explic­it­ly in the form of inter­face con­tracts or a set of asser­tions with­in meth­ods, they could also be implied by cer­tain unit tests and expec­ta­tions of the client code.

The rule on invari­ants is the eas­i­est to vio­late because you might mis­un­der­stand or not real­ize all of the invari­ants of a com­plex class. There­fore, the safest way to extend a class is to intro­duce new fields and meth­ods, and not mess with any exist­ing mem­bers of the super­class. Of course, that’s not always doable in real life.

	
A sub­class shouldn’t change val­ues of pri­vate fields of the super­class. What? How’s that even pos­si­ble? It turns out some pro­gram­ming lan­guages let you access pri­vate mem­bers of a class via reflec­tion mech­a­nisms. Other lan­guages (Python, JavaScript) don’t have any pro­tec­tion for the pri­vate mem­bers at all.

Exam­ple

Let’s look at an exam­ple of a hier­ar­chy of doc­u­ment class­es that vio­lates the sub­sti­tu­tion principle.

[image: Violation of Liskov substitution principle]
BEFORE: sav­ing doesn’t make sense in a read-only doc­u­ment, so the sub­class tries to solve it by reset­ting the base behav­ior in the over­rid­den method.

The save method in the ReadOnlyDocuments sub­class throws an excep­tion if some­one tries to call it. The base method doesn’t have this restric­tion. This means that the client code will break if we don’t check the doc­u­ment type before sav­ing it.

The result­ing code also vio­lates the open/closed prin­ci­ple, since the client code becomes depen­dent on con­crete class­es of doc­u­ments. If you intro­duce a new doc­u­ment sub­class, you’ll need to change the client code to sup­port it.

[image: Liskov substitution principle in action]
AFTER: the prob­lem is solved after mak­ing the read-only doc­u­ment class the base class of the hierarchy.

You can solve the prob­lem by redesign­ing the class hier­ar­chy: a sub­class should extend the behav­ior of a super­class, there­fore the read-only doc­u­ment becomes the base class of the hier­ar­chy. The writable doc­u­ment is now a sub­class which extends the base class and adds the sav­ing behavior.

 Interface Segregation Principle

Clients shouldn’t be forced to depend on meth­ods they do not use.

Try to make your inter­faces nar­row enough that client class­es don’t have to imple­ment behav­iors they don’t need.

Accord­ing to the inter­face seg­re­ga­tion prin­ci­ple, you should break down “fat” inter­faces into more gran­u­lar and spe­cif­ic ones. Clients should imple­ment only those meth­ods that they real­ly need. Oth­er­wise, a change to a “fat” inter­face would break even clients that don’t use the changed methods.

Class inher­i­tance lets a class have just one super­class, but it doesn’t limit the num­ber of inter­faces that the class can imple­ment at the same time. Hence, there’s no need to cram tons of unre­lat­ed meth­ods to a sin­gle inter­face. Break it down into sev­er­al more refined inter­faces—you can imple­ment them all in a sin­gle class if need­ed. How­ev­er, some class­es may be fine with imple­ment­ing just one of them.

Exam­ple

Imag­ine that you cre­at­ed a library that makes it easy to inte­grate apps with var­i­ous cloud com­put­ing providers. While in the ini­tial ver­sion it only sup­port­ed Ama­zon Cloud, it cov­ered the full set of cloud ser­vices and features.

At the time you assumed that all cloud providers have the same broad spec­trum of fea­tures as Ama­zon. But when it came to imple­ment­ing sup­port for anoth­er provider, it turned out that most of the inter­faces of the library are too wide. Some meth­ods describe fea­tures that other cloud providers just don’t have.

[image: Violation of interface segregation principle]
BEFORE: not all clients can sat­is­fy the require­ments of the bloat­ed interface.

While you can still imple­ment these meth­ods and put some stubs there, it wouldn’t be a pret­ty solu­tion. The bet­ter approach is to break down the inter­face into parts. Class­es that are able to imple­ment the orig­i­nal inter­face can now just imple­ment sev­er­al refined inter­faces. Other class­es can imple­ment only those inter­faces which have meth­ods that make sense for them.

[image: Interface segregation principle in action]
AFTER: one bloat­ed inter­face is bro­ken down into a set of more gran­u­lar interfaces.

As with the other prin­ci­ples, you can go too far with this one. Don’t fur­ther divide an inter­face which is already quite spe­cif­ic. Remem­ber that the more inter­faces you cre­ate, the more com­plex your code becomes. Keep the balance.

 Dependency Inversion Principle

High-level class­es shouldn’t depend on low-level class­es. Both should depend on abstrac­tions. Abstrac­tions shouldn’t depend on details. Details should depend on abstractions.

Usu­al­ly when design­ing soft­ware, you can make a dis­tinc­tion between two lev­els of classes.

	
Low-level class­es imple­ment basic oper­a­tions such as work­ing with a disk, trans­fer­ring data over a net­work, con­nect­ing to a data­base, etc.

	
High-level class­es con­tain com­plex busi­ness logic that directs low-level class­es to do something.

Some­times peo­ple design low-level class­es first and only then start work­ing on high-level ones. This is very com­mon when you start devel­op­ing a pro­to­type on a new sys­tem, and you’re not even sure what’s pos­si­ble at the high­er level because low-level stuff isn’t yet imple­ment­ed or clear. With such an approach busi­ness logic class­es tend to become depen­dent on prim­i­tive low-level classes.

The depen­den­cy inver­sion prin­ci­ple sug­gests chang­ing the direc­tion of this dependency.

	For starters, you need to describe inter­faces for low-level oper­a­tions that high-level class­es rely on, prefer­ably in busi­ness terms. For instance, busi­ness logic should call a method openReport(file) rather than a series of meth­ods openFile(x), readBytes(n), closeFile(x). These inter­faces count as high-level ones.

	Now you can make high-level class­es depen­dent on those inter­faces, instead of on con­crete low-level class­es. This depen­den­cy will be much soft­er than the orig­i­nal one.

	Once low-level class­es imple­ment these inter­faces, they become depen­dent on the busi­ness logic level, revers­ing the direc­tion of the orig­i­nal dependency.

The depen­den­cy inver­sion prin­ci­ple often goes along with the open/closed prin­ci­ple: you can extend low-level class­es to use with dif­fer­ent busi­ness logic class­es with­out break­ing exist­ing classes.

Exam­ple

In this exam­ple, the high-level bud­get report­ing class uses a low-level data­base class for read­ing and per­sist­ing its data. This means that any change in the low-level class, such as when a new ver­sion of the data­base serv­er gets released, may affect the high-level class, which isn’t sup­posed to care about the data stor­age details.

[image: Violation of dependency inversion principle]
BEFORE: a high-level class depends on a low-level class.

You can fix this prob­lem by cre­at­ing a high-level inter­face that describes read/write oper­a­tions and mak­ing the report­ing class use that inter­face instead of the low-level class. Then you can change or extend the orig­i­nal low-level class to imple­ment the new read/write inter­face declared by the busi­ness logic.

[image: Dependency inversion principle in action]
AFTER: low-level class­es depend on a high-level abstraction.

As a result, the direc­tion of the orig­i­nal depen­den­cy has been invert­ed: low-level class­es are now depen­dent on high-level abstractions.

 Cat­a­log of
Design Pat­terns

 Creational Design Patterns

 Cre­ation­al pat­terns pro­vide var­i­ous object cre­ation mech­a­nisms, which increase flex­i­bil­i­ty and reuse of exist­ing code.

 [image: Factory Method]
 Fac­to­ry Method

Pro­vides an inter­face for cre­at­ing objects in a super­class, but allows sub­class­es to alter the type of objects that will be cre­at­ed.

 [image: Abstract Factory]
 Abstract Fac­to­ry

Lets you pro­duce fam­i­lies of relat­ed objects with­out spec­i­fy­ing their con­crete class­es.

 [image: Builder]
 Builder

Lets you con­struct com­plex objects step by step. The pat­tern allows you to pro­duce dif­fer­ent types and rep­re­sen­ta­tions of an object using the same con­struc­tion code.

 [image: Prototype]
 Pro­to­type

Lets you copy exist­ing objects with­out mak­ing your code depen­dent on their class­es.

 [image: Singleton]
 Sin­gle­ton

Lets you ensure that a class has only one instance, while pro­vid­ing a glob­al access point to this instance.

[image: Factory Method<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Factory Method

 Also known as: Virtual Constructor

Fac­to­ry Method is a cre­ation­al design pat­tern that pro­vides an inter­face for cre­at­ing objects in a super­class, but allows sub­class­es to alter the type of objects that will be created.

 Prob­lem

Imag­ine that you’re cre­at­ing a logis­tics man­age­ment appli­ca­tion. The first ver­sion of your app can only han­dle trans­porta­tion by trucks, so the bulk of your code lives inside the Truck class.

After a while, your app becomes pret­ty pop­u­lar. Each day you receive dozens of requests from sea trans­porta­tion com­pa­nies to incor­po­rate sea logis­tics into the app.

[image: Adding a new transportation class to the program causes an issue]
Adding a new class to the pro­gram isn’t that sim­ple if the rest of the code is already cou­pled to exist­ing classes.

Great news, right? But how about the code? At present, most of your code is cou­pled to the Truck class. Adding Ships into the app would require mak­ing changes to the entire code­base. More­over, if later you decide to add anoth­er type of trans­porta­tion to the app, you will prob­a­bly need to make all of these changes again.

As a result, you will end up with pret­ty nasty code, rid­dled with con­di­tion­als that switch the app’s behav­ior depend­ing on the class of trans­porta­tion objects.

 Solu­tion

The Fac­to­ry Method pat­tern sug­gests that you replace direct object con­struc­tion calls (using the new oper­a­tor) with calls to a spe­cial fac­to­ry method. Don’t worry: the objects are still cre­at­ed via the new oper­a­tor, but it’s being called from with­in the fac­to­ry method. Objects returned by a fac­to­ry method are often referred to as prod­ucts.

[image: The structure of creator classes]
Sub­class­es can alter the class of objects being returned by the fac­to­ry method.

At first glance, this change may look point­less: we just moved the con­struc­tor call from one part of the pro­gram to anoth­er. How­ev­er, con­sid­er this: now you can over­ride the fac­to­ry method in a sub­class and change the class of prod­ucts being cre­at­ed by the method.

There’s a slight lim­i­ta­tion though: sub­class­es may return dif­fer­ent types of prod­ucts only if these prod­ucts have a com­mon base class or inter­face. Also, the fac­to­ry method in the base class should have its return type declared as this interface.

[image: The structure of the products hierarchy]
All prod­ucts must fol­low the same interface.

For exam­ple, both Truck and Ship class­es should imple­ment the Transport inter­face, which declares a method called deliver. Each class imple­ments this method dif­fer­ent­ly: trucks deliv­er cargo by land, ships deliv­er cargo by sea. The fac­to­ry method in the RoadLogistics class returns truck objects, where­as the fac­to­ry method in the SeaLogistics class returns ships.

[image: The structure of the code after applying the factory method pattern]
As long as all prod­uct class­es imple­ment a com­mon inter­face, you can pass their objects to the client code with­out break­ing it.

The code that uses the fac­to­ry method (often called the client code) doesn’t see a dif­fer­ence between the actu­al prod­ucts returned by var­i­ous sub­class­es. The client treats all the prod­ucts as abstract Transport. The client knows that all trans­port objects are sup­posed to have the deliver method, but exact­ly how it works isn’t impor­tant to the client.

 Struc­ture

[image: The structure of the Factory Method pattern]

	
The Prod­uct declares the inter­face, which is com­mon to all objects that can be pro­duced by the cre­ator and its subclasses.

	
Con­crete Prod­ucts are dif­fer­ent imple­men­ta­tions of the prod­uct interface.

	
The Cre­ator class declares the fac­to­ry method that returns new prod­uct objects. It’s impor­tant that the return type of this method match­es the prod­uct interface.

You can declare the fac­to­ry method as abstract to force all sub­class­es to imple­ment their own ver­sions of the method. As an alter­na­tive, the base fac­to­ry method can return some default prod­uct type.

Note, despite its name, prod­uct cre­ation is not the pri­ma­ry respon­si­bil­i­ty of the cre­ator. Usu­al­ly, the cre­ator class already has some core busi­ness logic relat­ed to prod­ucts. The fac­to­ry method helps to decou­ple this logic from the con­crete prod­uct class­es. Here is an anal­o­gy: a large soft­ware devel­op­ment com­pa­ny can have a train­ing depart­ment for pro­gram­mers. How­ev­er, the pri­ma­ry func­tion of the com­pa­ny as a whole is still writ­ing code, not pro­duc­ing programmers.

	
Con­crete Cre­ators over­ride the base fac­to­ry method so it returns a dif­fer­ent type of product.

Note that the fac­to­ry method doesn’t have to cre­ate new instances all the time. It can also return exist­ing objects from a cache, an object pool, or anoth­er source.

 Pseudocode

This exam­ple illus­trates how the Fac­to­ry Method can be used for cre­at­ing cross-plat­form UI ele­ments with­out cou­pling the client code to con­crete UI classes.

[image: The structure of the Factory Method pattern example]
The cross-plat­form dia­log example.

The base dia­log class uses dif­fer­ent UI ele­ments to ren­der its win­dow. Under var­i­ous oper­at­ing sys­tems, these ele­ments may look a lit­tle bit dif­fer­ent, but they should still behave con­sis­tent­ly. A but­ton in Win­dows is still a but­ton in Linux.

When the fac­to­ry method comes into play, you don’t need to rewrite the logic of the dia­log for each oper­at­ing sys­tem. If we declare a fac­to­ry method that pro­duces but­tons inside the base dia­log class, we can later cre­ate a dia­log sub­class that returns Win­dows-styled but­tons from the fac­to­ry method. The sub­class then inher­its most of the dia­log’s code from the base class, but, thanks to the fac­to­ry method, can ren­der Win­dows-look­ing but­tons on the screen.

For this pat­tern to work, the base dia­log class must work with abstract but­tons: a base class or an inter­face that all con­crete but­tons fol­low. This way the dia­log’s code remains func­tion­al, whichev­er type of but­tons it works with.

Of course, you can apply this approach to other UI ele­ments as well. How­ev­er, with each new fac­to­ry method you add to the dia­log, you get clos­er to the Abstract Fac­to­ry pat­tern. Fear not, we’ll talk about this pat­tern later.

// The creator class declares the factory method that must

// return an object of a product class. The creator's subclasses

// usually provide the implementation of this method.

class Dialog is

 // The creator may also provide some default implementation

 // of the factory method.

 abstract method createButton():Button

 // Note that, despite its name, the creator's primary

 // responsibility isn't creating products. It usually

 // contains some core business logic that relies on product

 // objects returned by the factory method. Subclasses can

 // indirectly change that business logic by overriding the

 // factory method and returning a different type of product

 // from it.

 method render() is

 // Call the factory method to create a product object.

 Button okButton = createButton()

 // Now use the product.

 okButton.onClick(closeDialog)

 okButton.render()

// Concrete creators override the factory method to change the

// resulting product's type.

class WindowsDialog extends Dialog is

 method createButton():Button is

 return new WindowsButton()

class WebDialog extends Dialog is

 method createButton():Button is

 return new HTMLButton()

// The product interface declares the operations that all

// concrete products must implement.

interface Button is

 method render()

 method onClick(f)

// Concrete products provide various implementations of the

// product interface.

class WindowsButton implements Button is

 method render(a, b) is

 // Render a button in Windows style.

 method onClick(f) is

 // Bind a native OS click event.

class HTMLButton implements Button is

 method render(a, b) is

 // Return an HTML representation of a button.

 method onClick(f) is

 // Bind a web browser click event.

class Application is

 field dialog: Dialog

 // The application picks a creator's type depending on the

 // current configuration or environment settings.

 method initialize() is

 config = readApplicationConfigFile()

 if (config.OS == "Windows") then

 dialog = new WindowsDialog()

 else if (config.OS == "Web") then

 dialog = new WebDialog()

 else

 throw new Exception("Error! Unknown operating system.")

 // The client code works with an instance of a concrete

 // creator, albeit through its base interface. As long as

 // the client keeps working with the creator via the base

 // interface, you can pass it any creator's subclass.

 method main() is

 this.initialize()

 dialog.render()

 Applic­a­bil­i­ty

 Use the Fac­to­ry Method when you don’t know before­hand the exact types and depen­den­cies of the objects your code should work with.

 The Fac­to­ry Method sep­a­rates prod­uct con­struc­tion code from the code that actu­al­ly uses the prod­uct. There­fore it’s eas­i­er to extend the prod­uct con­struc­tion code inde­pen­dent­ly from the rest of the code.

For exam­ple, to add a new prod­uct type to the app, you’ll only need to cre­ate a new cre­ator sub­class and over­ride the fac­to­ry method in it.

 Use the Fac­to­ry Method when you want to pro­vide users of your library or frame­work with a way to extend its inter­nal components.

 Inher­i­tance is prob­a­bly the eas­i­est way to extend the default behav­ior of a library or frame­work. But how would the frame­work rec­og­nize that your sub­class should be used instead of a stan­dard com­po­nent?

The solu­tion is to reduce the code that con­structs com­po­nents across the frame­work into a sin­gle fac­to­ry method and let any­one over­ride this method in addi­tion to extend­ing the com­po­nent itself.

Let’s see how that would work. Imag­ine that you write an app using an open source UI frame­work. Your app should have round but­tons, but the frame­work only pro­vides square ones. You extend the stan­dard Button class with a glo­ri­ous RoundButton sub­class. But now you need to tell the main UIFramework class to use the new but­ton sub­class instead of a default one.

To achieve this, you cre­ate a sub­class UIWithRoundButtons from a base frame­work class and over­ride its createButton method. While this method returns Button objects in the base class, you make your sub­class return RoundButton objects. Now use the UIWithRoundButtons class instead of UIFramework. And that’s about it!

 Use the Fac­to­ry Method when you want to save sys­tem resources by reusing exist­ing objects instead of rebuild­ing them each time.

 You often expe­ri­ence this need when deal­ing with large, resource-inten­sive objects such as data­base con­nec­tions, file sys­tems, and net­work resources.

Let’s think about what has to be done to reuse an exist­ing object:

	First, you need to cre­ate some stor­age to keep track of all of the cre­at­ed objects.

	When some­one requests an object, the pro­gram should look for a free object inside that pool.

	… and then return it to the client code.

	If there are no free objects, the pro­gram should cre­ate a new one (and add it to the pool).

That’s a lot of code! And it must all be put into a sin­gle place so that you don’t pol­lute the pro­gram with dupli­cate code.

Prob­a­bly the most obvi­ous and con­ve­nient place where this code could be placed is the con­struc­tor of the class whose objects we’re try­ing to reuse. How­ev­er, a con­struc­tor must always return new objects by def­i­n­i­tion. It can’t return exist­ing instances.

There­fore, you need to have a reg­u­lar method capa­ble of cre­at­ing new objects as well as reusing exist­ing ones. That sounds very much like a fac­to­ry method.

 How to Imple­ment

	
Make all prod­ucts fol­low the same inter­face. This inter­face should declare meth­ods that make sense in every product.

	
Add an empty fac­to­ry method inside the cre­ator class. The return type of the method should match the com­mon prod­uct interface.

	
In the cre­ator’s code find all ref­er­ences to prod­uct con­struc­tors. One by one, replace them with calls to the fac­to­ry method, while extract­ing the prod­uct cre­ation code into the fac­to­ry method.

You might need to add a tem­po­rary para­me­ter to the fac­to­ry method to con­trol the type of returned product.

At this point, the code of the fac­to­ry method may look pret­ty ugly. It may have a large switch oper­a­tor that picks which prod­uct class to instan­ti­ate. But don’t worry, we’ll fix it soon enough.

	
Now, cre­ate a set of cre­ator sub­class­es for each type of prod­uct list­ed in the fac­to­ry method. Over­ride the fac­to­ry method in the sub­class­es and extract the appro­pri­ate bits of con­struc­tion code from the base method.

	
If there are too many prod­uct types and it doesn’t make sense to cre­ate sub­class­es for all of them, you can reuse the con­trol para­me­ter from the base class in subclasses.

For instance, imag­ine that you have the fol­low­ing hier­ar­chy of class­es: the base Mail class with a cou­ple of sub­class­es: AirMail and GroundMail; the Transport class­es are Plane, Truck and Train. While the AirMail class only uses Plane objects, GroundMail may work with both Truck and Train objects. You can cre­ate a new sub­class (say TrainMail) to han­dle both cases, but there’s anoth­er option. The client code can pass an argu­ment to the fac­to­ry method of the GroundMail class to con­trol which prod­uct it wants to receive.

	
If, after all of the extrac­tions, the base fac­to­ry method has become empty, you can make it abstract. If there’s some­thing left, you can make it a default behav­ior of the method.

 Pros and Cons

	
 You avoid tight cou­pling between the cre­ator and the con­crete products.

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can move the prod­uct cre­ation code into one place in the pro­gram, mak­ing the code eas­i­er to support.

	
 Open/Closed Prin­ci­ple. You can intro­duce new types of prod­ucts into the pro­gram with­out break­ing exist­ing client code.

	
 The code may become more com­pli­cat­ed since you need to intro­duce a lot of new sub­class­es to imple­ment the pat­tern. The best case sce­nario is when you’re intro­duc­ing the pat­tern into an exist­ing hier­ar­chy of cre­ator classes.

 Rela­tions with Other Pat­terns

	
Many designs start by using Fac­to­ry Method (less com­pli­cat­ed and more cus­tomiz­able via sub­class­es) and evolve toward Abstract Fac­to­ry, Pro­to­type, or Builder (more flex­i­ble, but more complicated).

	
Abstract Fac­to­ry class­es are often based on a set of Fac­to­ry Meth­ods, but you can also use Pro­to­type to com­pose the meth­ods on these classes.

	
You can use Fac­to­ry Method along with Iter­a­tor to let col­lec­tion sub­class­es return dif­fer­ent types of iter­a­tors that are com­pat­i­ble with the collections.

	
Pro­to­type isn’t based on inher­i­tance, so it doesn’t have its draw­backs. On the other hand, Pro­to­type requires a com­pli­cat­ed ini­tial­iza­tion of the cloned object. Fac­to­ry Method is based on inher­i­tance but doesn’t require an ini­tial­iza­tion step.

	
Fac­to­ry Method is a spe­cial­iza­tion of Tem­plate Method. At the same time, a Fac­to­ry Method may serve as a step in a large Tem­plate Method.

[image: Abstract Factory<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Abstract Factory

Abstract Fac­to­ry is a cre­ation­al design pat­tern that lets you pro­duce fam­i­lies of relat­ed objects with­out spec­i­fy­ing their con­crete classes.

 Prob­lem

Imag­ine that you’re cre­at­ing a fur­ni­ture shop sim­u­la­tor. Your code con­sists of class­es that represent:

	
A fam­i­ly of relat­ed prod­ucts, say: Chair + Sofa + CoffeeTable.

	
Sev­er­al vari­ants of this fam­i­ly. For exam­ple, prod­ucts Chair + Sofa + CoffeeTable are avail­able in these vari­ants: Modern, Victorian, ArtDeco.

[image: Product families and their variants.]
Prod­uct fam­i­lies and their variants.

You need a way to cre­ate indi­vid­ual fur­ni­ture objects so that they match other objects of the same fam­i­ly. Cus­tomers get quite mad when they receive non-match­ing furniture.

A Mod­ern-style sofa doesn’t match Vic­to­ri­an-style chairs.

Also, you don’t want to change exist­ing code when adding new prod­ucts or fam­i­lies of prod­ucts to the pro­gram. Fur­ni­ture ven­dors update their cat­a­logs very often, and you wouldn’t want to change the core code each time it happens.

 Solu­tion

The first thing the Abstract Fac­to­ry pat­tern sug­gests is to explic­it­ly declare inter­faces for each dis­tinct prod­uct of the prod­uct fam­i­ly (e.g., chair, sofa or cof­fee table). Then you can make all vari­ants of prod­ucts fol­low those inter­faces. For exam­ple, all chair vari­ants can imple­ment the Chair inter­face; all cof­fee table vari­ants can imple­ment the CoffeeTable inter­face, and so on.

[image: The Chairs class hierarchy]
All vari­ants of the same object must be moved to a sin­gle class hierarchy.

The next move is to declare the Abstract Fac­to­ry—an inter­face with a list of cre­ation meth­ods for all prod­ucts that are part of the prod­uct fam­i­ly (for exam­ple, createChair, createSofa and createCoffeeTable). These meth­ods must return abstract prod­uct types rep­re­sent­ed by the inter­faces we extract­ed pre­vi­ous­ly: Chair, Sofa, CoffeeTable and so on.

[image: The _Factories_ class hierarchy]
Each con­crete fac­to­ry cor­re­sponds to a spe­cif­ic prod­uct variant.

Now, how about the prod­uct vari­ants? For each vari­ant of a prod­uct fam­i­ly, we cre­ate a sep­a­rate fac­to­ry class based on the AbstractFactory inter­face. A fac­to­ry is a class that returns prod­ucts of a par­tic­u­lar kind. For exam­ple, the ModernFurnitureFactory can only cre­ate ModernChair, ModernSofa and ModernCoffeeTable objects.

The client code has to work with both fac­to­ries and prod­ucts via their respec­tive abstract inter­faces. This lets you change the type of a fac­to­ry that you pass to the client code, as well as the prod­uct vari­ant that the client code receives, with­out break­ing the actu­al client code.

The client shouldn’t care about the con­crete class of the fac­to­ry it works with.

Say the client wants a fac­to­ry to pro­duce a chair. The client doesn’t have to be aware of the fac­to­ry’s class, nor does it mat­ter what kind of chair it gets. Whether it’s a Mod­ern model or a Vic­to­ri­an-style chair, the client must treat all chairs in the same man­ner, using the abstract Chair inter­face. With this approach, the only thing that the client knows about the chair is that it imple­ments the sitOn method in some way. Also, whichev­er vari­ant of the chair is returned, it’ll always match the type of sofa or cof­fee table pro­duced by the same fac­to­ry object.

There’s one more thing left to clar­i­fy: if the client is only exposed to the abstract inter­faces, what cre­ates the actu­al fac­to­ry objects? Usu­al­ly, the appli­ca­tion cre­ates a con­crete fac­to­ry object at the ini­tial­iza­tion stage. Just before that, the app must select the fac­to­ry type depend­ing on the con­fig­u­ra­tion or the envi­ron­ment settings.

 Struc­ture

[image: Abstract Factory design pattern]

	
Abstract Prod­ucts declare inter­faces for a set of dis­tinct but relat­ed prod­ucts which make up a prod­uct family.

	
Con­crete Prod­ucts are var­i­ous imple­men­ta­tions of abstract prod­ucts, grouped by vari­ants. Each abstract prod­uct (chair/sofa) must be imple­ment­ed in all given vari­ants (Vic­to­ri­an/Mod­ern).

	
The Abstract Fac­to­ry inter­face declares a set of meth­ods for cre­at­ing each of the abstract products.

	
Con­crete Fac­to­ries imple­ment cre­ation meth­ods of the abstract fac­to­ry. Each con­crete fac­to­ry cor­re­sponds to a spe­cif­ic vari­ant of prod­ucts and cre­ates only those prod­uct variants.

	
Although con­crete fac­to­ries instan­ti­ate con­crete prod­ucts, sig­na­tures of their cre­ation meth­ods must return cor­re­spond­ing abstract prod­ucts. This way the client code that uses a fac­to­ry doesn’t get cou­pled to the spe­cif­ic vari­ant of the prod­uct it gets from a fac­to­ry. The Client can work with any con­crete fac­to­ry/prod­uct vari­ant, as long as it com­mu­ni­cates with their objects via abstract interfaces.

 Pseudocode

This exam­ple illus­trates how the Abstract Fac­to­ry pat­tern can be used for cre­at­ing cross-plat­form UI ele­ments with­out cou­pling the client code to con­crete UI class­es, while keep­ing all cre­at­ed ele­ments con­sis­tent with a select­ed oper­at­ing system.

[image: The class diagram for the Abstract Factory pattern example]
The cross-plat­form UI class­es example.

The same UI ele­ments in a cross-plat­form appli­ca­tion are expect­ed to behave sim­i­lar­ly, but look a lit­tle bit dif­fer­ent under dif­fer­ent oper­at­ing sys­tems. More­over, it’s your job to make sure that the UI ele­ments match the style of the cur­rent oper­at­ing sys­tem. You wouldn’t want your pro­gram to ren­der macOS con­trols when it’s exe­cut­ed in Windows.

The Abstract Fac­to­ry inter­face declares a set of cre­ation meth­ods that the client code can use to pro­duce dif­fer­ent types of UI ele­ments. Con­crete fac­to­ries cor­re­spond to spe­cif­ic oper­at­ing sys­tems and cre­ate the UI ele­ments that match that par­tic­u­lar OS.

It works like this: when an appli­ca­tion launch­es, it checks the type of the cur­rent oper­at­ing sys­tem. The app uses this infor­ma­tion to cre­ate a fac­to­ry object from a class that match­es the oper­at­ing sys­tem. The rest of the code uses this fac­to­ry to cre­ate UI ele­ments. This pre­vents the wrong ele­ments from being created.

With this approach, the client code doesn’t depend on con­crete class­es of fac­to­ries and UI ele­ments as long as it works with these objects via their abstract inter­faces. This also lets the client code sup­port other fac­to­ries or UI ele­ments that you might add in the future.

As a result, you don’t need to mod­i­fy the client code each time you add a new vari­a­tion of UI ele­ments to your app. You just have to cre­ate a new fac­to­ry class that pro­duces these ele­ments and slight­ly mod­i­fy the app’s ini­tial­iza­tion code so it selects that class when appropriate.

// The abstract factory interface declares a set of methods that

// return different abstract products. These products are called

// a family and are related by a high-level theme or concept.

// Products of one family are usually able to collaborate among

// themselves. A family of products may have several variants,

// but the products of one variant are incompatible with the

// products of another variant.

interface GUIFactory is

 method createButton():Button

 method createCheckbox():Checkbox

// Concrete factories produce a family of products that belong

// to a single variant. The factory guarantees that the

// resulting products are compatible. Signatures of the concrete

// factory's methods return an abstract product, while inside

// the method a concrete product is instantiated.

class WinFactory implements GUIFactory is

 method createButton():Button is

 return new WinButton()

 method createCheckbox():Checkbox is

 return new WinCheckbox()

// Each concrete factory has a corresponding product variant.

class MacFactory implements GUIFactory is

 method createButton():Button is

 return new MacButton()

 method createCheckbox():Checkbox is

 return new MacCheckbox()

// Each distinct product of a product family should have a base

// interface. All variants of the product must implement this

// interface.

interface Button is

 method paint()

// Concrete products are created by corresponding concrete

// factories.

class WinButton implements Button is

 method paint() is

 // Render a button in Windows style.

class MacButton implements Button is

 method paint() is

 // Render a button in macOS style.

// Here's the base interface of another product. All products

// can interact with each other, but proper interaction is

// possible only between products of the same concrete variant.

interface Checkbox is

 method paint()

class WinCheckbox implements Checkbox is

 method paint() is

 // Render a checkbox in Windows style.

class MacCheckbox implements Checkbox is

 method paint() is

 // Render a checkbox in macOS style.

// The client code works with factories and products only

// through abstract types: GUIFactory, Button and Checkbox. This

// lets you pass any factory or product subclass to the client

// code without breaking it.

class Application is

 private field factory: GUIFactory

 private field button: Button

 constructor Application(factory: GUIFactory) is

 this.factory = factory

 method createUI() is

 this.button = factory.createButton()

 method paint() is

 button.paint()

// The application picks the factory type depending on the

// current configuration or environment settings and creates it

// at runtime (usually at the initialization stage).

class ApplicationConfigurator is

 method main() is

 config = readApplicationConfigFile()

 if (config.OS == "Windows") then

 factory = new WinFactory()

 else if (config.OS == "Mac") then

 factory = new MacFactory()

 else

 throw new Exception("Error! Unknown operating system.")

 Application app = new Application(factory)

 Applic­a­bil­i­ty

 Use the Abstract Fac­to­ry when your code needs to work with var­i­ous fam­i­lies of relat­ed prod­ucts, but you don’t want it to depend on the con­crete class­es of those prod­ucts—they might be unknown before­hand or you sim­ply want to allow for future exten­si­bil­i­ty.

 The Abstract Fac­to­ry pro­vides you with an inter­face for cre­at­ing objects from each class of the prod­uct fam­i­ly. As long as your code cre­ates objects via this inter­face, you don’t have to worry about cre­at­ing the wrong vari­ant of a prod­uct which doesn’t match the prod­ucts already cre­at­ed by your app.

	
Con­sid­er imple­ment­ing the Abstract Fac­to­ry when you have a class with a set of Fac­to­ry Meth­ods that blur its pri­ma­ry respon­si­bil­i­ty.

	
In a well-designed pro­gram each class is respon­si­ble only for one thing. When a class deals with mul­ti­ple prod­uct types, it may be worth extract­ing its fac­to­ry meth­ods into a stand-alone fac­to­ry class or a full-blown Abstract Fac­to­ry imple­men­ta­tion.

 How to Imple­ment

	
Map out a matrix of dis­tinct prod­uct types ver­sus vari­ants of these products.

	
Declare abstract prod­uct inter­faces for all prod­uct types. Then make all con­crete prod­uct class­es imple­ment these interfaces.

	
Declare the abstract fac­to­ry inter­face with a set of cre­ation meth­ods for all abstract products.

	
Imple­ment a set of con­crete fac­to­ry class­es, one for each prod­uct variant.

	
Cre­ate fac­to­ry ini­tial­iza­tion code some­where in the app. It should instan­ti­ate one of the con­crete fac­to­ry class­es, depend­ing on the appli­ca­tion con­fig­u­ra­tion or the cur­rent envi­ron­ment. Pass this fac­to­ry object to all class­es that con­struct products.

	
Scan through the code and find all direct calls to prod­uct con­struc­tors. Replace them with calls to the appro­pri­ate cre­ation method on the fac­to­ry object.

 Pros and Cons

	
 You can be sure that the prod­ucts you’re get­ting from a fac­to­ry are com­pat­i­ble with each other.

	
 You avoid tight cou­pling between con­crete prod­ucts and client code.

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can extract the prod­uct cre­ation code into one place, mak­ing the code eas­i­er to support.

	
 Open/Closed Prin­ci­ple. You can intro­duce new vari­ants of prod­ucts with­out break­ing exist­ing client code.

	
 The code may become more com­pli­cat­ed than it should be, since a lot of new inter­faces and class­es are intro­duced along with the pattern.

 Rela­tions with Other Pat­terns

	
Many designs start by using Fac­to­ry Method (less com­pli­cat­ed and more cus­tomiz­able via sub­class­es) and evolve toward Abstract Fac­to­ry, Pro­to­type, or Builder (more flex­i­ble, but more complicated).

	
Builder focus­es on con­struct­ing com­plex objects step by step. Abstract Fac­to­ry spe­cial­izes in cre­at­ing fam­i­lies of relat­ed objects. Abstract Fac­to­ry returns the prod­uct imme­di­ate­ly, where­as Builder lets you run some addi­tion­al con­struc­tion steps before fetch­ing the product.

	
Abstract Fac­to­ry class­es are often based on a set of Fac­to­ry Meth­ods, but you can also use Pro­to­type to com­pose the meth­ods on these classes.

	
Abstract Fac­to­ry can serve as an alter­na­tive to Facade when you only want to hide the way the sub­sys­tem objects are cre­at­ed from the client code.

	
You can use Abstract Fac­to­ry along with Bridge. This pair­ing is use­ful when some abstrac­tions defined by Bridge can only work with spe­cif­ic imple­men­ta­tions. In this case, Abstract Fac­to­ry can encap­su­late these rela­tions and hide the com­plex­i­ty from the client code.

	
Abstract Fac­to­ries, Builders and Pro­to­types can all be imple­ment­ed as Sin­gle­tons.

[image: Builder design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Builder

Builder is a cre­ation­al design pat­tern that lets you con­struct com­plex objects step by step. The pat­tern allows you to pro­duce dif­fer­ent types and rep­re­sen­ta­tions of an object using the same con­struc­tion code.

 Prob­lem

Imag­ine a com­plex object that requires labo­ri­ous, step-by-step ini­tial­iza­tion of many fields and nest­ed objects. Such ini­tial­iza­tion code is usu­al­ly buried inside a mon­strous con­struc­tor with lots of para­me­ters. Or even worse: scat­tered all over the client code.

[image: Lots of subclasses create another problem]
You might make the pro­gram too com­plex by cre­at­ing a sub­class for every pos­si­ble con­fig­u­ra­tion of an object.

For exam­ple, let’s think about how to cre­ate a House object. To build a sim­ple house, you need to con­struct four walls and a floor, install a door, fit a pair of win­dows, and build a roof. But what if you want a big­ger, brighter house, with a back­yard and other good­ies (like a heat­ing sys­tem, plumb­ing, and elec­tri­cal wiring)?

The sim­plest solu­tion is to extend the base House class and cre­ate a set of sub­class­es to cover all com­bi­na­tions of the para­me­ters. But even­tu­al­ly you’ll end up with a con­sid­er­able num­ber of sub­class­es. Any new para­me­ter, such as the porch style, will require grow­ing this hier­ar­chy even more.

There’s anoth­er approach that doesn’t involve breed­ing sub­class­es. You can cre­ate a giant con­struc­tor right in the base House class with all pos­si­ble para­me­ters that con­trol the house object. While this approach indeed elim­i­nates the need for sub­class­es, it cre­ates anoth­er problem.

[image: The telescopic constructor]
The con­struc­tor with lots of para­me­ters has its down­side: not all the para­me­ters are need­ed at all times.

In most cases most of the para­me­ters will be unused, mak­ing the con­struc­tor calls pret­ty ugly. For instance, only a frac­tion of hous­es have swim­ming pools, so the para­me­ters relat­ed to swim­ming pools will be use­less nine times out of ten.

 Solu­tion

The Builder pat­tern sug­gests that you extract the object con­struc­tion code out of its own class and move it to sep­a­rate objects called builders.

[image: Applying the Builder pattern]
The Builder pat­tern lets you con­struct com­plex objects step by step. The Builder doesn’t allow other objects to access the prod­uct while it’s being built.

The pat­tern orga­nizes object con­struc­tion into a set of steps (buildWalls, buildDoor, etc.). To cre­ate an object, you exe­cute a series of these steps on a builder object. The impor­tant part is that you don’t need to call all of the steps. You can call only those steps that are nec­es­sary for pro­duc­ing a par­tic­u­lar con­fig­u­ra­tion of an object.

Some of the con­struc­tion steps might require dif­fer­ent imple­men­ta­tion when you need to build var­i­ous rep­re­sen­ta­tions of the prod­uct. For exam­ple, walls of a cabin may be built of wood, but the cas­tle walls must be built with stone.

In this case, you can cre­ate sev­er­al dif­fer­ent builder class­es that imple­ment the same set of build­ing steps, but in a dif­fer­ent man­ner. Then you can use these builders in the con­struc­tion process (i.e., an ordered set of calls to the build­ing steps) to pro­duce dif­fer­ent kinds of objects.

Dif­fer­ent builders exe­cute the same task in var­i­ous ways.

For exam­ple, imag­ine a builder that builds every­thing from wood and glass, a sec­ond one that builds every­thing with stone and iron and a third one that uses gold and dia­monds. By call­ing the same set of steps, you get a reg­u­lar house from the first builder, a small cas­tle from the sec­ond and a palace from the third. How­ev­er, this would only work if the client code that calls the build­ing steps is able to inter­act with builders using a com­mon interface.

Direc­tor

You can go fur­ther and extract a series of calls to the builder steps you use to con­struct a prod­uct into a sep­a­rate class called direc­tor. The direc­tor class defines the order in which to exe­cute the build­ing steps, while the builder pro­vides the imple­men­ta­tion for those steps.

The direc­tor knows which build­ing steps to exe­cute to get a work­ing product.

Hav­ing a direc­tor class in your pro­gram isn’t strict­ly nec­es­sary. You can always call the build­ing steps in a spe­cif­ic order direct­ly from the client code. How­ev­er, the direc­tor class might be a good place to put var­i­ous con­struc­tion rou­tines so you can reuse them across your program.

In addi­tion, the direc­tor class com­plete­ly hides the details of prod­uct con­struc­tion from the client code. The client only needs to as­so­ciate a builder with a direc­tor, launch the con­struc­tion with the direc­tor, and get the result from the builder.

 Struc­ture

[image: Structure of the Builder design pattern]

	
The Builder inter­face declares prod­uct con­struc­tion steps that are com­mon to all types of builders.

	
Con­crete Builders pro­vide dif­fer­ent imple­men­ta­tions of the con­struc­tion steps. Con­crete builders may pro­duce prod­ucts that don’t fol­low the com­mon interface.

	
Prod­ucts are result­ing objects. Prod­ucts con­struct­ed by dif­fer­ent builders don’t have to belong to the same class hier­ar­chy or interface.

	
The Direc­tor class defines the order in which to call con­struc­tion steps, so you can cre­ate and reuse spe­cif­ic con­fig­u­ra­tions of products.

	
The Client must as­so­ciate one of the builder objects with the direc­tor. Usu­al­ly, it’s done just once, via para­me­ters of the direc­tor’s con­struc­tor. Then the direc­tor uses that builder object for all fur­ther con­struc­tion. How­ev­er, there’s an alter­na­tive approach for when the client pass­es the builder object to the pro­duc­tion method of the direc­tor. In this case, you can use a dif­fer­ent builder each time you pro­duce some­thing with the director.

 Pseudocode

This exam­ple of the Builder pat­tern illus­trates how you can reuse the same object con­struc­tion code when build­ing dif­fer­ent types of prod­ucts, such as cars, and cre­ate the cor­re­spond­ing man­u­als for them.

[image: The structure of the Builder pattern example]
The exam­ple of step-by-step con­struc­tion of cars and the user guides that fit those car models.

A car is a com­plex object that can be con­struct­ed in a hun­dred dif­fer­ent ways. Instead of bloat­ing the Car class with a huge con­struc­tor, we extract­ed the car assem­bly code into a sep­a­rate car builder class. This class has a set of meth­ods for con­fig­ur­ing var­i­ous parts of a car.

If the client code needs to assem­ble a spe­cial, fine-tuned model of a car, it can work with the builder direct­ly. On the other hand, the client can del­e­gate the assem­bly to the direc­tor class, which knows how to use a builder to con­struct sev­er­al of the most pop­u­lar mod­els of cars.

You might be shocked, but every car needs a man­u­al (seri­ous­ly, who reads them?). The man­u­al describes every fea­ture of the car, so the details in the man­u­als vary across the dif­fer­ent mod­els. That’s why it makes sense to reuse an exist­ing con­struc­tion process for both real cars and their respec­tive man­u­als. Of course, build­ing a man­u­al isn’t the same as build­ing a car, and that’s why we must pro­vide anoth­er builder class that spe­cial­izes in com­pos­ing man­u­als. This class imple­ments the same build­ing meth­ods as its car-build­ing sib­ling, but instead of craft­ing car parts, it describes them. By pass­ing these builders to the same direc­tor object, we can con­struct either a car or a manual.

The final part is fetch­ing the result­ing object. A metal car and a paper man­u­al, although relat­ed, are still very dif­fer­ent things. We can’t place a method for fetch­ing results in the direc­tor with­out cou­pling the direc­tor to con­crete prod­uct class­es. Hence, we obtain the result of the con­struc­tion from the builder which per­formed the job.

// Using the Builder pattern makes sense only when your products

// are quite complex and require extensive configuration. The

// following two products are related, although they don't have

// a common interface.

class Car is

 // A car can have a GPS, trip computer and some number of

 // seats. Different models of cars (sports car, SUV,

 // cabriolet) might have different features installed or

 // enabled.

class Manual is

 // Each car should have a user manual that corresponds to

 // the car's configuration and describes all its features.

// The builder interface specifies methods for creating the

// different parts of the product objects.

interface Builder is

 method reset()

 method setSeats(...)

 method setEngine(...)

 method setTripComputer(...)

 method setGPS(...)

// The concrete builder classes follow the builder interface and

// provide specific implementations of the building steps. Your

// program may have several variations of builders, each

// implemented differently.

class CarBuilder implements Builder is

 private field car:Car

 // A fresh builder instance should contain a blank product

 // object which it uses in further assembly.

 constructor CarBuilder() is

 this.reset()

 // The reset method clears the object being built.

 method reset() is

 this.car = new Car()

 // All production steps work with the same product instance.

 method setSeats(...) is

 // Set the number of seats in the car.

 method setEngine(...) is

 // Install a given engine.

 method setTripComputer(...) is

 // Install a trip computer.

 method setGPS(...) is

 // Install a global positioning system.

 // Concrete builders are supposed to provide their own

 // methods for retrieving results. That's because various

 // types of builders may create entirely different products

 // that don't all follow the same interface. Therefore such

 // methods can't be declared in the builder interface (at

 // least not in a statically-typed programming language).

 //

 // Usually, after returning the end result to the client, a

 // builder instance is expected to be ready to start

 // producing another product. That's why it's a usual

 // practice to call the reset method at the end of the

 // `getProduct` method body. However, this behavior isn't

 // mandatory, and you can make your builder wait for an

 // explicit reset call from the client code before disposing

 // of the previous result.

 method getProduct():Car is

 product = this.car

 this.reset()

 return product

// Unlike other creational patterns, builder lets you construct

// products that don't follow the common interface.

class CarManualBuilder implements Builder is

 private field manual:Manual

 constructor CarManualBuilder() is

 this.reset()

 method reset() is

 this.manual = new Manual()

 method setSeats(...) is

 // Document car seat features.

 method setEngine(...) is

 // Add engine instructions.

 method setTripComputer(...) is

 // Add trip computer instructions.

 method setGPS(...) is

 // Add GPS instructions.

 method getProduct():Manual is

 // Return the manual and reset the builder.

// The director is only responsible for executing the building

// steps in a particular sequence. It's helpful when producing

// products according to a specific order or configuration.

// Strictly speaking, the director class is optional, since the

// client can control builders directly.

class Director is

 private field builder:Builder

 // The director works with any builder instance that the

 // client code passes to it. This way, the client code may

 // alter the final type of the newly assembled product.

 method setBuilder(builder:Builder)

 this.builder = builder

 // The director can construct several product variations

 // using the same building steps.

 method constructSportsCar(builder: Builder) is

 builder.reset()

 builder.setSeats(2)

 builder.setEngine(new SportEngine())

 builder.setTripComputer(true)

 builder.setGPS(true)

 method constructSUV(builder: Builder) is

 // ...

// The client code creates a builder object, passes it to the

// director and then initiates the construction process. The end

// result is retrieved from the builder object.

class Application is

 method makeCar() is

 director = new Director()

 CarBuilder builder = new CarBuilder()

 director.constructSportsCar(builder)

 Car car = builder.getProduct()

 CarManualBuilder builder = new CarManualBuilder()

 director.constructSportsCar(builder)

 // The final product is often retrieved from a builder

 // object since the director isn't aware of and not

 // dependent on concrete builders and products.

 Manual manual = builder.getProduct()

 Applic­a­bil­i­ty

 Use the Builder pat­tern to get rid of a “tele­scop­ic constructor”.

 Say you have a con­struc­tor with ten option­al para­me­ters. Call­ing such a beast is very incon­ve­nient; there­fore, you over­load the con­struc­tor and cre­ate sev­er­al short­er ver­sions with fewer para­me­ters. These con­struc­tors still refer to the main one, pass­ing some default val­ues into any omit­ted parameters.

class Pizza {

 Pizza(int size) { ... }

 Pizza(int size, boolean cheese) { ... }

 Pizza(int size, boolean cheese, boolean pepperoni) { ... }

 // ...

Cre­at­ing such a mon­ster is only pos­si­ble in lan­guages that sup­port method over­load­ing, such as C# or Java.

The Builder pat­tern lets you build objects step by step, using only those steps that you real­ly need. After imple­ment­ing the pat­tern, you don’t have to cram dozens of para­me­ters into your con­struc­tors anymore.

 Use the Builder pat­tern when you want your code to be able to cre­ate dif­fer­ent rep­re­sen­ta­tions of some prod­uct (for exam­ple, stone and wood­en houses).

 The Builder pat­tern can be applied when con­struc­tion of var­i­ous rep­re­sen­ta­tions of the prod­uct involves sim­i­lar steps that dif­fer only in the details.

The base builder inter­face defines all pos­si­ble con­struc­tion steps, and con­crete builders imple­ment these steps to con­struct par­tic­u­lar rep­re­sen­ta­tions of the prod­uct. Mean­while, the direc­tor class guides the order of construction.

 Use the Builder to con­struct Com­pos­ite trees or other com­plex objects.

 The Builder pat­tern lets you con­struct prod­ucts step-by-step. You could defer exe­cu­tion of some steps with­out break­ing the final prod­uct. You can even call steps recur­sive­ly, which comes in handy when you need to build an object tree.

A builder doesn’t expose the unfin­ished prod­uct while run­ning con­struc­tion steps. This pre­vents the client code from fetch­ing an incom­plete result.

 How to Imple­ment

	
Make sure that you can clear­ly define the com­mon con­struc­tion steps for build­ing all avail­able prod­uct rep­re­sen­ta­tions. Oth­er­wise, you won’t be able to pro­ceed with imple­ment­ing the pattern.

	
Declare these steps in the base builder interface.

	
Cre­ate a con­crete builder class for each of the prod­uct rep­re­sen­ta­tions and imple­ment their con­struc­tion steps.

Don’t for­get about imple­ment­ing a method for fetch­ing the result of the con­struc­tion. The rea­son why this method can’t be declared inside the builder inter­face is that var­i­ous builders may con­struct prod­ucts that don’t have a com­mon inter­face. There­fore, you don’t know what would be the return type for such a method. How­ev­er, if you’re deal­ing with prod­ucts from a sin­gle hier­ar­chy, the fetch­ing method can be safe­ly added to the base interface.

	
Think about cre­at­ing a direc­tor class. It may encap­su­late var­i­ous ways to con­struct a prod­uct using the same builder object.

	
The client code cre­ates both the builder and the direc­tor objects. Before con­struc­tion starts, the client must pass a builder object to the direc­tor. Usu­al­ly, the client does this only once, via para­me­ters of the direc­tor’s con­struc­tor. The direc­tor uses the builder object in all fur­ther con­struc­tion. There’s an alter­na­tive approach, where the builder is passed direct­ly to the con­struc­tion method of the director.

	
The con­struc­tion result can be obtained direct­ly from the direc­tor only if all prod­ucts fol­low the same inter­face. Oth­er­wise, the client should fetch the result from the builder.

 Pros and Cons

	
 You can con­struct objects step-by-step, defer con­struc­tion steps or run steps recursively.

	
 You can reuse the same con­struc­tion code when build­ing var­i­ous rep­re­sen­ta­tions of products.

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can iso­late com­plex con­struc­tion code from the busi­ness logic of the product.

	
 The over­all com­plex­i­ty of the code increas­es since the pat­tern requires cre­at­ing mul­ti­ple new classes.

 Rela­tions with Other Pat­terns

	
Many designs start by using Fac­to­ry Method (less com­pli­cat­ed and more cus­tomiz­able via sub­class­es) and evolve toward Abstract Fac­to­ry, Pro­to­type, or Builder (more flex­i­ble, but more complicated).

	
Builder focus­es on con­struct­ing com­plex objects step by step. Abstract Fac­to­ry spe­cial­izes in cre­at­ing fam­i­lies of relat­ed objects. Abstract Fac­to­ry returns the prod­uct imme­di­ate­ly, where­as Builder lets you run some addi­tion­al con­struc­tion steps before fetch­ing the product.

	
You can use Builder when cre­at­ing com­plex Com­pos­ite trees because you can pro­gram its con­struc­tion steps to work recursively.

	
You can com­bine Builder with Bridge: the direc­tor class plays the role of the abstrac­tion, while dif­fer­ent builders act as imple­men­ta­tions.

	
Abstract Fac­to­ries, Builders and Pro­to­types can all be imple­ment­ed as Sin­gle­tons.

[image: Prototype Design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;Pattern]

 Prototype

 Also known as: Clone

Pro­to­type is a cre­ation­al design pat­tern that lets you copy exist­ing objects with­out mak­ing your code depen­dent on their classes.

 Prob­lem

Say you have an object, and you want to cre­ate an exact copy of it. How would you do it? First, you have to cre­ate a new object of the same class. Then you have to go through all the fields of the orig­i­nal object and copy their val­ues over to the new object.

Nice! But there’s a catch. Not all objects can be copied that way because some of the object’s fields may be pri­vate and not vis­i­ble from out­side of the object itself.

[image: What can go wrong when copying things “from the outside<html5-dom-document-internal-entity1-quot></html5-dom-document-internal-entity1-quot>?” width=]
Copy­ing an object “from the out­side” isn’t always possible.

There’s one more prob­lem with the direct approach. Since you have to know the object’s class to cre­ate a dupli­cate, your code becomes depen­dent on that class. If the extra depen­den­cy doesn’t scare you, there’s anoth­er catch. Some­times you only know the inter­face that the object fol­lows, but not its con­crete class, when, for exam­ple, a para­me­ter in a method accepts any objects that fol­low some interface.

 Solu­tion

The Pro­to­type pat­tern del­e­gates the cloning process to the actu­al objects that are being cloned. The pat­tern declares a com­mon inter­face for all objects that sup­port cloning. This inter­face lets you clone an object with­out cou­pling your code to the class of that object. Usu­al­ly, such an inter­face con­tains just a sin­gle clone method.

The imple­men­ta­tion of the clone method is very sim­i­lar in all class­es. The method cre­ates an object of the cur­rent class and car­ries over all of the field val­ues of the old object into the new one. You can even copy pri­vate fields because most pro­gram­ming lan­guages let objects access pri­vate fields of other objects that belong to the same class.

An object that sup­ports cloning is called a pro­to­type. When your objects have dozens of fields and hun­dreds of pos­si­ble con­fig­u­ra­tions, cloning them might serve as an alter­na­tive to subclassing.

[image: Pre-built prototypes]
Pre-built pro­to­types can be an alter­na­tive to subclassing.

Here’s how it works: you cre­ate a set of objects, con­fig­ured in var­i­ous ways. When you need an object like the one you’ve con­fig­ured, you just clone a pro­to­type instead of con­struct­ing a new object from scratch.

 Real-World Anal­o­gy

In real life, pro­to­types are used for per­form­ing var­i­ous tests before start­ing mass pro­duc­tion of a prod­uct. How­ev­er, in this case, pro­to­types don’t par­tic­i­pate in any actu­al pro­duc­tion, play­ing a pas­sive role instead.

[image: The cell division]
The divi­sion of a cell.

Since indus­tri­al pro­to­types don’t real­ly copy them­selves, a much clos­er anal­o­gy to the pat­tern is the process of mitot­ic cell divi­sion (biol­o­gy, remem­ber?). After mitot­ic divi­sion, a pair of iden­ti­cal cells is formed. The orig­i­nal cell acts as a pro­to­type and takes an active role in cre­at­ing the copy.

 Struc­ture

Basic imple­men­ta­tion

[image: The structure of the Prototype design pattern]

	
The Pro­to­type inter­face declares the cloning meth­ods. In most cases, it’s a sin­gle clone method.

	
The Con­crete Pro­to­type class imple­ments the cloning method. In addi­tion to copy­ing the orig­i­nal object’s data to the clone, this method may also han­dle some edge cases of the cloning process relat­ed to cloning linked objects, untan­gling recur­sive depen­den­cies, etc.

	
The Client can pro­duce a copy of any object that fol­lows the pro­to­type interface.

Pro­to­type reg­istry imple­men­ta­tion

[image: The prototype registry]

	
The Pro­to­type Reg­istry pro­vides an easy way to access fre­quent­ly-used pro­to­types. It stores a set of pre-built objects that are ready to be copied. The sim­plest pro­to­type reg­istry is a name → prototype hash map. How­ev­er, if you need bet­ter search cri­te­ria than a sim­ple name, you can build a much more robust ver­sion of the registry.

 Pseudocode

In this exam­ple, the Pro­to­type pat­tern lets you pro­duce exact copies of geo­met­ric objects, with­out cou­pling the code to their classes.

[image: The structure of the Prototype pattern example]
Cloning a set of objects that belong to a class hierarchy.

All shape class­es fol­low the same inter­face, which pro­vides a cloning method. A sub­class may call the par­ent’s cloning method before copy­ing its own field val­ues to the result­ing object.

// Base prototype.

abstract class Shape is

 field X: int

 field Y: int

 field color: string

 // A regular constructor.

 constructor Shape() is

 // ...

 // The prototype constructor. A fresh object is initialized

 // with values from the existing object.

 constructor Shape(source: Shape) is

 this()

 this.X = source.X

 this.Y = source.Y

 this.color = source.color

 // The clone operation returns one of the Shape subclasses.

 abstract method clone():Shape

// Concrete prototype. The cloning method creates a new object

// and passes it to the constructor. Until the constructor is

// finished, it has a reference to a fresh clone. Therefore,

// nobody has access to a partly-built clone. This keeps the

// cloning result consistent.

class Rectangle extends Shape is

 field width: int

 field height: int

 constructor Rectangle(source: Rectangle) is

 // A parent constructor call is needed to copy private

 // fields defined in the parent class.

 super(source)

 this.width = source.width

 this.height = source.height

 method clone():Shape is

 return new Rectangle(this)

class Circle extends Shape is

 field radius: int

 constructor Circle(source: Circle) is

 super(source)

 this.radius = source.radius

 method clone():Shape is

 return new Circle(this)

// Somewhere in the client code.

class Application is

 field shapes: array of Shape

 constructor Application() is

 Circle circle = new Circle()

 circle.X = 10

 circle.Y = 10

 circle.radius = 20

 shapes.add(circle)

 Circle anotherCircle = circle.clone()

 shapes.add(anotherCircle)

 // The `anotherCircle` variable contains an exact copy

 // of the `circle` object.

 Rectangle rectangle = new Rectangle()

 rectangle.width = 10

 rectangle.height = 20

 shapes.add(rectangle)

 method businessLogic() is

 // Prototype rocks because it lets you produce a copy of

 // an object without knowing anything about its type.

 Array shapesCopy = new Array of Shapes.

 // For instance, we don't know the exact elements in the

 // shapes array. All we know is that they are all

 // shapes. But thanks to polymorphism, when we call the

 // `clone` method on a shape the program checks its real

 // class and runs the appropriate clone method defined

 // in that class. That's why we get proper clones

 // instead of a set of simple Shape objects.

 foreach (s in shapes) do

 shapesCopy.add(s.clone())

 // The `shapesCopy` array contains exact copies of the

 // `shape` array's children.

 Applic­a­bil­i­ty

 Use the Pro­to­type pat­tern when your code shouldn’t depend on the con­crete class­es of objects that you need to copy.

 This hap­pens a lot when your code works with objects passed to you from 3rd-party code via some inter­face. The con­crete class­es of these objects are unknown, and you couldn’t depend on them even if you want­ed to.

The Pro­to­type pat­tern pro­vides the client code with a gen­er­al inter­face for work­ing with all objects that sup­port cloning. This inter­face makes the client code inde­pen­dent from the con­crete class­es of objects that it clones.

 Use the pat­tern when you want to reduce the num­ber of sub­class­es that only dif­fer in the way they ini­tial­ize their respec­tive objects. Some­body could have cre­at­ed these sub­class­es to be able to cre­ate objects with a spe­cif­ic con­fig­u­ra­tion.

 The Pro­to­type pat­tern lets you use a set of pre-built objects, con­fig­ured in var­i­ous ways, as prototypes.

Instead of instan­ti­at­ing a sub­class that match­es some con­fig­u­ra­tion, the client can sim­ply look for an appro­pri­ate pro­to­type and clone it.

 How to Imple­ment

	
Cre­ate the pro­to­type inter­face and declare the clone method in it. Or just add the method to all class­es of an exist­ing class hier­ar­chy, if you have one.

	
A pro­to­type class must define the alter­na­tive con­struc­tor that accepts an object of that class as an argu­ment. The con­struc­tor must copy the val­ues of all fields defined in the class from the passed object into the newly cre­at­ed instance. If you’re chang­ing a sub­class, you must call the par­ent con­struc­tor to let the super­class han­dle the cloning of its pri­vate fields.

If your pro­gram­ming lan­guage doesn’t sup­port method over­load­ing, you may define a spe­cial method for copy­ing the object data. The con­struc­tor is a more con­ve­nient place to do this because it deliv­ers the result­ing object right after you call the new operator.

	
The cloning method usu­al­ly con­sists of just one line: run­ning a new oper­a­tor with the pro­to­typ­i­cal ver­sion of the con­struc­tor. Note, that every class must explic­it­ly over­ride the cloning method and use its own class name along with the new oper­a­tor. Oth­er­wise, the cloning method may pro­duce an object of a par­ent class.

	
Option­al­ly, cre­ate a cen­tral­ized pro­to­type reg­istry to store a cat­a­log of fre­quent­ly used prototypes.

You can imple­ment the reg­istry as a new fac­to­ry class or put it in the base pro­to­type class with a sta­t­ic method for fetch­ing the pro­to­type. This method should search for a pro­to­type based on search cri­te­ria that the client code pass­es to the method. The cri­te­ria might either be a sim­ple string tag or a com­plex set of search para­me­ters. After the appro­pri­ate pro­to­type is found, the reg­istry should clone it and return the copy to the client.

Final­ly, replace the direct calls to the sub­class­es’ con­struc­tors with calls to the fac­to­ry method of the pro­to­type registry.

 Pros and Cons

	
 You can clone objects with­out cou­pling to their con­crete classes.

	
 You can get rid of repeat­ed ini­tial­iza­tion code in favor of cloning pre-built prototypes.

	
 You can pro­duce com­plex objects more conveniently.

	
 You get an alter­na­tive to inher­i­tance when deal­ing with con­fig­u­ra­tion pre­sets for com­plex objects.

	
 Cloning com­plex objects that have cir­cu­lar ref­er­ences might be very tricky.

 Rela­tions with Other Pat­terns

	
Many designs start by using Fac­to­ry Method (less com­pli­cat­ed and more cus­tomiz­able via sub­class­es) and evolve toward Abstract Fac­to­ry, Pro­to­type, or Builder (more flex­i­ble, but more complicated).

	
Abstract Fac­to­ry class­es are often based on a set of Fac­to­ry Meth­ods, but you can also use Pro­to­type to com­pose the meth­ods on these classes.

	
Pro­to­type can help when you need to save copies of Com­mands into history.

	
Designs that make heavy use of Com­pos­ite and Dec­o­ra­tor can often ben­e­fit from using Pro­to­type. Apply­ing the pat­tern lets you clone com­plex struc­tures instead of re-con­struct­ing them from scratch.

	
Pro­to­type isn’t based on inher­i­tance, so it doesn’t have its draw­backs. On the other hand, Pro­to­type requires a com­pli­cat­ed ini­tial­iza­tion of the cloned object. Fac­to­ry Method is based on inher­i­tance but doesn’t require an ini­tial­iza­tion step.

	
Some­times Pro­to­type can be a sim­pler alter­na­tive to Memen­to. This works if the object, the state of which you want to store in the his­to­ry, is fair­ly straight­for­ward and doesn’t have links to exter­nal resources, or the links are easy to re-estab­lish.

	
Abstract Fac­to­ries, Builders and Pro­to­types can all be imple­ment­ed as Sin­gle­tons.

[image: Singleton<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Singleton

Sin­gle­ton is a cre­ation­al design pat­tern that lets you ensure that a class has only one instance, while pro­vid­ing a glob­al access point to this instance.

 Prob­lem

The Sin­gle­ton pat­tern solves two prob­lems at the same time, vio­lat­ing the Sin­gle Respon­si­bil­i­ty Prin­ci­ple:

	
Ensure that a class has just a sin­gle instance. Why would any­one want to con­trol how many instances a class has? The most com­mon rea­son for this is to con­trol access to some shared resource—for exam­ple, a data­base or a file.

Here’s how it works: imag­ine that you cre­at­ed an object, but after a while decid­ed to cre­ate a new one. Instead of receiv­ing a fresh object, you’ll get the one you already created.

Note that this behav­ior is impos­si­ble to imple­ment with a reg­u­lar con­struc­tor since a con­struc­tor call must always return a new object by design.

[image: The global access to an object]
Clients may not even real­ize that they’re work­ing with the same object all the time.

	
Pro­vide a glob­al access point to that instance. Remem­ber those glob­al vari­ables that you (all right, me) used to store some essen­tial objects? While they’re very handy, they’re also very unsafe since any code can poten­tial­ly over­write the con­tents of those vari­ables and crash the app.

Just like a glob­al vari­able, the Sin­gle­ton pat­tern lets you access some object from any­where in the pro­gram. How­ev­er, it also pro­tects that instance from being over­writ­ten by other code.

There’s anoth­er side to this prob­lem: you don’t want the code that solves prob­lem #1 to be scat­tered all over your pro­gram. It’s much bet­ter to have it with­in one class, espe­cial­ly if the rest of your code already depends on it.

Nowa­days, the Sin­gle­ton pat­tern has become so pop­u­lar that peo­ple may call some­thing a sin­gle­ton even if it solves just one of the list­ed problems.

 Solu­tion

All imple­men­ta­tions of the Sin­gle­ton have these two steps in common:

	Make the default con­struc­tor pri­vate, to pre­vent other objects from using the new oper­a­tor with the Sin­gle­ton class.

	Cre­ate a sta­t­ic cre­ation method that acts as a con­struc­tor. Under the hood, this method calls the pri­vate con­struc­tor to cre­ate an object and saves it in a sta­t­ic field. All fol­low­ing calls to this method return the cached object.

If your code has access to the Sin­gle­ton class, then it’s able to call the Sin­gle­ton’s sta­t­ic method. So when­ev­er that method is called, the same object is always returned.

 Real-World Anal­o­gy

The gov­ern­ment is an excel­lent exam­ple of the Sin­gle­ton pat­tern. A coun­try can have only one offi­cial gov­ern­ment. Regard­less of the per­son­al iden­ti­ties of the indi­vid­u­als who form gov­ern­ments, the title, “The Gov­ern­ment of X”, is a glob­al point of access that iden­ti­fies the group of peo­ple in charge.

 Struc­ture

[image: The structure of the Singleton pattern]

	
The Sin­gle­ton class declares the sta­t­ic method getInstance that returns the same instance of its own class.

The Sin­gle­ton’s con­struc­tor should be hid­den from the client code. Call­ing the getInstance method should be the only way of get­ting the Sin­gle­ton object.

 Pseudocode

In this exam­ple, the data­base con­nec­tion class acts as a Sin­gle­ton. This class doesn’t have a pub­lic con­struc­tor, so the only way to get its object is to call the getInstance method. This method caches the first cre­at­ed object and returns it in all sub­se­quent calls.

// The Database class defines the `getInstance` method that lets

// clients access the same instance of a database connection

// throughout the program.

class Database is

 // The field for storing the singleton instance should be

 // declared static.

 private static field instance: Database

 // The singleton's constructor should always be private to

 // prevent direct construction calls with the `new`

 // operator.

 private constructor Database() is

 // Some initialization code, such as the actual

 // connection to a database server.

 // ...

 // The static method that controls access to the singleton

 // instance.

 public static method getInstance() is

 if (Database.instance == null) then

 acquireThreadLock() and then

 // Ensure that the instance hasn't yet been

 // initialized by another thread while this one

 // has been waiting for the lock's release.

 if (Database.instance == null) then

 Database.instance = new Database()

 return Database.instance

 // Finally, any singleton should define some business logic

 // which can be executed on its instance.

 public method query(sql) is

 // For instance, all database queries of an app go

 // through this method. Therefore, you can place

 // throttling or caching logic here.

 // ...

class Application is

 method main() is

 Database foo = Database.getInstance()

 foo.query("SELECT ...")

 // ...

 Database bar = Database.getInstance()

 bar.query("SELECT ...")

 // The variable `bar` will contain the same object as

 // the variable `foo`.

 Applic­a­bil­i­ty

 Use the Sin­gle­ton pat­tern when a class in your pro­gram should have just a sin­gle instance avail­able to all clients; for exam­ple, a sin­gle data­base object shared by dif­fer­ent parts of the program.

 The Sin­gle­ton pat­tern dis­ables all other means of cre­at­ing objects of a class except for the spe­cial cre­ation method. This method either cre­ates a new object or returns an exist­ing one if it has already been created.

 Use the Sin­gle­ton pat­tern when you need stricter con­trol over glob­al variables.

 Unlike glob­al vari­ables, the Sin­gle­ton pat­tern guar­an­tees that there’s just one instance of a class. Noth­ing, except for the Sin­gle­ton class itself, can replace the cached instance.

Note that you can always adjust this lim­i­ta­tion and allow cre­at­ing any num­ber of Sin­gle­ton instances. The only piece of code that needs chang­ing is the body of the getInstance method.

 How to Imple­ment

	
Add a pri­vate sta­t­ic field to the class for stor­ing the sin­gle­ton instance.

	
Declare a pub­lic sta­t­ic cre­ation method for get­ting the sin­gle­ton instance.

	
Imple­ment “lazy ini­tial­iza­tion” inside the sta­t­ic method. It should cre­ate a new object on its first call and put it into the sta­t­ic field. The method should always return that instance on all sub­se­quent calls.

	
Make the con­struc­tor of the class pri­vate. The sta­t­ic method of the class will still be able to call the con­struc­tor, but not the other objects.

	
Go over the client code and replace all direct calls to the sin­gle­ton’s con­struc­tor with calls to its sta­t­ic cre­ation method.

 Pros and Cons

	
 You can be sure that a class has only a sin­gle instance.

	
 You gain a glob­al access point to that instance.

	
 The sin­gle­ton object is ini­tial­ized only when it’s request­ed for the first time.

	
 Vio­lates the Sin­gle Respon­si­bil­i­ty Prin­ci­ple. The pat­tern solves two prob­lems at the time.

	
 The Sin­gle­ton pat­tern can mask bad design, for instance, when the com­po­nents of the pro­gram know too much about each other.

	
 The pat­tern requires spe­cial treat­ment in a mul­ti­thread­ed envi­ron­ment so that mul­ti­ple threads won’t cre­ate a sin­gle­ton object sev­er­al times.

	
 It may be dif­fi­cult to unit test the client code of the Sin­gle­ton because many test frame­works rely on inher­i­tance when pro­duc­ing mock objects. Since the con­struc­tor of the sin­gle­ton class is pri­vate and over­rid­ing sta­t­ic meth­ods is impos­si­ble in most lan­guages, you will need to think of a cre­ative way to mock the sin­gle­ton. Or just don’t write the tests. Or don’t use the Sin­gle­ton pattern.

 Rela­tions with Other Pat­terns

	
A Facade class can often be trans­formed into a Sin­gle­ton since a sin­gle facade object is suf­fi­cient in most cases.

	
Fly­weight would resem­ble Sin­gle­ton if you some­how man­aged to reduce all shared states of the objects to just one fly­weight object. But there are two fun­da­men­tal dif­fer­ences between these patterns:

	There should be only one Sin­gle­ton instance, where­as a Fly­weight class can have mul­ti­ple instances with dif­fer­ent intrin­sic states.

	The Sin­gle­ton object can be muta­ble. Fly­weight objects are immutable.

	
Abstract Fac­to­ries, Builders and Pro­to­types can all be imple­ment­ed as Sin­gle­tons.

 Structural Design Patterns

 Struc­tur­al pat­terns explain how to assem­ble objects and class­es into larg­er struc­tures, while keep­ing this struc­tures flex­i­ble and efficient.

 [image: Adapter]
 Adapter

Allows objects with incom­pat­i­ble inter­faces to col­lab­o­rate.

 [image: Bridge]
 Bridge

Lets you split a large class or a set of close­ly relat­ed class­es into two sep­a­rate hier­ar­chies—abstrac­tion and imple­men­ta­tion—which can be devel­oped inde­pen­dent­ly of each other.

 [image: Composite]
 Com­pos­ite

Lets you com­pose objects into tree struc­tures and then work with these struc­tures as if they were indi­vid­ual objects.

 [image: Decorator]
 Dec­o­ra­tor

Lets you attach new behav­iors to objects by plac­ing these objects inside spe­cial wrap­per objects that con­tain the behav­iors.

 [image: Facade]
 Facade

Pro­vides a sim­pli­fied inter­face to a library, a frame­work, or any other com­plex set of class­es.

 [image: Flyweight]
 Fly­weight

Lets you fit more objects into the avail­able amount of RAM by shar­ing com­mon parts of state between mul­ti­ple objects instead of keep­ing all of the data in each object.

 [image: Proxy]
 Proxy

Lets you pro­vide a sub­sti­tute or place­hold­er for anoth­er object. A proxy con­trols access to the orig­i­nal object, allow­ing you to per­form some­thing either before or after the request gets through to the orig­i­nal object.

[image: Adapter design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Adapter

 Also known as: Wrapper

Adapter is a struc­tur­al design pat­tern that allows objects with incom­pat­i­ble inter­faces to collaborate.

 Prob­lem

Imag­ine that you’re cre­at­ing a stock mar­ket mon­i­tor­ing app. The app down­loads the stock data from mul­ti­ple sources in XML for­mat and then dis­plays nice-look­ing charts and dia­grams for the user.

At some point, you decide to improve the app by inte­grat­ing a smart 3rd-party ana­lyt­ics library. But there’s a catch: the ana­lyt­ics library only works with data in JSON format.

[image: The structure of the app before integration with the analytics library]
You can’t use the ana­lyt­ics library “as is” because it expects the data in a for­mat that’s incom­pat­i­ble with your app.

You could change the library to work with XML. How­ev­er, this might break some exist­ing code that relies on the library. And worse, you might not have access to the library’s source code in the first place, mak­ing this approach impossible.

 Solu­tion

You can cre­ate an adapter. This is a spe­cial object that con­verts the inter­face of one object so that anoth­er object can under­stand it.

An adapter wraps one of the objects to hide the com­plex­i­ty of con­ver­sion hap­pen­ing behind the scenes. The wrapped object isn’t even aware of the adapter. For exam­ple, you can wrap an object that oper­ates in meters and kilo­me­ters with an adapter that con­verts all of the data to impe­r­i­al units such as feet and miles.

Adapters can not only con­vert data into var­i­ous for­mats but can also help objects with dif­fer­ent inter­faces col­lab­o­rate. Here’s how it works:

	The adapter gets an inter­face, com­pat­i­ble with one of the exist­ing objects.

	Using this inter­face, the exist­ing object can safe­ly call the adapter’s methods.

	Upon receiv­ing a call, the adapter pass­es the request to the sec­ond object, but in a for­mat and order that the sec­ond object expects.

Some­times it’s even pos­si­ble to cre­ate a two-way adapter that can con­vert the calls in both directions.

[image: Adapter’s solution]
Let’s get back to our stock mar­ket app. To solve the dilem­ma of incom­pat­i­ble for­mats, you can cre­ate XML-to-JSON adapters for every class of the ana­lyt­ics library that your code works with direct­ly. Then you adjust your code to com­mu­ni­cate with the library only via these adapters. When an adapter receives a call, it trans­lates the incom­ing XML data into a JSON struc­ture and pass­es the call to the appro­pri­ate meth­ods of a wrapped ana­lyt­ics object.

 Real-World Anal­o­gy

[image: The Adapter pattern example]
A suit­case before and after a trip abroad.

When you trav­el from the US to Europe for the first time, you may get a sur­prise when try­ing to charge your lap­top. The power plug and sock­ets stan­dards are dif­fer­ent in dif­fer­ent coun­tries. That’s why your US plug won’t fit a Ger­man sock­et. The prob­lem can be solved by using a power plug adapter that has the Amer­i­can-style sock­et and the Euro­pean-style plug.

 Struc­ture

Object adapter

This imple­men­ta­tion uses the object com­po­si­tion prin­ci­ple: the adapter imple­ments the inter­face of one object and wraps the other one. It can be imple­ment­ed in all pop­u­lar pro­gram­ming languages.

[image: Structure of the Adapter design pattern (the object adapter)]

	
The Client is a class that con­tains the exist­ing busi­ness logic of the program.

	
The Client Inter­face describes a pro­to­col that other class­es must fol­low to be able to col­lab­o­rate with the client code.

	
The Ser­vice is some use­ful class (usu­al­ly 3rd-party or lega­cy). The client can’t use this class direct­ly because it has an incom­pat­i­ble interface.

	
The Adapter is a class that’s able to work with both the client and the ser­vice: it imple­ments the client inter­face, while wrap­ping the ser­vice object. The adapter receives calls from the client via the adapter inter­face and trans­lates them into calls to the wrapped ser­vice object in a for­mat it can understand.

	
The client code doesn’t get cou­pled to the con­crete adapter class as long as it works with the adapter via the client inter­face. Thanks to this, you can intro­duce new types of adapters into the pro­gram with­out break­ing the exist­ing client code. This can be use­ful when the inter­face of the ser­vice class gets changed or replaced: you can just cre­ate a new adapter class with­out chang­ing the client code.

Class adapter

This imple­men­ta­tion uses inher­i­tance: the adapter inher­its inter­faces from both objects at the same time. Note that this approach can only be imple­ment­ed in pro­gram­ming lan­guages that sup­port mul­ti­ple inher­i­tance, such as C++.

[image: Adapter design pattern (class adapter)]

	
The Class Adapter doesn’t need to wrap any objects because it inher­its behav­iors from both the client and the ser­vice. The adap­ta­tion hap­pens with­in the over­rid­den meth­ods. The result­ing adapter can be used in place of an exist­ing client class.

 Pseudocode

This exam­ple of the Adapter pat­tern is based on the clas­sic con­flict between square pegs and round holes.

[image: Structure of the Adapter pattern example]
Adapt­ing square pegs to round holes.

The Adapter pre­tends to be a round peg, with a radius equal to a half of the square’s diam­e­ter (in other words, the radius of the small­est cir­cle that can accom­mo­date the square peg).

// Say you have two classes with compatible interfaces:

// RoundHole and RoundPeg.

class RoundHole is

 constructor RoundHole(radius) { ... }

 method getRadius() is

 // Return the radius of the hole.

 method fits(peg: RoundPeg) is

 return this.getRadius() >= peg.getRadius()

class RoundPeg is

 constructor RoundPeg(radius) { ... }

 method getRadius() is

 // Return the radius of the peg.

// But there's an incompatible class: SquarePeg.

class SquarePeg is

 constructor SquarePeg(width) { ... }

 method getWidth() is

 // Return the square peg width.

// An adapter class lets you fit square pegs into round holes.

// It extends the RoundPeg class to let the adapter objects act

// as round pegs.

class SquarePegAdapter extends RoundPeg is

 // In reality, the adapter contains an instance of the

 // SquarePeg class.

 private field peg: SquarePeg

 constructor SquarePegAdapter(peg: SquarePeg) is

 this.peg = peg

 method getRadius() is

 // The adapter pretends that it's a round peg with a

 // radius that could fit the square peg that the adapter

 // actually wraps.

 return peg.getWidth() * Math.sqrt(2) / 2

// Somewhere in client code.

hole = new RoundHole(5)

rpeg = new RoundPeg(5)

hole.fits(rpeg) // true

small_sqpeg = new SquarePeg(5)

large_sqpeg = new SquarePeg(10)

hole.fits(small_sqpeg) // this won't compile (incompatible types)

small_sqpeg_adapter = new SquarePegAdapter(small_sqpeg)

large_sqpeg_adapter = new SquarePegAdapter(large_sqpeg)

hole.fits(small_sqpeg_adapter) // true

hole.fits(large_sqpeg_adapter) // false

 Applic­a­bil­i­ty

 Use the Adapter class when you want to use some exist­ing class, but its inter­face isn’t com­pat­i­ble with the rest of your code.

 The Adapter pat­tern lets you cre­ate a mid­dle-layer class that serves as a trans­la­tor between your code and a lega­cy class, a 3rd-party class or any other class with a weird interface.

 Use the pat­tern when you want to reuse sev­er­al exist­ing sub­class­es that lack some com­mon func­tion­al­i­ty that can’t be added to the superclass.

 You could extend each sub­class and put the miss­ing func­tion­al­i­ty into new child class­es. How­ev­er, you’ll need to dupli­cate the code across all of these new class­es, which smells real­ly bad.

The much more ele­gant solu­tion would be to put the miss­ing func­tion­al­i­ty into an adapter class. Then you would wrap objects with miss­ing fea­tures inside the adapter, gain­ing need­ed fea­tures dynam­i­cal­ly. For this to work, the tar­get class­es must have a com­mon inter­face, and the adapter’s field should fol­low that inter­face. This approach looks very sim­i­lar to the Dec­o­ra­tor pattern.

 How to Imple­ment

	
Make sure that you have at least two class­es with incom­pat­i­ble interfaces:

	A use­ful ser­vice class, which you can’t change (often 3rd-party, lega­cy or with lots of exist­ing dependencies).

	One or sev­er­al client class­es that would ben­e­fit from using the ser­vice class.

	
Declare the client inter­face and describe how clients com­mu­ni­cate with the service.

	
Cre­ate the adapter class and make it fol­low the client inter­face. Leave all the meth­ods empty for now.

	
Add a field to the adapter class to store a ref­er­ence to the ser­vice object. The com­mon prac­tice is to ini­tial­ize this field via the con­struc­tor, but some­times it’s more con­ve­nient to pass it to the adapter when call­ing its methods.

	
One by one, imple­ment all meth­ods of the client inter­face in the adapter class. The adapter should del­e­gate most of the real work to the ser­vice object, han­dling only the inter­face or data for­mat conversion.

	
Clients should use the adapter via the client inter­face. This will let you change or extend the adapters with­out affect­ing the client code.

 Pros and Cons

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can sep­a­rate the inter­face or data con­ver­sion code from the pri­ma­ry busi­ness logic of the program.

	
 Open/Closed Prin­ci­ple. You can intro­duce new types of adapters into the pro­gram with­out break­ing the exist­ing client code, as long as they work with the adapters through the client interface.

	
 The over­all com­plex­i­ty of the code increas­es because you need to intro­duce a set of new inter­faces and class­es. Some­times it’s sim­pler just to change the ser­vice class so that it match­es the rest of your code.

 Rela­tions with Other Pat­terns

	
Bridge is usu­al­ly designed up-front, let­ting you devel­op parts of an appli­ca­tion inde­pen­dent­ly of each other. On the other hand, Adapter is com­mon­ly used with an exist­ing app to make some oth­er­wise-incom­pat­i­ble class­es work togeth­er nicely.

	
Adapter changes the inter­face of an exist­ing object, while Dec­o­ra­tor enhances an object with­out chang­ing its inter­face. In addi­tion, Dec­o­ra­tor sup­ports recur­sive com­po­si­tion, which isn’t pos­si­ble when you use Adapter.

	
Adapter pro­vides a dif­fer­ent inter­face to the wrapped object, Proxy pro­vides it with the same inter­face, and Dec­o­ra­tor pro­vides it with an enhanced interface.

	
Facade defines a new inter­face for exist­ing objects, where­as Adapter tries to make the exist­ing inter­face usable. Adapter usu­al­ly wraps just one object, while Facade works with an entire sub­sys­tem of objects.

	
Bridge, State, Strat­e­gy (and to some degree Adapter) have very sim­i­lar struc­tures. Indeed, all of these pat­terns are based on com­po­si­tion, which is del­e­gat­ing work to other objects. How­ev­er, they all solve dif­fer­ent prob­lems. A pat­tern isn’t just a recipe for struc­tur­ing your code in a spe­cif­ic way. It can also com­mu­ni­cate to other devel­op­ers the prob­lem the pat­tern solves.

[image: Bridge design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Bridge

Bridge is a struc­tur­al design pat­tern that lets you split a large class or a set of close­ly relat­ed class­es into two sep­a­rate hier­ar­chies—abstrac­tion and imple­men­ta­tion—which can be devel­oped inde­pen­dent­ly of each other.

 Prob­lem

Abstrac­tion? Imple­men­ta­tion? Sound scary? Stay calm and let’s con­sid­er a sim­ple example.

Say you have a geo­met­ric Shape class with a pair of sub­class­es: Circle and Square. You want to extend this class hier­ar­chy to incor­po­rate col­ors, so you plan to cre­ate Red and Blue shape sub­class­es. How­ev­er, since you already have two sub­class­es, you’ll need to cre­ate four class com­bi­na­tions such as BlueCircle and RedSquare.

[image: Bridge pattern problem]
Num­ber of class com­bi­na­tions grows in geo­met­ric progression.

Adding new shape types and col­ors to the hier­ar­chy will grow it expo­nen­tial­ly. For exam­ple, to add a tri­an­gle shape you’d need to intro­duce two sub­class­es, one for each color. And after that, adding a new color would require cre­at­ing three sub­class­es, one for each shape type. The fur­ther we go, the worse it becomes.

 Solu­tion

This prob­lem occurs because we’re try­ing to extend the shape class­es in two inde­pen­dent dimen­sions: by form and by color. That’s a very com­mon issue with class inheritance.

The Bridge pat­tern attempts to solve this prob­lem by switch­ing from inher­i­tance to the object com­po­si­tion. What this means is that you extract one of the dimen­sions into a sep­a­rate class hier­ar­chy, so that the orig­i­nal class­es will ref­er­ence an object of the new hier­ar­chy, instead of hav­ing all of its state and behav­iors with­in one class.

[image: Solution suggested by the Bridge pattern]
You can pre­vent the explo­sion of a class hier­ar­chy by trans­form­ing it into sev­er­al relat­ed hierarchies.

Fol­low­ing this approach, we can extract the color-relat­ed code into its own class with two sub­class­es: Red and Blue. The Shape class then gets a ref­er­ence field point­ing to one of the color objects. Now the shape can del­e­gate any color-relat­ed work to the linked color object. That ref­er­ence will act as a bridge between the Shape and Color class­es. From now on, adding new col­ors won’t require chang­ing the shape hier­ar­chy, and vice versa.

Abstrac­tion and Imple­men­ta­tion

The GoF book 6 intro­duces the terms Abstrac­tion and Imple­men­ta­tion as part of the Bridge def­i­n­i­tion. In my opin­ion, the terms sound too aca­d­e­m­ic and make the pat­tern seem more com­pli­cat­ed than it real­ly is. Hav­ing read the sim­ple exam­ple with shapes and col­ors, let’s deci­pher the mean­ing behind the GoF book’s scary words.

Abstrac­tion (also called inter­face) is a high-level con­trol layer for some enti­ty. This layer isn’t sup­posed to do any real work on its own. It should del­e­gate the work to the imple­men­ta­tion layer (also called plat­form).

Note that we’re not talk­ing about inter­faces or abstract class­es from your pro­gram­ming lan­guage. These aren’t the same things.

When talk­ing about real appli­ca­tions, the abstrac­tion can be rep­re­sent­ed by a graph­i­cal user inter­face (GUI), and the imple­men­ta­tion could be the under­ly­ing oper­at­ing sys­tem code (API) which the GUI layer calls in response to user interactions.

Gen­er­al­ly speak­ing, you can extend such an app in two inde­pen­dent directions:

	Have sev­er­al dif­fer­ent GUIs (for instance, tai­lored for reg­u­lar cus­tomers or admins).

	Sup­port sev­er­al dif­fer­ent APIs (for exam­ple, to be able to launch the app under Win­dows, Linux, and macOS).

In a worst-case sce­nario, this app might look like a giant spaghet­ti bowl, where hun­dreds of con­di­tion­als con­nect dif­fer­ent types of GUI with var­i­ous APIs all over the code.

[image: Managing changes is much easier in modular code]
Mak­ing even a sim­ple change to a mono­lith­ic code­base is pret­ty hard because you must under­stand the entire thing very well. Mak­ing changes to small­er, well-defined mod­ules is much easier.

You can bring order to this chaos by extract­ing the code relat­ed to spe­cif­ic inter­face-plat­form com­bi­na­tions into sep­a­rate class­es. How­ev­er, soon you’ll dis­cov­er that there are lots of these class­es. The class hier­ar­chy will grow expo­nen­tial­ly because adding a new GUI or sup­port­ing a dif­fer­ent API would require cre­at­ing more and more classes.

Let’s try to solve this issue with the Bridge pat­tern. It sug­gests that we divide the class­es into two hierarchies:

	Abstrac­tion: the GUI layer of the app.

	Imple­men­ta­tion: the oper­at­ing sys­tems’ APIs.

[image: Cross-platform architecture]
One of the ways to struc­ture a cross-plat­form application.

The abstrac­tion object con­trols the appear­ance of the app, del­e­gat­ing the actu­al work to the linked imple­men­ta­tion object. Dif­fer­ent imple­men­ta­tions are inter­change­able as long as they fol­low a com­mon inter­face, enabling the same GUI to work under Win­dows and Linux.

As a result, you can change the GUI class­es with­out touch­ing the API-relat­ed class­es. More­over, adding sup­port for anoth­er oper­at­ing sys­tem only requires cre­at­ing a sub­class in the imple­men­ta­tion hierarchy.

 Struc­ture

[image: Bridge design pattern]

	
The Abstrac­tion pro­vides high-level con­trol logic. It relies on the imple­men­ta­tion object to do the actu­al low-level work.

	
The Imple­men­ta­tion declares the inter­face that’s com­mon for all con­crete imple­men­ta­tions. An abstrac­tion can only com­mu­ni­cate with an imple­men­ta­tion object via meth­ods that are declared here.

The abstrac­tion may list the same meth­ods as the imple­men­ta­tion, but usu­al­ly the abstrac­tion declares some com­plex behav­iors that rely on a wide vari­ety of prim­i­tive oper­a­tions declared by the imple­men­ta­tion.

	
Con­crete Imple­men­ta­tions con­tain plat­form-spe­cif­ic code.

	
Refined Abstrac­tions pro­vide vari­ants of con­trol logic. Like their par­ent, they work with dif­fer­ent imple­men­ta­tions via the gen­er­al imple­men­ta­tion interface.

	
Usu­al­ly, the Client is only inter­est­ed in work­ing with the abstrac­tion. How­ev­er, it’s the client’s job to link the abstrac­tion object with one of the imple­men­ta­tion objects.

 Pseudocode

This exam­ple illus­trates how the Bridge pat­tern can help divide the mono­lith­ic code of an app that man­ages devices and their remote con­trols. The Device class­es act as the imple­men­ta­tion, where­as the Remotes act as the abstraction.

[image: Structure of the Bridge pattern example]
The orig­i­nal class hier­ar­chy is divid­ed into two parts: devices and remote controls.

The base remote con­trol class declares a ref­er­ence field that links it with a device object. All remotes work with the devices via the gen­er­al device inter­face, which lets the same remote sup­port mul­ti­ple device types.

You can devel­op the remote con­trol class­es inde­pen­dent­ly from the device class­es. All that’s need­ed is to cre­ate a new remote sub­class. For exam­ple, a basic remote con­trol might only have two but­tons, but you could extend it with addi­tion­al fea­tures, such as an extra bat­tery or a touchscreen.

The client code links the desired type of remote con­trol with a spe­cif­ic device object via the remote’s constructor.

// The "abstraction" defines the interface for the "control"

// part of the two class hierarchies. It maintains a reference

// to an object of the "implementation" hierarchy and delegates

// all of the real work to this object.

class RemoteControl is

 protected field device: Device

 constructor RemoteControl(device: Device) is

 this.device = device

 method togglePower() is

 if (device.isEnabled()) then

 device.disable()

 else

 device.enable()

 method volumeDown() is

 device.setVolume(device.getVolume() - 10)

 method volumeUp() is

 device.setVolume(device.getVolume() + 10)

 method channelDown() is

 device.setChannel(device.getChannel() - 1)

 method channelUp() is

 device.setChannel(device.getChannel() + 1)

// You can extend classes from the abstraction hierarchy

// independently from device classes.

class AdvancedRemoteControl extends RemoteControl is

 method mute() is

 device.setVolume(0)

// The "implementation" interface declares methods common to all

// concrete implementation classes. It doesn't have to match the

// abstraction's interface. In fact, the two interfaces can be

// entirely different. Typically the implementation interface

// provides only primitive operations, while the abstraction

// defines higher-level operations based on those primitives.

interface Device is

 method isEnabled()

 method enable()

 method disable()

 method getVolume()

 method setVolume(percent)

 method getChannel()

 method setChannel(channel)

// All devices follow the same interface.

class Tv implements Device is

 // ...

class Radio implements Device is

 // ...

// Somewhere in client code.

tv = new Tv()

remote = new RemoteControl(tv)

remote.togglePower()

radio = new Radio()

remote = new AdvancedRemoteControl(radio)

 Applic­a­bil­i­ty

 Use the Bridge pat­tern when you want to divide and orga­nize a mono­lith­ic class that has sev­er­al vari­ants of some func­tion­al­i­ty (for exam­ple, if the class can work with var­i­ous data­base servers).

 The big­ger a class becomes, the hard­er it is to fig­ure out how it works, and the longer it takes to make a change. The changes made to one of the vari­a­tions of func­tion­al­i­ty may require mak­ing changes across the whole class, which often results in mak­ing errors or not address­ing some crit­i­cal side effects.

The Bridge pat­tern lets you split the mono­lith­ic class into sev­er­al class hier­ar­chies. After this, you can change the class­es in each hier­ar­chy inde­pen­dent­ly of the class­es in the oth­ers. This approach sim­pli­fies code main­te­nance and min­i­mizes the risk of break­ing exist­ing code.

 Use the pat­tern when you need to extend a class in sev­er­al orthog­o­nal (inde­pen­dent) dimensions.

 The Bridge sug­gests that you extract a sep­a­rate class hier­ar­chy for each of the dimen­sions. The orig­i­nal class del­e­gates the relat­ed work to the objects belong­ing to those hier­ar­chies instead of doing every­thing on its own.

 Use the Bridge if you need to be able to switch imple­men­ta­tions at runtime.

 Although it’s option­al, the Bridge pat­tern lets you replace the imple­men­ta­tion object inside the abstrac­tion. It’s as easy as assign­ing a new value to a field.

By the way, this last item is the main rea­son why so many peo­ple con­fuse the Bridge with the Strat­e­gy pat­tern. Remem­ber that a pat­tern is more than just a cer­tain way to struc­ture your class­es. It may also com­mu­ni­cate intent and a prob­lem being addressed.

 How to Imple­ment

	
Iden­ti­fy the orthog­o­nal dimen­sions in your class­es. These inde­pen­dent con­cepts could be: abstrac­tion/plat­form, domain/infra­struc­ture, front-end/back-end, or inter­face/imple­men­ta­tion.

	
See what oper­a­tions the client needs and define them in the base abstrac­tion class.

	
Deter­mine the oper­a­tions avail­able on all plat­forms. Declare the ones that the abstrac­tion needs in the gen­er­al imple­men­ta­tion interface.

	
For all plat­forms in your domain cre­ate con­crete imple­men­ta­tion class­es, but make sure they all fol­low the imple­men­ta­tion interface.

	
Inside the abstrac­tion class, add a ref­er­ence field for the imple­men­ta­tion type. The abstrac­tion del­e­gates most of the work to the imple­men­ta­tion object that’s ref­er­enced in that field.

	
If you have sev­er­al vari­ants of high-level logic, cre­ate refined abstrac­tions for each vari­ant by extend­ing the base abstrac­tion class.

	
The client code should pass an imple­men­ta­tion object to the abstrac­tion’s con­struc­tor to as­so­ciate one with the other. After that, the client can for­get about the imple­men­ta­tion and work only with the abstrac­tion object.

 Pros and Cons

	
 You can cre­ate plat­form-inde­pen­dent class­es and apps.

	
 The client code works with high-level abstrac­tions. It isn’t exposed to the plat­form details.

	
 Open/Closed Prin­ci­ple. You can intro­duce new abstrac­tions and imple­men­ta­tions inde­pen­dent­ly from each other.

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can focus on high-level logic in the abstrac­tion and on plat­form details in the imple­men­ta­tion.

	
 You might make the code more com­pli­cat­ed by apply­ing the pat­tern to a high­ly cohe­sive class.

 Rela­tions with Other Pat­terns

	
Bridge is usu­al­ly designed up-front, let­ting you devel­op parts of an appli­ca­tion inde­pen­dent­ly of each other. On the other hand, Adapter is com­mon­ly used with an exist­ing app to make some oth­er­wise-incom­pat­i­ble class­es work togeth­er nicely.

	
Bridge, State, Strat­e­gy (and to some degree Adapter) have very sim­i­lar struc­tures. Indeed, all of these pat­terns are based on com­po­si­tion, which is del­e­gat­ing work to other objects. How­ev­er, they all solve dif­fer­ent prob­lems. A pat­tern isn’t just a recipe for struc­tur­ing your code in a spe­cif­ic way. It can also com­mu­ni­cate to other devel­op­ers the prob­lem the pat­tern solves.

	
You can use Abstract Fac­to­ry along with Bridge. This pair­ing is use­ful when some abstrac­tions defined by Bridge can only work with spe­cif­ic imple­men­ta­tions. In this case, Abstract Fac­to­ry can encap­su­late these rela­tions and hide the com­plex­i­ty from the client code.

	
You can com­bine Builder with Bridge: the direc­tor class plays the role of the abstrac­tion, while dif­fer­ent builders act as imple­men­ta­tions.

[image: Composite design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Composite

 Also known as: Object Tree

Com­pos­ite is a struc­tur­al design pat­tern that lets you com­pose objects into tree struc­tures and then work with these struc­tures as if they were indi­vid­ual objects.

 Prob­lem

Using the Com­pos­ite pat­tern makes sense only when the core model of your app can be rep­re­sent­ed as a tree.

For exam­ple, imag­ine that you have two types of objects: Products and Boxes. A Box can con­tain sev­er­al Products as well as a num­ber of small­er Boxes. These lit­tle Boxes can also hold some Products or even small­er Boxes, and so on.

Say you decide to cre­ate an order­ing sys­tem that uses these class­es. Orders could con­tain sim­ple prod­ucts with­out any wrap­ping, as well as boxes stuffed with prod­ucts...and other boxes. How would you deter­mine the total price of such an order?

[image: Structure of a complex order]
An order might com­prise var­i­ous prod­ucts, pack­aged in boxes, which are pack­aged in big­ger boxes and so on. The whole struc­ture looks like an upside down tree.

You could try the direct approach: unwrap all the boxes, go over all the prod­ucts and then cal­cu­late the total. That would be doable in the real world; but in a pro­gram, it’s not as sim­ple as run­ning a loop. You have to know the class­es of Products and Boxes you’re going through, the nest­ing level of the boxes and other nasty details before­hand. All of this makes the direct approach either too awk­ward or even impossible.

 Solu­tion

The Com­pos­ite pat­tern sug­gests that you work with Products and Boxes through a com­mon inter­face which declares a method for cal­cu­lat­ing the total price.

How would this method work? For a prod­uct, it’d sim­ply return the prod­uct’s price. For a box, it’d go over each item the box con­tains, ask its price and then return a total for this box. If one of these items were a small­er box, that box would also start going over its con­tents and so on, until the prices of all inner com­po­nents were cal­cu­lat­ed. A box could even add some extra cost to the final price, such as pack­ag­ing cost.

[image: Solution suggested by the Composite pattern]
The Com­pos­ite pat­tern lets you run a behav­ior recur­sive­ly over all com­po­nents of an object tree.

The great­est ben­e­fit of this approach is that you don’t need to care about the con­crete class­es of objects that com­pose the tree. You don’t need to know whether an object is a sim­ple prod­uct or a sophis­ti­cat­ed box. You can treat them all the same via the com­mon inter­face. When you call a method, the objects them­selves pass the request down the tree.

 Real-World Anal­o­gy

[image: An example of a military structure]
An exam­ple of a mil­i­tary structure.

Armies of most coun­tries are struc­tured as hier­ar­chies. An army con­sists of sev­er­al divi­sions; a divi­sion is a set of brigades, and a brigade con­sists of pla­toons, which can be bro­ken down into squads. Final­ly, a squad is a small group of real sol­diers. Orders are given at the top of the hier­ar­chy and passed down onto each level until every sol­dier knows what needs to be done.

 Struc­ture

[image: Structure of the Composite design pattern]

	
The Com­po­nent inter­face describes oper­a­tions that are com­mon to both sim­ple and com­plex ele­ments of the tree.

	
The Leaf is a basic ele­ment of a tree that doesn’t have sub-ele­ments.

Usu­al­ly, leaf com­po­nents end up doing most of the real work, since they don’t have any­one to del­e­gate the work to.

	
The Con­tain­er (aka com­pos­ite) is an ele­ment that has sub-ele­ments: leaves or other con­tain­ers. A con­tain­er doesn’t know the con­crete class­es of its chil­dren. It works with all sub-ele­ments only via the com­po­nent interface.

Upon receiv­ing a request, a con­tain­er del­e­gates the work to its sub-ele­ments, process­es inter­me­di­ate results and then returns the final result to the client.

	
The Client works with all ele­ments through the com­po­nent inter­face. As a result, the client can work in the same way with both sim­ple or com­plex ele­ments of the tree.

 Pseudocode

In this exam­ple, the Com­pos­ite pat­tern lets you imple­ment stack­ing of geo­met­ric shapes in a graph­i­cal editor.

[image: Structure of the Composite example]
The geo­met­ric shapes edi­tor example.

The CompoundGraphic class is a con­tain­er that can com­prise any num­ber of sub-shapes, includ­ing other com­pound shapes. A com­pound shape has the same meth­ods as a sim­ple shape. How­ev­er, instead of doing some­thing on its own, a com­pound shape pass­es the request recur­sive­ly to all its chil­dren and “sums up” the result.

The client code works with all shapes through the sin­gle inter­face com­mon to all shape class­es. Thus, the client doesn’t know whether it’s work­ing with a sim­ple shape or a com­pound one. The client can work with very com­plex object struc­tures with­out being cou­pled to con­crete class­es that form that structure.

// The component interface declares common operations for both

// simple and complex objects of a composition.

interface Graphic is

 method move(x, y)

 method draw()

// The leaf class represents end objects of a composition. A

// leaf object can't have any sub-objects. Usually, it's leaf

// objects that do the actual work, while composite objects only

// delegate to their sub-components.

class Dot implements Graphic is

 field x, y

 constructor Dot(x, y) { ... }

 method move(x, y) is

 this.x += x, this.y += y

 method draw() is

 // Draw a dot at X and Y.

// All component classes can extend other components.

class Circle extends Dot is

 field radius

 constructor Circle(x, y, radius) { ... }

 method draw() is

 // Draw a circle at X and Y with radius R.

// The composite class represents complex components that may

// have children. Composite objects usually delegate the actual

// work to their children and then "sum up" the result.

class CompoundGraphic implements Graphic is

 field children: array of Graphic

 // A composite object can add or remove other components

 // (both simple or complex) to or from its child list.

 method add(child: Graphic) is

 // Add a child to the array of children.

 method remove(child: Graphic) is

 // Remove a child from the array of children.

 method move(x, y) is

 foreach (child in children) do

 child.move(x, y)

 // A composite executes its primary logic in a particular

 // way. It traverses recursively through all its children,

 // collecting and summing up their results. Since the

 // composite's children pass these calls to their own

 // children and so forth, the whole object tree is traversed

 // as a result.

 method draw() is

 // 1. For each child component:

 // - Draw the component.

 // - Update the bounding rectangle.

 // 2. Draw a dashed rectangle using the bounding

 // coordinates.

// The client code works with all the components via their base

// interface. This way the client code can support simple leaf

// components as well as complex composites.

class ImageEditor is

 field all: CompoundGraphic

 method load() is

 all = new CompoundGraphic()

 all.add(new Dot(1, 2))

 all.add(new Circle(5, 3, 10))

 // ...

 // Combine selected components into one complex composite

 // component.

 method groupSelected(components: array of Graphic) is

 group = new CompoundGraphic()

 foreach (component in components) do

 group.add(component)

 all.remove(component)

 all.add(group)

 // All components will be drawn.

 all.draw()

 Applic­a­bil­i­ty

 Use the Com­pos­ite pat­tern when you have to imple­ment a tree-like object structure.

 The Com­pos­ite pat­tern pro­vides you with two basic ele­ment types that share a com­mon inter­face: sim­ple leaves and com­plex con­tain­ers. A con­tain­er can be com­posed of both leaves and other con­tain­ers. This lets you con­struct a nest­ed recur­sive object struc­ture that resem­bles a tree.

 Use the pat­tern when you want the client code to treat both sim­ple and com­plex ele­ments uniformly.

 All ele­ments defined by the Com­pos­ite pat­tern share a com­mon inter­face. Using this inter­face, the client doesn’t have to worry about the con­crete class of the objects it works with.

 How to Imple­ment

	
Make sure that the core model of your app can be rep­re­sent­ed as a tree struc­ture. Try to break it down into sim­ple ele­ments and con­tain­ers. Remem­ber that con­tain­ers must be able to con­tain both sim­ple ele­ments and other containers.

	
Declare the com­po­nent inter­face with a list of meth­ods that make sense for both sim­ple and com­plex components.

	
Cre­ate a leaf class to rep­re­sent sim­ple ele­ments. A pro­gram may have mul­ti­ple dif­fer­ent leaf classes.

	
Cre­ate a con­tain­er class to rep­re­sent com­plex ele­ments. In this class, pro­vide an array field for stor­ing ref­er­ences to sub-ele­ments. The array must be able to store both leaves and con­tain­ers, so make sure it’s declared with the com­po­nent inter­face type.

While imple­ment­ing the meth­ods of the com­po­nent inter­face, remem­ber that a con­tain­er is sup­posed to be del­e­gat­ing most of the work to sub-ele­ments.

	
Final­ly, define the meth­ods for adding and removal of child ele­ments in the container.

Keep in mind that these oper­a­tions can be declared in the com­po­nent inter­face. This would vio­late the Inter­face Seg­re­ga­tion Prin­ci­ple because the meth­ods will be empty in the leaf class. How­ev­er, the client will be able to treat all the ele­ments equal­ly, even when com­pos­ing the tree.

 Pros and Cons

	
 You can work with com­plex tree struc­tures more con­ve­nient­ly: use poly­mor­phism and recur­sion to your advantage.

	
 Open/Closed Prin­ci­ple. You can intro­duce new ele­ment types into the app with­out break­ing the exist­ing code, which now works with the object tree.

	
 It might be dif­fi­cult to pro­vide a com­mon inter­face for class­es whose func­tion­al­i­ty dif­fers too much. In cer­tain sce­nar­ios, you’d need to over­gen­er­al­ize the com­po­nent inter­face, mak­ing it hard­er to comprehend.

 Rela­tions with Other Pat­terns

	
You can use Builder when cre­at­ing com­plex Com­pos­ite trees because you can pro­gram its con­struc­tion steps to work recursively.

	
Chain of Respon­si­bil­i­ty is often used in con­junc­tion with Com­pos­ite. In this case, when a leaf com­po­nent gets a request, it may pass it through the chain of all of the par­ent com­po­nents down to the root of the object tree.

	
You can use Iter­a­tors to tra­verse Com­pos­ite trees.

	
You can use Vis­i­tor to exe­cute an oper­a­tion over an entire Com­pos­ite tree.

	
You can imple­ment shared leaf nodes of the Com­pos­ite tree as Fly­weights to save some RAM.

	
Com­pos­ite and Dec­o­ra­tor have sim­i­lar struc­ture dia­grams since both rely on recur­sive com­po­si­tion to orga­nize an open-ended num­ber of objects.

A Dec­o­ra­tor is like a Com­pos­ite but only has one child com­po­nent. There’s anoth­er sig­nif­i­cant dif­fer­ence: Dec­o­ra­tor adds addi­tion­al respon­si­bil­i­ties to the wrapped object, while Com­pos­ite just “sums up” its chil­dren’s results.

How­ev­er, the pat­terns can also coop­er­ate: you can use Dec­o­ra­tor to extend the behav­ior of a spe­cif­ic object in the Com­pos­ite tree.

	
Designs that make heavy use of Com­pos­ite and Dec­o­ra­tor can often ben­e­fit from using Pro­to­type. Apply­ing the pat­tern lets you clone com­plex struc­tures instead of re-con­struct­ing them from scratch.

[image: Decorator design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Decorator

 Also known as: Wrapper

Dec­o­ra­tor is a struc­tur­al design pat­tern that lets you attach new behav­iors to objects by plac­ing these objects inside spe­cial wrap­per objects that con­tain the behaviors.

 Prob­lem

Imag­ine that you’re work­ing on a noti­fi­ca­tion library which lets other pro­grams noti­fy their users about impor­tant events.

The ini­tial ver­sion of the library was based on the Notifier class that had only a few fields, a con­struc­tor and a sin­gle send method. The method could accept a mes­sage argu­ment from a client and send the mes­sage to a list of emails that were passed to the noti­fi­er via its con­struc­tor. A third-party app which acted as a client was sup­posed to cre­ate and con­fig­ure the noti­fi­er object once, and then use it each time some­thing impor­tant happened.

[image: Structure of the library before applying the Decorator pattern]
A pro­gram could use the noti­fi­er class to send noti­fi­ca­tions about impor­tant events to a pre­de­fined set of emails.

At some point, you real­ize that users of the library expect more than just email noti­fi­ca­tions. Many of them would like to receive an SMS about crit­i­cal issues. Oth­ers would like to be noti­fied on Face­book and, of course, the cor­po­rate users would love to get Slack noti­fi­ca­tions.

[image: Structure of the library after implementing other notification types]
Each noti­fi­ca­tion type is imple­ment­ed as a noti­fi­er’s subclass.

How hard can that be? You extend­ed the Notifier class and put the addi­tion­al noti­fi­ca­tion meth­ods into new sub­class­es. Now the client was sup­posed to instan­ti­ate the desired noti­fi­ca­tion class and use it for all fur­ther noti­fi­ca­tions.

But then some­one rea­son­ably asked you, “Why can’t you use sev­er­al noti­fi­ca­tion types at once? If your house is on fire, you’d prob­a­bly want to be informed through every channel.”

You tried to address that prob­lem by cre­at­ing spe­cial sub­class­es which com­bined sev­er­al noti­fi­ca­tion meth­ods with­in one class. How­ev­er, it quick­ly became appar­ent that this approach would bloat the code immense­ly, not only the library code but the client code as well.

[image: Structure of the library after creating class combinations]
Com­bi­na­to­r­i­al explo­sion of subclasses.

You have to find some other way to struc­ture noti­fi­ca­tions class­es so that their num­ber won’t acci­den­tal­ly break some Guin­ness record.

 Solu­tion

Extend­ing a class is the first thing that comes to mind when you need to alter an object’s behav­ior. How­ev­er, inher­i­tance has sev­er­al seri­ous caveats that you need to be aware of.

	Inher­i­tance is sta­t­ic. You can’t alter the behav­ior of an exist­ing object at run­time. You can only replace the whole object with anoth­er one that’s cre­at­ed from a dif­fer­ent subclass.

	Sub­class­es can have just one par­ent class. In most lan­guages, inher­i­tance doesn’t let a class inher­it behav­iors of mul­ti­ple class­es at the same time.

One of the ways to over­come these caveats is by using Aggre­ga­tion or Com­po­si­tion 7 instead of Inher­i­tance. Both of the alter­na­tives work almost the same way: one object has a ref­er­ence to anoth­er and del­e­gates it some work, where­as with inher­i­tance, the object itself is able to do that work, inher­it­ing the behav­ior from its superclass.

With this new approach you can eas­i­ly sub­sti­tute the linked “helper” object with anoth­er, chang­ing the behav­ior of the con­tain­er at run­time. An object can use the behav­ior of var­i­ous class­es, hav­ing ref­er­ences to mul­ti­ple objects and del­e­gat­ing them all kinds of work. Aggre­ga­tion/com­po­si­tion is the key prin­ci­ple behind many design pat­terns, includ­ing Dec­o­ra­tor. On that note, let’s return to the pat­tern discussion.

[image: Inheritance vs. Aggregation]
Inher­i­tance vs. Aggre­ga­tion

“Wrap­per” is the alter­na­tive nick­name for the Dec­o­ra­tor pat­tern that clear­ly express­es the main idea of the pat­tern. A wrap­per is an object that can be linked with some tar­get object. The wrap­per con­tains the same set of meth­ods as the tar­get and del­e­gates to it all requests it receives. How­ev­er, the wrap­per may alter the result by doing some­thing either before or after it pass­es the request to the target.

When does a sim­ple wrap­per become the real dec­o­ra­tor? As I men­tioned, the wrap­per imple­ments the same inter­face as the wrapped object. That’s why from the client’s per­spec­tive these objects are iden­ti­cal. Make the wrap­per’s ref­er­ence field accept any object that fol­lows that inter­face. This will let you cover an object in mul­ti­ple wrap­pers, adding the com­bined behav­ior of all the wrap­pers to it.

In our noti­fi­ca­tions exam­ple, let’s leave the sim­ple email noti­fi­ca­tion behav­ior inside the base Notifier class, but turn all other noti­fi­ca­tion meth­ods into decorators.

[image: The solution with the Decorator pattern]
Var­i­ous noti­fi­ca­tion meth­ods become decorators.

The client code would need to wrap a basic noti­fi­er object into a set of dec­o­ra­tors that match the client’s pref­er­ences. The result­ing objects will be struc­tured as a stack.

[image: Apps might configure complex stacks of notification decorators]
Apps might con­fig­ure com­plex stacks of noti­fi­ca­tion decorators.

The last dec­o­ra­tor in the stack would be the object that the client actu­al­ly works with. Since all dec­o­ra­tors imple­ment the same inter­face as the base noti­fi­er, the rest of the client code won’t care whether it works with the “pure” noti­fi­er object or the dec­o­rat­ed one.

We could apply the same approach to other behav­iors such as for­mat­ting mes­sages or com­pos­ing the recip­i­ent list. The client can dec­o­rate the object with any cus­tom dec­o­ra­tors, as long as they fol­low the same inter­face as the others.

 Real-World Anal­o­gy

[image: Example of the Decorator pattern]
You get a com­bined effect from wear­ing mul­ti­ple pieces of clothing.

Wear­ing clothes is an exam­ple of using dec­o­ra­tors. When you’re cold, you wrap your­self in a sweater. If you’re still cold with a sweater, you can wear a jack­et on top. If it’s rain­ing, you can put on a rain­coat. All of these gar­ments “extend” your basic behav­ior but aren’t part of you, and you can eas­i­ly take off any piece of cloth­ing when­ev­er you don’t need it.

 Struc­ture

[image: Structure of the Decorator design pattern]

	
The Com­po­nent declares the com­mon inter­face for both wrap­pers and wrapped objects.

	
Con­crete Com­po­nent is a class of objects being wrapped. It defines the basic behav­ior, which can be altered by decorators.

	
The Base Dec­o­ra­tor class has a field for ref­er­enc­ing a wrapped object. The field’s type should be declared as the com­po­nent inter­face so it can con­tain both con­crete com­po­nents and dec­o­ra­tors. The base dec­o­ra­tor del­e­gates all oper­a­tions to the wrapped object.

	
Con­crete Dec­o­ra­tors define extra behav­iors that can be added to com­po­nents dynam­i­cal­ly. Con­crete dec­o­ra­tors over­ride meth­ods of the base dec­o­ra­tor and exe­cute their behav­ior either before or after call­ing the par­ent method.

	
The Client can wrap com­po­nents in mul­ti­ple lay­ers of dec­o­ra­tors, as long as it works with all objects via the com­po­nent interface.

 Pseudocode

In this exam­ple, the Dec­o­ra­tor pat­tern lets you com­press and encrypt sen­si­tive data inde­pen­dent­ly from the code that actu­al­ly uses this data.

[image: Structure of the Decorator pattern example]
The encryp­tion and com­pres­sion dec­o­ra­tors example.

The appli­ca­tion wraps the data source object with a pair of dec­o­ra­tors. Both wrap­pers change the way the data is writ­ten to and read from the disk:

	
Just before the data is writ­ten to disk, the dec­o­ra­tors encrypt and com­press it. The orig­i­nal class writes the encrypt­ed and pro­tect­ed data to the file with­out know­ing about the change.

	
Right after the data is read from disk, it goes through the same dec­o­ra­tors, which decom­press and decode it.

The dec­o­ra­tors and the data source class imple­ment the same inter­face, which makes them all inter­change­able in the client code.

// The component interface defines operations that can be

// altered by decorators.

interface DataSource is

 method writeData(data)

 method readData():data

// Concrete components provide default implementations for the

// operations. There might be several variations of these

// classes in a program.

class FileDataSource implements DataSource is

 constructor FileDataSource(filename) { ... }

 method writeData(data) is

 // Write data to file.

 method readData():data is

 // Read data from file.

// The base decorator class follows the same interface as the

// other components. The primary purpose of this class is to

// define the wrapping interface for all concrete decorators.

// The default implementation of the wrapping code might include

// a field for storing a wrapped component and the means to

// initialize it.

class DataSourceDecorator implements DataSource is

 protected field wrappee: DataSource

 constructor DataSourceDecorator(source: DataSource) is

 wrappee = source

 // The base decorator simply delegates all work to the

 // wrapped component. Extra behaviors can be added in

 // concrete decorators.

 method writeData(data) is

 wrappee.writeData(data)

 // Concrete decorators may call the parent implementation of

 // the operation instead of calling the wrapped object

 // directly. This approach simplifies extension of decorator

 // classes.

 method readData():data is

 return wrappee.readData()

// Concrete decorators must call methods on the wrapped object,

// but may add something of their own to the result. Decorators

// can execute the added behavior either before or after the

// call to a wrapped object.

class EncryptionDecorator extends DataSourceDecorator is

 method writeData(data) is

 // 1. Encrypt passed data.

 // 2. Pass encrypted data to the wrappee's writeData

 // method.

 method readData():data is

 // 1. Get data from the wrappee's readData method.

 // 2. Try to decrypt it if it's encrypted.

 // 3. Return the result.

// You can wrap objects in several layers of decorators.

class CompressionDecorator extends DataSourceDecorator is

 method writeData(data) is

 // 1. Compress passed data.

 // 2. Pass compressed data to the wrappee's writeData

 // method.

 method readData():data is

 // 1. Get data from the wrappee's readData method.

 // 2. Try to decompress it if it's compressed.

 // 3. Return the result.

// Option 1. A simple example of a decorator assembly.

class Application is

 method dumbUsageExample() is

 source = new FileDataSource("somefile.dat")

 source.writeData(salaryRecords)

 // The target file has been written with plain data.

 source = new CompressionDecorator(source)

 source.writeData(salaryRecords)

 // The target file has been written with compressed

 // data.

 source = new EncryptionDecorator(source)

 // The source variable now contains this:

 // Encryption > Compression > FileDataSource

 source.writeData(salaryRecords)

 // The file has been written with compressed and

 // encrypted data.

// Option 2. Client code that uses an external data source.

// SalaryManager objects neither know nor care about data

// storage specifics. They work with a pre-configured data

// source received from the app configurator.

class SalaryManager is

 field source: DataSource

 constructor SalaryManager(source: DataSource) { ... }

 method load() is

 return source.readData()

 method save() is

 source.writeData(salaryRecords)

 // ...Other useful methods...

// The app can assemble different stacks of decorators at

// runtime, depending on the configuration or environment.

class ApplicationConfigurator is

 method configurationExample() is

 source = new FileDataSource("salary.dat")

 if (enabledEncryption)

 source = new EncryptionDecorator(source)

 if (enabledCompression)

 source = new CompressionDecorator(source)

 logger = new SalaryManager(source)

 salary = logger.load()

 // ...

 Applic­a­bil­i­ty

 Use the Dec­o­ra­tor pat­tern when you need to be able to assign extra behav­iors to objects at run­time with­out break­ing the code that uses these objects.

 The Dec­o­ra­tor lets you struc­ture your busi­ness logic into lay­ers, cre­ate a dec­o­ra­tor for each layer and com­pose objects with var­i­ous com­bi­na­tions of this logic at run­time. The client code can treat all these objects in the same way, since they all fol­low a com­mon interface.

 Use the pat­tern when it’s awk­ward or not pos­si­ble to extend an object’s behav­ior using inheritance.

 Many pro­gram­ming lan­guages have the final key­word that can be used to pre­vent fur­ther exten­sion of a class. For a final class, the only way to reuse the exist­ing behav­ior would be to wrap the class with your own wrap­per, using the Dec­o­ra­tor pattern.

 How to Imple­ment

	
Make sure your busi­ness domain can be rep­re­sent­ed as a pri­ma­ry com­po­nent with mul­ti­ple option­al lay­ers over it.

	
Fig­ure out what meth­ods are com­mon to both the pri­ma­ry com­po­nent and the option­al lay­ers. Cre­ate a com­po­nent inter­face and declare those meth­ods there.

	
Cre­ate a con­crete com­po­nent class and define the base behav­ior in it.

	
Cre­ate a base dec­o­ra­tor class. It should have a field for stor­ing a ref­er­ence to a wrapped object. The field should be declared with the com­po­nent inter­face type to allow link­ing to con­crete com­po­nents as well as dec­o­ra­tors. The base dec­o­ra­tor must del­e­gate all work to the wrapped object.

	
Make sure all class­es imple­ment the com­po­nent interface.

	
Cre­ate con­crete dec­o­ra­tors by extend­ing them from the base dec­o­ra­tor. A con­crete dec­o­ra­tor must exe­cute its behav­ior before or after the call to the par­ent method (which always del­e­gates to the wrapped object).

	
The client code must be respon­si­ble for cre­at­ing dec­o­ra­tors and com­pos­ing them in the way the client needs.

 Pros and Cons

	
 You can extend an object’s behav­ior with­out mak­ing a new subclass.

	
 You can add or remove respon­si­bil­i­ties from an object at runtime.

	
 You can com­bine sev­er­al behav­iors by wrap­ping an object into mul­ti­ple decorators.

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can divide a mono­lith­ic class that imple­ments many pos­si­ble vari­ants of behav­ior into sev­er­al small­er classes.

	
 It’s hard to remove a spe­cif­ic wrap­per from the wrap­pers stack.

	
 It’s hard to imple­ment a dec­o­ra­tor in such a way that its behav­ior doesn’t depend on the order in the dec­o­ra­tors stack.

	
 The ini­tial con­fig­u­ra­tion code of lay­ers might look pret­ty ugly.

 Rela­tions with Other Pat­terns

	
Adapter changes the inter­face of an exist­ing object, while Dec­o­ra­tor enhances an object with­out chang­ing its inter­face. In addi­tion, Dec­o­ra­tor sup­ports recur­sive com­po­si­tion, which isn’t pos­si­ble when you use Adapter.

	
Adapter pro­vides a dif­fer­ent inter­face to the wrapped object, Proxy pro­vides it with the same inter­face, and Dec­o­ra­tor pro­vides it with an enhanced interface.

	
Chain of Respon­si­bil­i­ty and Dec­o­ra­tor have very sim­i­lar class struc­tures. Both pat­terns rely on recur­sive com­po­si­tion to pass the exe­cu­tion through a series of objects. How­ev­er, there are sev­er­al cru­cial differences.

The CoR han­dlers can exe­cute arbi­trary oper­a­tions inde­pen­dent­ly of each other. They can also stop pass­ing the request fur­ther at any point. On the other hand, var­i­ous Dec­o­ra­tors can extend the object’s behav­ior while keep­ing it con­sis­tent with the base inter­face. In addi­tion, dec­o­ra­tors aren’t allowed to break the flow of the request.

	
Com­pos­ite and Dec­o­ra­tor have sim­i­lar struc­ture dia­grams since both rely on recur­sive com­po­si­tion to orga­nize an open-ended num­ber of objects.

A Dec­o­ra­tor is like a Com­pos­ite but only has one child com­po­nent. There’s anoth­er sig­nif­i­cant dif­fer­ence: Dec­o­ra­tor adds addi­tion­al respon­si­bil­i­ties to the wrapped object, while Com­pos­ite just “sums up” its chil­dren’s results.

How­ev­er, the pat­terns can also coop­er­ate: you can use Dec­o­ra­tor to extend the behav­ior of a spe­cif­ic object in the Com­pos­ite tree.

	
Designs that make heavy use of Com­pos­ite and Dec­o­ra­tor can often ben­e­fit from using Pro­to­type. Apply­ing the pat­tern lets you clone com­plex struc­tures instead of re-con­struct­ing them from scratch.

	
Dec­o­ra­tor lets you change the skin of an object, while Strat­e­gy lets you change the guts.

	
Dec­o­ra­tor and Proxy have sim­i­lar struc­tures, but very dif­fer­ent intents. Both pat­terns are built on the com­po­si­tion prin­ci­ple, where one object is sup­posed to del­e­gate some of the work to anoth­er. The dif­fer­ence is that a Proxy usu­al­ly man­ages the life cycle of its ser­vice object on its own, where­as the com­po­si­tion of Dec­o­ra­tors is always con­trolled by the client.

[image: Facade design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Facade

Facade is a struc­tur­al design pat­tern that pro­vides a sim­pli­fied inter­face to a library, a frame­work, or any other com­plex set of classes.

 Prob­lem

Imag­ine that you must make your code work with a broad set of objects that belong to a sophis­ti­cat­ed library or frame­work. Ordi­nar­i­ly, you’d need to ini­tial­ize all of those objects, keep track of depen­den­cies, exe­cute meth­ods in the cor­rect order, and so on.

As a result, the busi­ness logic of your class­es would become tight­ly cou­pled to the imple­men­ta­tion details of 3rd-party class­es, mak­ing it hard to com­pre­hend and maintain.

 Solu­tion

A facade is a class that pro­vides a sim­ple inter­face to a com­plex sub­sys­tem which con­tains lots of mov­ing parts. A facade might pro­vide lim­it­ed func­tion­al­i­ty in com­par­i­son to work­ing with the sub­sys­tem direct­ly. How­ev­er, it includes only those fea­tures that clients real­ly care about.

Hav­ing a facade is handy when you need to inte­grate your app with a sophis­ti­cat­ed library that has dozens of fea­tures, but you just need a tiny bit of its func­tion­al­i­ty.

For instance, an app that uploads short funny videos with cats to social media could poten­tial­ly use a pro­fes­sion­al video con­ver­sion library. How­ev­er, all that it real­ly needs is a class with the sin­gle method encode(filename, format). After cre­at­ing such a class and con­nect­ing it with the video con­ver­sion library, you’ll have your first facade.

 Real-World Anal­o­gy

[image: An example of taking a phone order]
Plac­ing orders by phone.

When you call a shop to place a phone order, an oper­a­tor is your facade to all ser­vices and depart­ments of the shop. The oper­a­tor pro­vides you with a sim­ple voice inter­face to the order­ing sys­tem, pay­ment gate­ways, and var­i­ous deliv­ery services.

 Struc­ture

[image: Structure of the Facade design pattern]

	
The Facade pro­vides con­ve­nient access to a par­tic­u­lar part of the sub­sys­tem’s func­tion­al­i­ty. It knows where to direct the client’s request and how to oper­ate all the mov­ing parts.

	
An Addi­tion­al Facade class can be cre­at­ed to pre­vent pol­lut­ing a sin­gle facade with unre­lat­ed fea­tures that might make it yet anoth­er com­plex struc­ture. Addi­tion­al facades can be used by both clients and other facades.

	
The Com­plex Sub­sys­tem con­sists of dozens of var­i­ous objects. To make them all do some­thing mean­ing­ful, you have to dive deep into the sub­sys­tem’s imple­men­ta­tion details, such as ini­tial­iz­ing objects in the cor­rect order and sup­ply­ing them with data in the prop­er format.

Sub­sys­tem class­es aren’t aware of the facade’s exis­tence. They oper­ate with­in the sys­tem and work with each other directly.

	
The Client uses the facade instead of call­ing the sub­sys­tem objects directly.

 Pseudocode

In this exam­ple, the Facade pat­tern sim­pli­fies inter­ac­tion with a com­plex video con­ver­sion framework.

[image: The structure of the Facade pattern example]
An exam­ple of iso­lat­ing mul­ti­ple depen­den­cies with­in a sin­gle facade class.

Instead of mak­ing your code work with dozens of the frame­work class­es direct­ly, you cre­ate a facade class which encap­su­lates that func­tion­al­i­ty and hides it from the rest of the code. This struc­ture also helps you to min­i­mize the effort of upgrad­ing to future ver­sions of the frame­work or replac­ing it with anoth­er one. The only thing you’d need to change in your app would be the imple­men­ta­tion of the facade’s methods.

// These are some of the classes of a complex 3rd-party video

// conversion framework. We don't control that code, therefore

// can't simplify it.

class VideoFile

// ...

class OggCompressionCodec

// ...

class MPEG4CompressionCodec

// ...

class CodecFactory

// ...

class BitrateReader

// ...

class AudioMixer

// ...

// We create a facade class to hide the framework's complexity

// behind a simple interface. It's a trade-off between

// functionality and simplicity.

class VideoConverter is

 method convert(filename, format):File is

 file = new VideoFile(filename)

 sourceCodec = new CodecFactory.extract(file)

 if (format == "mp4")

 destinationCodec = new MPEG4CompressionCodec()

 else

 destinationCodec = new OggCompressionCodec()

 buffer = BitrateReader.read(filename, sourceCodec)

 result = BitrateReader.convert(buffer, destinationCodec)

 result = (new AudioMixer()).fix(result)

 return new File(result)

// Application classes don't depend on a billion classes

// provided by the complex framework. Also, if you decide to

// switch frameworks, you only need to rewrite the facade class.

class Application is

 method main() is

 convertor = new VideoConverter()

 mp4 = convertor.convert("funny-cats-video.ogg", "mp4")

 mp4.save()

 Applic­a­bil­i­ty

 Use the Facade pat­tern when you need to have a lim­it­ed but straight­for­ward inter­face to a com­plex subsystem.

 Often, sub­sys­tems get more com­plex over time. Even apply­ing design pat­terns typ­i­cal­ly leads to cre­at­ing more class­es. A sub­sys­tem may become more flex­i­ble and eas­i­er to reuse in var­i­ous con­texts, but the amount of con­fig­u­ra­tion and boil­er­plate code it demands from a client grows ever larg­er. The Facade attempts to fix this prob­lem by pro­vid­ing a short­cut to the most-used fea­tures of the sub­sys­tem which fit most client requirements.

 Use the Facade when you want to struc­ture a sub­sys­tem into layers.

 Cre­ate facades to define entry points to each level of a sub­sys­tem. You can reduce cou­pling between mul­ti­ple sub­sys­tems by requir­ing them to com­mu­ni­cate only through facades.

For exam­ple, let’s return to our video con­ver­sion frame­work. It can be bro­ken down into two lay­ers: video- and audio-relat­ed. For each layer, you can cre­ate a facade and then make the class­es of each layer com­mu­ni­cate with each anoth­er via those facades. This approach looks very sim­i­lar to the Medi­a­tor pattern.

 How to Imple­ment

	
Check whether it’s pos­si­ble to pro­vide a sim­pler inter­face than what an exist­ing sub­sys­tem already pro­vides. You’re on the right track if this inter­face makes the client code inde­pen­dent from many of the sub­sys­tem’s classes.

	
Declare and imple­ment this inter­face in a new facade class. The facade should redi­rect the calls from the client code to appro­pri­ate objects of the sub­sys­tem. The facade should be respon­si­ble for ini­tial­iz­ing the sub­sys­tem and man­ag­ing its fur­ther life cycle unless the client code already does this.

	
To get the full ben­e­fit from the pat­tern, make all the client code com­mu­ni­cate with the sub­sys­tem only via the facade. Now the client code is pro­tect­ed from any changes in the sub­sys­tem code. For exam­ple, when a sub­sys­tem gets upgrad­ed to a new ver­sion, you will only need to mod­i­fy the code in the facade.

	
If the facade becomes too big, con­sid­er extract­ing part of its behav­ior to a new, refined facade class.

 Pros and Cons

	
 You can iso­late your code from the com­plex­i­ty of a subsystem.

	
 A facade can become a god object cou­pled to all class­es of an app.

 Rela­tions with Other Pat­terns

	
Facade defines a new inter­face for exist­ing objects, where­as Adapter tries to make the exist­ing inter­face usable. Adapter usu­al­ly wraps just one object, while Facade works with an entire sub­sys­tem of objects.

	
Abstract Fac­to­ry can serve as an alter­na­tive to Facade when you only want to hide the way the sub­sys­tem objects are cre­at­ed from the client code.

	
Fly­weight shows how to make lots of lit­tle objects, where­as Facade shows how to make a sin­gle object that rep­re­sents an entire subsystem.

	
Facade and Medi­a­tor have sim­i­lar jobs: they try to orga­nize col­lab­o­ra­tion between lots of tight­ly cou­pled classes.

	
Facade defines a sim­pli­fied inter­face to a sub­sys­tem of objects, but it doesn’t intro­duce any new func­tion­al­i­ty. The sub­sys­tem itself is unaware of the facade. Objects with­in the sub­sys­tem can com­mu­ni­cate directly.

	
Medi­a­tor cen­tral­izes com­mu­ni­ca­tion between com­po­nents of the sys­tem. The com­po­nents only know about the medi­a­tor object and don’t com­mu­ni­cate directly.

	
A Facade class can often be trans­formed into a Sin­gle­ton since a sin­gle facade object is suf­fi­cient in most cases.

	
Facade is sim­i­lar to Proxy in that both buffer a com­plex enti­ty and ini­tial­ize it on its own. Unlike Facade, Proxy has the same inter­face as its ser­vice object, which makes them inter­change­able.

[image: Flyweight design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Flyweight

 Also known as: Cache

Fly­weight is a struc­tur­al design pat­tern that lets you fit more objects into the avail­able amount of RAM by shar­ing com­mon parts of state between mul­ti­ple objects instead of keep­ing all of the data in each object.

 Prob­lem

To have some fun after long work­ing hours, you decid­ed to cre­ate a sim­ple video game: play­ers would be mov­ing around a map and shoot­ing each other. You chose to imple­ment a real­is­tic par­ti­cle sys­tem and make it a dis­tinc­tive fea­ture of the game. Vast quan­ti­ties of bul­lets, mis­siles, and shrap­nel from explo­sions should fly all over the map and deliv­er a thrilling expe­ri­ence to the player.

Upon its com­ple­tion, you pushed the last com­mit, built the game and sent it to your friend for a test drive. Although the game was run­ning flaw­less­ly on your machine, your friend wasn’t able to play for long. On his com­put­er, the game kept crash­ing after a few min­utes of game­play. After spend­ing sev­er­al hours dig­ging through debug logs, you dis­cov­ered that the game crashed because of an insuf­fi­cient amount of RAM. It turned out that your friend’s rig was much less pow­er­ful than your own com­put­er, and that’s why the prob­lem emerged so quick­ly on his machine.

The actu­al prob­lem was relat­ed to your par­ti­cle sys­tem. Each par­ti­cle, such as a bul­let, a mis­sile or a piece of shrap­nel was rep­re­sent­ed by a sep­a­rate object con­tain­ing plen­ty of data. At some point, when the car­nage on a play­er’s screen reached its cli­max, newly cre­at­ed par­ti­cles no longer fit into the remain­ing RAM, so the pro­gram crashed.

[image: Flyweight pattern problem]

 Solu­tion

On clos­er inspec­tion of the Particle class, you may notice that the color and sprite fields con­sume a lot more mem­o­ry than other fields. What’s worse is that these two fields store almost iden­ti­cal data across all par­ti­cles. For exam­ple, all bul­lets have the same color and sprite.

[image: Flyweight pattern solution]
Other parts of a par­ti­cle’s state, such as coor­di­nates, move­ment vec­tor and speed, are unique to each par­ti­cle. After all, the val­ues of these fields change over time. This data rep­re­sents the always chang­ing con­text in which the par­ti­cle exists, while the color and sprite remain con­stant for each particle.

This con­stant data of an object is usu­al­ly called the intrin­sic state. It lives with­in the object; other objects can only read it, not change it. The rest of the object’s state, often altered “from the out­side” by other objects, is called the extrin­sic state.

The Fly­weight pat­tern sug­gests that you stop stor­ing the extrin­sic state inside the object. Instead, you should pass this state to spe­cif­ic meth­ods which rely on it. Only the intrin­sic state stays with­in the object, let­ting you reuse it in dif­fer­ent con­texts. As a result, you’d need fewer of these objects since they only dif­fer in the intrin­sic state, which has much fewer vari­a­tions than the extrinsic.

[image: Flyweight pattern solution]
Let’s return to our game. Assum­ing that we had extract­ed the extrin­sic state from our par­ti­cle class, only three dif­fer­ent objects would suf­fice to rep­re­sent all par­ti­cles in the game: a bul­let, a mis­sile, and a piece of shrap­nel. As you’ve prob­a­bly guessed by now, an object that only stores the intrin­sic state is called a fly­weight.

Extrin­sic state stor­age

Where does the extrin­sic state move to? Some class should still store it, right? In most cases, it gets moved to the con­tain­er object, which aggre­gates objects before we apply the pattern.

In our case, that’s the main Game object that stores all par­ti­cles in the particles field. To move the extrin­sic state into this class, you need to cre­ate sev­er­al array fields for stor­ing coor­di­nates, vec­tors, and speed of each indi­vid­ual par­ti­cle. But that’s not all. You need anoth­er array for stor­ing ref­er­ences to a spe­cif­ic fly­weight that rep­re­sents a par­ti­cle. These arrays must be in sync so that you can access all data of a par­ti­cle using the same index.

[image: Flyweight pattern solution]
A more ele­gant solu­tion is to cre­ate a sep­a­rate con­text class that would store the extrin­sic state along with ref­er­ence to the fly­weight object. This approach would require hav­ing just a sin­gle array in the con­tain­er class.

Wait a sec­ond! Won’t we need to have as many of these con­tex­tu­al objects as we had at the very begin­ning? Tech­ni­cal­ly, yes. But the thing is, these objects are much small­er than before. The most mem­o­ry-con­sum­ing fields have been moved to just a few fly­weight objects. Now, a thou­sand small con­tex­tu­al objects can reuse a sin­gle heavy fly­weight object instead of stor­ing a thou­sand copies of its data.

Fly­weight and immutabil­i­ty

Since the same fly­weight object can be used in dif­fer­ent con­texts, you have to make sure that its state can’t be mod­i­fied. A fly­weight should ini­tial­ize its state just once, via con­struc­tor para­me­ters. It shouldn’t expose any set­ters or pub­lic fields to other objects.

Fly­weight fac­to­ry

For more con­ve­nient access to var­i­ous fly­weights, you can cre­ate a fac­to­ry method that man­ages a pool of exist­ing fly­weight objects. The method accepts the intrin­sic state of the desired fly­weight from a client, looks for an exist­ing fly­weight object match­ing this state, and returns it if it was found. If not, it cre­ates a new fly­weight and adds it to the pool.

There are sev­er­al options where this method could be placed. The most obvi­ous place is a fly­weight con­tain­er. Alter­na­tive­ly, you could cre­ate a new fac­to­ry class. Or you could make the fac­to­ry method sta­t­ic and put it inside an actu­al fly­weight class.

 Struc­ture

[image: Structure of the Flyweight design pattern]

	
The Fly­weight pat­tern is mere­ly an opti­miza­tion. Before apply­ing it, make sure your pro­gram does have the RAM con­sump­tion prob­lem relat­ed to hav­ing a mas­sive num­ber of sim­i­lar objects in mem­o­ry at the same time. Make sure that this prob­lem can’t be solved in any other mean­ing­ful way.

	
The Fly­weight class con­tains the por­tion of the orig­i­nal object’s state that can be shared between mul­ti­ple objects. The same fly­weight object can be used in many dif­fer­ent con­texts. The state stored inside a fly­weight is called intrin­sic. The state passed to the fly­weight’s meth­ods is called extrin­sic.

	
The Con­text class con­tains the extrin­sic state, unique across all orig­i­nal objects. When a con­text is paired with one of the fly­weight objects, it rep­re­sents the full state of the orig­i­nal object.

	
Usu­al­ly, the behav­ior of the orig­i­nal object remains in the fly­weight class. In this case, who­ev­er calls a fly­weight’s method must also pass appro­pri­ate bits of the extrin­sic state into the method’s para­me­ters. On the other hand, the behav­ior can be moved to the con­text class, which would use the linked fly­weight mere­ly as a data object.

	
The Client cal­cu­lates or stores the extrin­sic state of fly­weights. From the client’s per­spec­tive, a fly­weight is a tem­plate object which can be con­fig­ured at run­time by pass­ing some con­tex­tu­al data into para­me­ters of its methods.

	
The Fly­weight Fac­to­ry man­ages a pool of exist­ing fly­weights. With the fac­to­ry, clients don’t cre­ate fly­weights direct­ly. Instead, they call the fac­to­ry, pass­ing it bits of the intrin­sic state of the desired fly­weight. The fac­to­ry looks over pre­vi­ous­ly cre­at­ed fly­weights and either returns an exist­ing one that match­es search cri­te­ria or cre­ates a new one if noth­ing is found.

 Pseudocode

In this exam­ple, the Fly­weight pat­tern helps to reduce mem­o­ry usage when ren­der­ing mil­lions of tree objects on a canvas.

[image: Flyweight pattern example]
The pat­tern extracts the repeat­ing intrin­sic state from a main Tree class and moves it into the fly­weight class TreeType.

Now instead of stor­ing the same data in mul­ti­ple objects, it’s kept in just a few fly­weight objects and linked to appro­pri­ate Tree objects which act as con­texts. The client code cre­ates new tree objects using the fly­weight fac­to­ry, which encap­su­lates the com­plex­i­ty of search­ing for the right object and reusing it if needed.

// The flyweight class contains a portion of the state of a

// tree. These fields store values that are unique for each

// particular tree. For instance, you won't find here the tree

// coordinates. But the texture and colors shared between many

// trees are here. Since this data is usually BIG, you'd waste a

// lot of memory by keeping it in each tree object. Instead, we

// can extract texture, color and other repeating data into a

// separate object which lots of individual tree objects can

// reference.

class TreeType is

 field name

 field color

 field texture

 constructor TreeType(name, color, texture) { ... }

 method draw(canvas, x, y) is

 // 1. Create a bitmap of a given type, color & texture.

 // 2. Draw the bitmap on the canvas at X and Y coords.

// Flyweight factory decides whether to re-use existing

// flyweight or to create a new object.

class TreeFactory is

 static field treeTypes: collection of tree types

 static method getTreeType(name, color, texture) is

 type = treeTypes.find(name, color, texture)

 if (type == null)

 type = new TreeType(name, color, texture)

 treeTypes.add(type)

 return type

// The contextual object contains the extrinsic part of the tree

// state. An application can create billions of these since they

// are pretty small: just two integer coordinates and one

// reference field.

class Tree is

 field x,y

 field type: TreeType

 constructor Tree(x, y, type) { ... }

 method draw(canvas) is

 type.draw(canvas, this.x, this.y)

// The Tree and the Forest classes are the flyweight's clients.

// You can merge them if you don't plan to develop the Tree

// class any further.

class Forest is

 field trees: collection of Trees

 method plantTree(x, y, name, color, texture) is

 type = TreeFactory.getTreeType(name, color, texture)

 tree = new Tree(x, y, type)

 trees.add(tree)

 method draw(canvas) is

 foreach (tree in trees) do

 tree.draw(canvas)

 Applic­a­bil­i­ty

 Use the Fly­weight pat­tern only when your pro­gram must sup­port a huge num­ber of objects which bare­ly fit into avail­able RAM.

 The ben­e­fit of apply­ing the pat­tern depends heav­i­ly on how and where it’s used. It’s most use­ful when:

	an appli­ca­tion needs to spawn a huge num­ber of sim­i­lar objects

	this drains all avail­able RAM on a tar­get device

	the objects con­tain dupli­cate states which can be extract­ed and shared between mul­ti­ple objects

 How to Imple­ment

	
Divide fields of a class that will become a fly­weight into two parts:

	the intrin­sic state: the fields that con­tain unchang­ing data dupli­cat­ed across many objects

	the extrin­sic state: the fields that con­tain con­tex­tu­al data unique to each object

	
Leave the fields that rep­re­sent the intrin­sic state in the class, but make sure they’re immutable. They should take their ini­tial val­ues only inside the constructor.

	
Go over meth­ods that use fields of the extrin­sic state. For each field used in the method, intro­duce a new para­me­ter and use it instead of the field.

	
Option­al­ly, cre­ate a fac­to­ry class to man­age the pool of fly­weights. It should check for an exist­ing fly­weight before cre­at­ing a new one. Once the fac­to­ry is in place, clients must only request fly­weights through it. They should describe the desired fly­weight by pass­ing its intrin­sic state to the factory.

	
The client must store or cal­cu­late val­ues of the extrin­sic state (con­text) to be able to call meth­ods of fly­weight objects. For the sake of con­ve­nience, the extrin­sic state along with the fly­weight-ref­er­enc­ing field may be moved to a sep­a­rate con­text class.

 Pros and Cons

	
 You can save lots of RAM, assum­ing your pro­gram has tons of sim­i­lar objects.

	
 You might be trad­ing RAM over CPU cycles when some of the con­text data needs to be recal­cu­lat­ed each time some­body calls a fly­weight method.

	
 The code becomes much more com­pli­cat­ed. New team mem­bers will always be won­der­ing why the state of an enti­ty was sep­a­rat­ed in such a way.

 Rela­tions with Other Pat­terns

	
You can imple­ment shared leaf nodes of the Com­pos­ite tree as Fly­weights to save some RAM.

	
Fly­weight shows how to make lots of lit­tle objects, where­as Facade shows how to make a sin­gle object that rep­re­sents an entire subsystem.

	
Fly­weight would resem­ble Sin­gle­ton if you some­how man­aged to reduce all shared states of the objects to just one fly­weight object. But there are two fun­da­men­tal dif­fer­ences between these patterns:

	There should be only one Sin­gle­ton instance, where­as a Fly­weight class can have mul­ti­ple instances with dif­fer­ent intrin­sic states.

	The Sin­gle­ton object can be muta­ble. Fly­weight objects are immutable.

[image: Proxy design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Proxy

Proxy is a struc­tur­al design pat­tern that lets you pro­vide a sub­sti­tute or place­hold­er for anoth­er object. A proxy con­trols access to the orig­i­nal object, allow­ing you to per­form some­thing either before or after the request gets through to the orig­i­nal object.

 Prob­lem

Why would you want to con­trol access to an object? Here is an exam­ple: you have a mas­sive object that con­sumes a vast amount of sys­tem resources. You need it from time to time, but not always.

[image: Problem solved by Proxy pattern]
Data­base queries can be real­ly slow.

You could imple­ment lazy ini­tial­iza­tion: cre­ate this object only when it’s actu­al­ly need­ed. All of the object’s clients would need to exe­cute some deferred ini­tial­iza­tion code. Unfor­tu­nate­ly, this would prob­a­bly cause a lot of code duplication.

In an ideal world, we’d want to put this code direct­ly into our object’s class, but that isn’t always pos­si­ble. For instance, the class may be part of a closed 3rd-party library.

 Solu­tion

The Proxy pat­tern sug­gests that you cre­ate a new proxy class with the same inter­face as an orig­i­nal ser­vice object. Then you update your app so that it pass­es the proxy object to all of the orig­i­nal object’s clients. Upon receiv­ing a request from a client, the proxy cre­ates a real ser­vice object and del­e­gates all the work to it.

[image: Solution with the Proxy pattern]
The proxy dis­guis­es itself as a data­base object. It can han­dle lazy ini­tial­iza­tion and result caching with­out the client or the real data­base object even knowing.

But what’s the ben­e­fit? If you need to exe­cute some­thing either before or after the pri­ma­ry logic of the class, the proxy lets you do this with­out chang­ing that class. Since the proxy imple­ments the same inter­face as the orig­i­nal class, it can be passed to any client that expects a real ser­vice object.

 Real-World Anal­o­gy

[image: A credit card is a proxy for a bundle of cash]
Cred­it cards can be used for pay­ments just the same as cash.

A cred­it card is a proxy for a bank account, which is a proxy for a bun­dle of cash. Both imple­ment the same inter­face: they can be used for mak­ing a pay­ment. A con­sumer feels great because there’s no need to carry loads of cash around. A shop owner is also happy since the income from a trans­ac­tion gets added elec­tron­i­cal­ly to the shop’s bank account with­out the risk of los­ing the deposit or get­ting robbed on the way to the bank.

 Struc­ture

[image: Structure of the Proxy design pattern]

	
The Ser­vice Inter­face declares the inter­face of the Ser­vice. The proxy must fol­low this inter­face to be able to dis­guise itself as a ser­vice object.

	
The Ser­vice is a class that pro­vides some use­ful busi­ness logic.

	
The Proxy class has a ref­er­ence field that points to a ser­vice object. After the proxy fin­ish­es its pro­cess­ing (e.g., lazy ini­tial­iza­tion, log­ging, access con­trol, caching, etc.), it pass­es the request to the ser­vice object.

Usu­al­ly, prox­ies man­age the full life­cy­cle of their ser­vice objects.

	
The Client should work with both ser­vices and prox­ies via the same inter­face. This way you can pass a proxy into any code that expects a ser­vice object.

 Pseudocode

This exam­ple illus­trates how the Proxy pat­tern can help to intro­duce lazy ini­tial­iza­tion and caching to a 3rd-party YouTube inte­gra­tion library.

[image: Structure of the Proxy pattern example]
Caching results of a ser­vice with a proxy.

The library pro­vides us with the video down­load­ing class. How­ev­er, it’s very inef­fi­cient. If the client appli­ca­tion requests the same video mul­ti­ple times, the library just down­loads it over and over, instead of caching and reusing the first down­loaded file.

The proxy class imple­ments the same inter­face as the orig­i­nal down­loader and del­e­gates it all the work. How­ev­er, it keeps track of the down­loaded files and returns the cached result when the app requests the same video mul­ti­ple times.

// The interface of a remote service.

interface ThirdPartyYouTubeLib is

 method listVideos()

 method getVideoInfo(id)

 method downloadVideo(id)

// The concrete implementation of a service connector. Methods

// of this class can request information from YouTube. The speed

// of the request depends on a user's internet connection as

// well as YouTube's. The application will slow down if a lot of

// requests are fired at the same time, even if they all request

// the same information.

class ThirdPartyYouTubeClass implements ThirdPartyYouTubeLib is

 method listVideos() is

 // Send an API request to YouTube.

 method getVideoInfo(id) is

 // Get metadata about some video.

 method downloadVideo(id) is

 // Download a video file from YouTube.

// To save some bandwidth, we can cache request results and keep

// them for some time. But it may be impossible to put such code

// directly into the service class. For example, it could have

// been provided as part of a third party library and/or defined

// as `final`. That's why we put the caching code into a new

// proxy class which implements the same interface as the

// service class. It delegates to the service object only when

// the real requests have to be sent.

class CachedYouTubeClass implements ThirdPartyYouTubeLib is

 private field service: ThirdPartyYouTubeLib

 private field listCache, videoCache

 field needReset

 constructor CachedYouTubeClass(service: ThirdPartyYouTubeLib) is

 this.service = service

 method listVideos() is

 if (listCache == null || needReset)

 listCache = service.listVideos()

 return listCache

 method getVideoInfo(id) is

 if (videoCache == null || needReset)

 videoCache = service.getVideoInfo(id)

 return videoCache

 method downloadVideo(id) is

 if (!downloadExists(id) || needReset)

 service.downloadVideo(id)

// The GUI class, which used to work directly with a service

// object, stays unchanged as long as it works with the service

// object through an interface. We can safely pass a proxy

// object instead of a real service object since they both

// implement the same interface.

class YouTubeManager is

 protected field service: ThirdPartyYouTubeLib

 constructor YouTubeManager(service: ThirdPartyYouTubeLib) is

 this.service = service

 method renderVideoPage(id) is

 info = service.getVideoInfo(id)

 // Render the video page.

 method renderListPanel() is

 list = service.listVideos()

 // Render the list of video thumbnails.

 method reactOnUserInput() is

 renderVideoPage()

 renderListPanel()

// The application can configure proxies on the fly.

class Application is

 method init() is

 aYouTubeService = new ThirdPartyYouTubeClass()

 aYouTubeProxy = new CachedYouTubeClass(aYouTubeService)

 manager = new YouTubeManager(aYouTubeProxy)

 manager.reactOnUserInput()

 Applic­a­bil­i­ty

There are dozens of ways to uti­lize the Proxy pat­tern. Let’s go over the most pop­u­lar uses.

 Lazy ini­tial­iza­tion (vir­tu­al proxy). This is when you have a heavy­weight ser­vice object that wastes sys­tem resources by being always up, even though you only need it from time to time.

 Instead of cre­at­ing the object when the app launch­es, you can delay the object’s ini­tial­iza­tion to a time when it’s real­ly needed.

 Access con­trol (pro­tec­tion proxy). This is when you want only spe­cif­ic clients to be able to use the ser­vice object; for instance, when your objects are cru­cial parts of an oper­at­ing sys­tem and clients are var­i­ous launched appli­ca­tions (includ­ing mali­cious ones).

 The proxy can pass the request to the ser­vice object only if the client’s cre­den­tials match some criteria.

 Local exe­cu­tion of a remote ser­vice (remote proxy). This is when the ser­vice object is locat­ed on a remote server.

 In this case, the proxy pass­es the client request over the net­work, han­dling all of the nasty details of work­ing with the network.

 Log­ging requests (log­ging proxy). This is when you want to keep a his­to­ry of requests to the ser­vice object.

 The proxy can log each request before pass­ing it to the service.

 Caching request results (caching proxy). This is when you need to cache results of client requests and man­age the life cycle of this cache, espe­cial­ly if results are quite large.

 The proxy can imple­ment caching for recur­ring requests that always yield the same results. The proxy may use the para­me­ters of requests as the cache keys.

 Smart ref­er­ence. This is when you need to be able to dis­miss a heavy­weight object once there are no clients that use it.

 The proxy can keep track of clients that obtained a ref­er­ence to the ser­vice object or its results. From time to time, the proxy may go over the clients and check whether they are still active. If the client list gets empty, the proxy might dis­miss the ser­vice object and free the under­ly­ing sys­tem resources.

The proxy can also track whether the client had mod­i­fied the ser­vice object. Then the unchanged objects may be reused by other clients.

 How to Imple­ment

	
If there’s no pre-exist­ing ser­vice inter­face, cre­ate one to make proxy and ser­vice objects inter­change­able. Extract­ing the inter­face from the ser­vice class isn’t always pos­si­ble, because you’d need to change all of the ser­vice’s clients to use that inter­face. Plan B is to make the proxy a sub­class of the ser­vice class, and this way it’ll inher­it the inter­face of the service.

	
Cre­ate the proxy class. It should have a field for stor­ing a ref­er­ence to the ser­vice. Usu­al­ly, prox­ies cre­ate and man­age the whole life cycle of their ser­vices. On rare occa­sions, a ser­vice is passed to the proxy via a con­struc­tor by the client.

	
Imple­ment the proxy meth­ods accord­ing to their pur­pos­es. In most cases, after doing some work, the proxy should del­e­gate the work to the ser­vice object.

	
Con­sid­er intro­duc­ing a cre­ation method that decides whether the client gets a proxy or a real ser­vice. This can be a sim­ple sta­t­ic method in the proxy class or a full-blown fac­to­ry method.

	
Con­sid­er imple­ment­ing lazy ini­tial­iza­tion for the ser­vice object.

 Pros and Cons

	
 You can con­trol the ser­vice object with­out clients know­ing about it.

	
 You can man­age the life­cy­cle of the ser­vice object when clients don’t care about it.

	
 The proxy works even if the ser­vice object isn’t ready or is not available.

	
 Open/Closed Prin­ci­ple. You can intro­duce new prox­ies with­out chang­ing the ser­vice or clients.

	
 The code may become more com­pli­cat­ed since you need to intro­duce a lot of new classes.

	
 The response from the ser­vice might get delayed.

 Rela­tions with Other Pat­terns

	
Adapter pro­vides a dif­fer­ent inter­face to the wrapped object, Proxy pro­vides it with the same inter­face, and Dec­o­ra­tor pro­vides it with an enhanced interface.

	
Facade is sim­i­lar to Proxy in that both buffer a com­plex enti­ty and ini­tial­ize it on its own. Unlike Facade, Proxy has the same inter­face as its ser­vice object, which makes them inter­change­able.

	
Dec­o­ra­tor and Proxy have sim­i­lar struc­tures, but very dif­fer­ent intents. Both pat­terns are built on the com­po­si­tion prin­ci­ple, where one object is sup­posed to del­e­gate some of the work to anoth­er. The dif­fer­ence is that a Proxy usu­al­ly man­ages the life cycle of its ser­vice object on its own, where­as the com­po­si­tion of Dec­o­ra­tors is always con­trolled by the client.

 Behavioral Design Patterns

 Behav­ioral pat­terns are con­cerned with algo­rithms and the assign­ment of respon­si­bil­i­ties between objects.

 [image: Chain of Responsibility]
 Chain of Respon­si­bil­i­ty

Lets you pass requests along a chain of han­dlers. Upon receiv­ing a request, each han­dler decides either to process the request or to pass it to the next han­dler in the chain.

 [image: Command]
 Com­mand

Turns a request into a stand-alone object that con­tains all infor­ma­tion about the request. This trans­for­ma­tion lets you pass requests as a method argu­ments, delay or queue a request's exe­cu­tion, and sup­port undoable oper­a­tions.

 [image: Iterator]
 Iter­a­tor

Lets you tra­verse ele­ments of a col­lec­tion with­out expos­ing its under­ly­ing rep­re­sen­ta­tion (list, stack, tree, etc.).

 [image: Mediator]
 Medi­a­tor

Lets you reduce chaot­ic depen­den­cies between objects. The pat­tern restricts direct com­mu­ni­ca­tions between the objects and forces them to col­lab­o­rate only via a medi­a­tor object.

 [image: Memento]
 Memen­to

Lets you save and restore the pre­vi­ous state of an object with­out reveal­ing the details of its imple­men­ta­tion.

 [image: Observer]
 Observ­er

Lets you define a sub­scrip­tion mech­a­nism to noti­fy mul­ti­ple objects about any events that hap­pen to the object they're observ­ing.

 [image: State]
 State

Lets an object alter its behav­ior when its inter­nal state changes. It appears as if the object changed its class.

 [image: Strategy]
 Strat­e­gy

Lets you define a fam­i­ly of algo­rithms, put each of them into a sep­a­rate class, and make their objects inter­change­able.

 [image: Template Method]
 Tem­plate Method

Defines the skele­ton of an algo­rithm in the super­class but lets sub­class­es over­ride spe­cif­ic steps of the algo­rithm with­out chang­ing its struc­ture.

 [image: Visitor]
 Vis­i­tor

Lets you sep­a­rate algo­rithms from the objects on which they oper­ate.

[image: Chain of Responsibility design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Chain of Responsibility

 Also known as: CoR, Chain of Command

Chain of Respon­si­bil­i­ty is a behav­ioral design pat­tern that lets you pass requests along a chain of han­dlers. Upon receiv­ing a request, each han­dler decides either to process the request or to pass it to the next han­dler in the chain.

 Prob­lem

Imag­ine that you’re work­ing on an online order­ing sys­tem. You want to restrict access to the sys­tem so only authen­ti­cat­ed users can cre­ate orders. Also, users who have admin­is­tra­tive per­mis­sions must have full access to all orders.

After a bit of plan­ning, you real­ized that these checks must be per­formed sequen­tial­ly. The appli­ca­tion can attempt to authen­ti­cate a user to the sys­tem when­ev­er it receives a request that con­tains the user’s cre­den­tials. How­ev­er, if those cre­den­tials aren’t cor­rect and authen­ti­ca­tion fails, there’s no rea­son to pro­ceed with any other checks.

[image: Problem, solved by Chain of Responsibility]
The request must pass a series of checks before the order­ing sys­tem itself can han­dle it.

Dur­ing the next few months, you imple­ment­ed sev­er­al more of those sequen­tial checks.

	
One of your col­leagues sug­gest­ed that it’s unsafe to pass raw data straight to the order­ing sys­tem. So you added an extra val­i­da­tion step to san­i­tize the data in a request.

	
Later, some­body noticed that the sys­tem is vul­ner­a­ble to brute force pass­word crack­ing. To negate this, you prompt­ly added a check that fil­ters repeat­ed failed requests com­ing from the same IP address.

	
Some­one else sug­gest­ed that you could speed up the sys­tem by return­ing cached results on repeat­ed requests con­tain­ing the same data. Hence, you added anoth­er check which lets the request pass through to the sys­tem only if there’s no suit­able cached response.

[image: With each new check the code became bigger, messier, and uglier]
The big­ger the code grew, the messier it became.

The code of the checks, which had already looked like a mess, became more and more bloat­ed as you added each new fea­ture. Chang­ing one check some­times affect­ed the oth­ers. Worst of all, when you tried to reuse the checks to pro­tect other com­po­nents of the sys­tem, you had to dupli­cate some of the code since those com­po­nents required some of the checks, but not all of them.

The sys­tem became very hard to com­pre­hend and expen­sive to main­tain. You strug­gled with the code for a while, until one day you decid­ed to refac­tor the whole thing.

 Solu­tion

Like many other behav­ioral design pat­terns, the Chain of Respon­si­bil­i­ty relies on trans­form­ing par­tic­u­lar behav­iors into stand-alone objects called han­dlers. In our case, each check should be extract­ed to its own class with a sin­gle method that per­forms the check. The request, along with its data, is passed to this method as an argument.

The pat­tern sug­gests that you link these han­dlers into a chain. Each linked han­dler has a field for stor­ing a ref­er­ence to the next han­dler in the chain. In addi­tion to pro­cess­ing a request, han­dlers pass the request fur­ther along the chain. The request trav­els along the chain until all han­dlers have had a chance to process it.

Here’s the best part: a han­dler can decide not to pass the request fur­ther down the chain and effec­tive­ly stop any fur­ther processing.

In our exam­ple with order­ing sys­tems, a han­dler per­forms the pro­cess­ing and then decides whether to pass the request fur­ther down the chain. Assum­ing the request con­tains the right data, all the han­dlers can exe­cute their pri­ma­ry behav­ior, whether it’s authen­ti­ca­tion checks or caching.

[image: Handlers are lined-up one by one, forming a chain]
Han­dlers are lined up one by one, form­ing a chain.

How­ev­er, there’s a slight­ly dif­fer­ent approach (and it’s a bit more canon­i­cal) in which, upon receiv­ing a request, a han­dler decides whether it can process it. If it can, it doesn’t pass the request any fur­ther. So it’s either only one han­dler that process­es the request or none at all. This approach is very com­mon when deal­ing with events in stacks of ele­ments with­in a graph­i­cal user interface.

For instance, when a user clicks a but­ton, the event prop­a­gates through the chain of GUI ele­ments that starts with the but­ton, goes along its con­tain­ers (like forms or pan­els), and ends up with the main appli­ca­tion win­dow. The event is processed by the first ele­ment in the chain that’s capa­ble of han­dling it. This exam­ple is also note­wor­thy because it shows that a chain can always be extract­ed from an object tree.

[image: A chain can be formed from a branch of an object tree]
A chain can be formed from a branch of an object tree.

It’s cru­cial that all han­dler class­es imple­ment the same inter­face. Each con­crete han­dler should only care about the fol­low­ing one hav­ing the execute method. This way you can com­pose chains at run­time, using var­i­ous han­dlers with­out cou­pling your code to their con­crete classes.

 Real-World Anal­o­gy

[image: Talking with tech support can be hard]
A call to tech sup­port can go through mul­ti­ple operators.

You’ve just bought and installed a new piece of hard­ware on your com­put­er. Since you’re a geek, the com­put­er has sev­er­al oper­at­ing sys­tems installed. You try to boot all of them to see whether the hard­ware is sup­port­ed. Win­dows detects and enables the hard­ware auto­mat­i­cal­ly. How­ev­er, your beloved Linux refus­es to work with the new hard­ware. With a small flick­er of hope, you decide to call the tech-sup­port phone num­ber writ­ten on the box.

The first thing you hear is the robot­ic voice of the autore­spon­der. It sug­gests nine pop­u­lar solu­tions to var­i­ous prob­lems, none of which are rel­e­vant to your case. After a while, the robot con­nects you to a live operator.

Alas, the oper­a­tor isn’t able to sug­gest any­thing spe­cif­ic either. He keeps quot­ing lengthy excerpts from the man­u­al, refus­ing to lis­ten to your com­ments. After hear­ing the phrase “have you tried turn­ing the com­put­er off and on again?” for the 10th time, you demand to be con­nect­ed to a prop­er engineer.

Even­tu­al­ly, the oper­a­tor pass­es your call to one of the engi­neers, who had prob­a­bly longed for a live human chat for hours as he sat in his lone­ly serv­er room in the dark base­ment of some office build­ing. The engi­neer tells you where to down­load prop­er dri­vers for your new hard­ware and how to install them on Linux. Final­ly, the solu­tion! You end the call, burst­ing with joy.

 Struc­ture

[image: Structure of the Chain Of Responsibility design pattern]

	
The Han­dler declares the inter­face, com­mon for all con­crete han­dlers. It usu­al­ly con­tains just a sin­gle method for han­dling requests, but some­times it may also have anoth­er method for set­ting the next han­dler on the chain.

	
The Base Han­dler is an option­al class where you can put the boil­er­plate code that’s com­mon to all han­dler classes.

Usu­al­ly, this class defines a field for stor­ing a ref­er­ence to the next han­dler. The clients can build a chain by pass­ing a han­dler to the con­struc­tor or set­ter of the pre­vi­ous han­dler. The class may also imple­ment the default han­dling behav­ior: it can pass exe­cu­tion to the next han­dler after check­ing for its existence.

	
Con­crete Han­dlers con­tain the actu­al code for pro­cess­ing requests. Upon receiv­ing a request, each han­dler must decide whether to process it and, addi­tion­al­ly, whether to pass it along the chain.

Han­dlers are usu­al­ly self-con­tained and immutable, accept­ing all nec­es­sary data just once via the constructor.

	
The Client may com­pose chains just once or com­pose them dynam­i­cal­ly, depend­ing on the appli­ca­tion’s logic. Note that a request can be sent to any han­dler in the chain—it doesn’t have to be the first one.

 Pseudocode

In this exam­ple, the Chain of Respon­si­bil­i­ty pat­tern is respon­si­ble for dis­play­ing con­tex­tu­al help infor­ma­tion for active GUI elements.

[image: Structure of the Chain of Responsibility example]
The GUI class­es are built with the Com­pos­ite pat­tern. Each ele­ment is linked to its con­tain­er ele­ment. At any point, you can build a chain of ele­ments that starts with the ele­ment itself and goes through all of its con­tain­er elements.

The appli­ca­tion’s GUI is usu­al­ly struc­tured as an object tree. For exam­ple, the Dialog class, which ren­ders the main win­dow of the app, would be the root of the object tree. The dia­log con­tains Panels, which might con­tain other pan­els or sim­ple low-level ele­ments like Buttons and TextFields.

A sim­ple com­po­nent can show brief con­tex­tu­al tooltips, as long as the com­po­nent has some help text assigned. But more com­plex com­po­nents define their own way of show­ing con­tex­tu­al help, such as show­ing an excerpt from the man­u­al or open­ing a page in a browser.

[image: Structure of the Chain of Responsibility example]
That’s how a help request tra­vers­es GUI objects.

When a user points the mouse cur­sor at an ele­ment and press­es the F1 key, the appli­ca­tion detects the com­po­nent under the point­er and sends it a help request. The request bub­bles up through all the ele­ment’s con­tain­ers until it reach­es the ele­ment that’s capa­ble of dis­play­ing the help information.

// The handler interface declares a method for building a chain

// of handlers. It also declares a method for executing a

// request.

interface ComponentWithContextualHelp is

 method showHelp()

// The base class for simple components.

abstract class Component implements ComponentWithContextualHelp is

 field tooltipText: string

 // The component's container acts as the next link in the

 // chain of handlers.

 protected field container: Container

 // The component shows a tooltip if there's help text

 // assigned to it. Otherwise it forwards the call to the

 // container, if it exists.

 method showHelp() is

 if (tooltipText != null)

 // Show tooltip.

 else

 container.showHelp()

// Containers can contain both simple components and other

// containers as children. The chain relationships are

// established here. The class inherits showHelp behavior from

// its parent.

abstract class Container extends Component is

 protected field children: array of Component

 method add(child) is

 children.add(child)

 child.container = this

// Primitive components may be fine with default help

// implementation...

class Button extends Component is

 // ...

// But complex components may override the default

// implementation. If the help text can't be provided in a new

// way, the component can always call the base implementation

// (see Component class).

class Panel extends Container is

 field modalHelpText: string

 method showHelp() is

 if (modalHelpText != null)

 // Show a modal window with the help text.

 else

 super.showHelp()

// ...same as above...

class Dialog extends Container is

 field wikiPageURL: string

 method showHelp() is

 if (wikiPageURL != null)

 // Open the wiki help page.

 else

 super.showHelp()

// Client code.

class Application is

 // Every application configures the chain differently.

 method createUI() is

 dialog = new Dialog("Budget Reports")

 dialog.wikiPageURL = "http://..."

 panel = new Panel(0, 0, 400, 800)

 panel.modalHelpText = "This panel does..."

 ok = new Button(250, 760, 50, 20, "OK")

 ok.tooltipText = "This is an OK button that..."

 cancel = new Button(320, 760, 50, 20, "Cancel")

 // ...

 panel.add(ok)

 panel.add(cancel)

 dialog.add(panel)

 // Imagine what happens here.

 method onF1KeyPress() is

 component = this.getComponentAtMouseCoords()

 component.showHelp()

 Applic­a­bil­i­ty

 Use the Chain of Respon­si­bil­i­ty pat­tern when your pro­gram is expect­ed to process dif­fer­ent kinds of requests in var­i­ous ways, but the exact types of requests and their sequences are unknown beforehand.

 The pat­tern lets you link sev­er­al han­dlers into one chain and, upon receiv­ing a request, “ask” each han­dler whether it can process it. This way all han­dlers get a chance to process the request.

 Use the pat­tern when it’s essen­tial to exe­cute sev­er­al han­dlers in a par­tic­u­lar order.

 Since you can link the han­dlers in the chain in any order, all requests will get through the chain exact­ly as you planned.

 Use the CoR pat­tern when the set of han­dlers and their order are sup­posed to change at runtime.

 If you pro­vide set­ters for a ref­er­ence field inside the han­dler class­es, you’ll be able to insert, remove or reorder han­dlers dynamically.

 How to Imple­ment

	
Declare the han­dler inter­face and describe the sig­na­ture of a method for han­dling requests.

Decide how the client will pass the request data into the method. The most flex­i­ble way is to con­vert the request into an object and pass it to the han­dling method as an argument.

	
To elim­i­nate dupli­cate boil­er­plate code in con­crete han­dlers, it might be worth cre­at­ing an abstract base han­dler class, derived from the han­dler interface.

This class should have a field for stor­ing a ref­er­ence to the next han­dler in the chain. Con­sid­er mak­ing the class immutable. How­ev­er, if you plan to mod­i­fy chains at run­time, you need to define a set­ter for alter­ing the value of the ref­er­ence field.

You can also imple­ment the con­ve­nient default behav­ior for the han­dling method, which is to for­ward the request to the next object unless there’s none left. Con­crete han­dlers will be able to use this behav­ior by call­ing the par­ent method.

	
One by one cre­ate con­crete han­dler sub­class­es and imple­ment their han­dling meth­ods. Each han­dler should make two deci­sions when receiv­ing a request:

	Whether it’ll process the request.

	Whether it’ll pass the request along the chain.

	
The client may either assem­ble chains on its own or receive pre-built chains from other objects. In the lat­ter case, you must imple­ment some fac­to­ry class­es to build chains accord­ing to the con­fig­u­ra­tion or envi­ron­ment settings.

	
The client may trig­ger any han­dler in the chain, not just the first one. The request will be passed along the chain until some han­dler refus­es to pass it fur­ther or until it reach­es the end of the chain.

	
Due to the dynam­ic nature of the chain, the client should be ready to han­dle the fol­low­ing scenarios:

	The chain may con­sist of a sin­gle link.

	Some requests may not reach the end of the chain.

	Oth­ers may reach the end of the chain unhandled.

 Pros and Cons

	
 You can con­trol the order of request handling.

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can decou­ple class­es that invoke oper­a­tions from class­es that per­form operations.

	
 Open/Closed Prin­ci­ple. You can intro­duce new han­dlers into the app with­out break­ing the exist­ing client code.

	
 Some requests may end up unhandled.

 Rela­tions with Other Pat­terns

	
Chain of Respon­si­bil­i­ty, Com­mand, Medi­a­tor and Observ­er address var­i­ous ways of con­nect­ing senders and receivers of requests:

	
Chain of Respon­si­bil­i­ty pass­es a request sequen­tial­ly along a dynam­ic chain of poten­tial receivers until one of them han­dles it.

	
Com­mand estab­lish­es uni­di­rec­tion­al con­nec­tions between senders and receivers.

	
Medi­a­tor elim­i­nates direct con­nec­tions between senders and receivers, forc­ing them to com­mu­ni­cate indi­rect­ly via a medi­a­tor object.

	
Observ­er lets receivers dynam­i­cal­ly sub­scribe to and unsub­scribe from receiv­ing requests.

	
Chain of Respon­si­bil­i­ty is often used in con­junc­tion with Com­pos­ite. In this case, when a leaf com­po­nent gets a request, it may pass it through the chain of all of the par­ent com­po­nents down to the root of the object tree.

	
Han­dlers in Chain of Respon­si­bil­i­ty can be imple­ment­ed as Com­mands. In this case, you can exe­cute a lot of dif­fer­ent oper­a­tions over the same con­text object, rep­re­sent­ed by a request.

How­ev­er, there’s anoth­er approach, where the request itself is a Com­mand object. In this case, you can exe­cute the same oper­a­tion in a series of dif­fer­ent con­texts linked into a chain.

	
Chain of Respon­si­bil­i­ty and Dec­o­ra­tor have very sim­i­lar class struc­tures. Both pat­terns rely on recur­sive com­po­si­tion to pass the exe­cu­tion through a series of objects. How­ev­er, there are sev­er­al cru­cial differences.

The CoR han­dlers can exe­cute arbi­trary oper­a­tions inde­pen­dent­ly of each other. They can also stop pass­ing the request fur­ther at any point. On the other hand, var­i­ous Dec­o­ra­tors can extend the object’s behav­ior while keep­ing it con­sis­tent with the base inter­face. In addi­tion, dec­o­ra­tors aren’t allowed to break the flow of the request.

[image: Command design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Command

 Also known as: Action, Transaction

Com­mand is a behav­ioral design pat­tern that turns a request into a stand-alone object that con­tains all infor­ma­tion about the request. This trans­for­ma­tion lets you pass requests as a method argu­ments, delay or queue a request’s exe­cu­tion, and sup­port undoable operations.

 Prob­lem

Imag­ine that you’re work­ing on a new text-edi­tor app. Your cur­rent task is to cre­ate a tool­bar with a bunch of but­tons for var­i­ous oper­a­tions of the edi­tor. You cre­at­ed a very neat Button class that can be used for but­tons on the tool­bar, as well as for gener­ic but­tons in var­i­ous dialogs.

[image: Problem solved by the Command pattern]
All but­tons of the app are derived from the same class.

While all of these but­tons look sim­i­lar, they’re all sup­posed to do dif­fer­ent things. Where would you put the code for the var­i­ous click han­dlers of these but­tons? The sim­plest solu­tion is to cre­ate tons of sub­class­es for each place where the but­ton is used. These sub­class­es would con­tain the code that would have to be exe­cut­ed on a but­ton click.

[image: Lots of button subclasses]
Lots of but­ton sub­class­es. What can go wrong?

Before long, you real­ize that this approach is deeply flawed. First, you have an enor­mous num­ber of sub­class­es, and that would be okay if you weren’t risk­ing break­ing the code in these sub­class­es each time you mod­i­fy the base Button class. Put sim­ply, your GUI code has become awk­ward­ly depen­dent on the volatile code of the busi­ness logic.

[image: Several classes implement the same functionality]
Sev­er­al class­es imple­ment the same func­tion­al­i­ty.

And here’s the ugli­est part. Some oper­a­tions, such as copy­ing/past­ing text, would need to be invoked from mul­ti­ple places. For exam­ple, a user could click a small “Copy” but­ton on the tool­bar, or copy some­thing via the con­text menu, or just hit Ctrl+C on the keyboard.

Ini­tial­ly, when our app only had the tool­bar, it was okay to place the imple­men­ta­tion of var­i­ous oper­a­tions into the but­ton sub­class­es. In other words, hav­ing the code for copy­ing text inside the CopyButton sub­class was fine. But then, when you imple­ment con­text menus, short­cuts, and other stuff, you have to either dupli­cate the oper­a­tion’s code in many class­es or make menus depen­dent on but­tons, which is an even worse option.

 Solu­tion

Good soft­ware design is often based on the prin­ci­ple of sep­a­ra­tion of con­cerns, which usu­al­ly results in break­ing an app into lay­ers. The most com­mon exam­ple: a layer for the graph­i­cal user inter­face and anoth­er layer for the busi­ness logic. The GUI layer is respon­si­ble for ren­der­ing a beau­ti­ful pic­ture on the screen, cap­tur­ing any input and show­ing results of what the user and the app are doing. How­ev­er, when it comes to doing some­thing impor­tant, like cal­cu­lat­ing the tra­jec­to­ry of the moon or com­pos­ing an annu­al report, the GUI layer del­e­gates the work to the under­ly­ing layer of busi­ness logic.

In the code it might look like this: a GUI object calls a method of a busi­ness logic object, pass­ing it some argu­ments. This process is usu­al­ly described as one object send­ing anoth­er a request.

[image: The GUI layer may access the business logic layer directly]
The GUI objects may access the busi­ness logic objects directly.

The Com­mand pat­tern sug­gests that GUI objects shouldn’t send these requests direct­ly. Instead, you should extract all of the request details, such as the object being called, the name of the method and the list of argu­ments into a sep­a­rate com­mand class with a sin­gle method that trig­gers this request.

Com­mand objects serve as links between var­i­ous GUI and busi­ness logic objects. From now on, the GUI object doesn’t need to know what busi­ness logic object will receive the request and how it’ll be processed. The GUI object just trig­gers the com­mand, which han­dles all the details.

[image: Accessing the business logic layer via a command.]
Access­ing the busi­ness logic layer via a command.

The next step is to make your com­mands imple­ment the same inter­face. Usu­al­ly it has just a sin­gle exe­cu­tion method that takes no para­me­ters. This inter­face lets you use var­i­ous com­mands with the same request sender, with­out cou­pling it to con­crete class­es of com­mands. As a bonus, now you can switch com­mand objects linked to the sender, effec­tive­ly chang­ing the sender’s behav­ior at runtime.

You might have noticed one miss­ing piece of the puz­zle, which is the request para­me­ters. A GUI object might have sup­plied the busi­ness-layer object with some para­me­ters. Since the com­mand exe­cu­tion method doesn’t have any para­me­ters, how would we pass the request details to the receiv­er? It turns out the com­mand should be either pre-con­fig­ured with this data, or capa­ble of get­ting it on its own.

[image: The GUI objects delegate the work to commands]
The GUI objects del­e­gate the work to commands.

Let’s get back to our text edi­tor. After we apply the Com­mand pat­tern, we no longer need all those but­ton sub­class­es to imple­ment var­i­ous click behav­iors. It’s enough to put a sin­gle field into the base Button class that stores a ref­er­ence to a com­mand object and make the but­ton exe­cute that com­mand on a click.

You’ll imple­ment a bunch of com­mand class­es for every pos­si­ble oper­a­tion and link them with par­tic­u­lar but­tons, depend­ing on the but­tons’ intend­ed behavior.

Other GUI ele­ments, such as menus, short­cuts or entire dialogs, can be imple­ment­ed in the same way. They’ll be linked to a com­mand which gets exe­cut­ed when a user inter­acts with the GUI ele­ment. As you’ve prob­a­bly guessed by now, the ele­ments relat­ed to the same oper­a­tions will be linked to the same com­mands, pre­vent­ing any code duplication.

As a result, com­mands become a con­ve­nient mid­dle layer that reduces cou­pling between the GUI and busi­ness logic lay­ers. And that’s only a frac­tion of the ben­e­fits that the Com­mand pat­tern can offer!

 Real-World Anal­o­gy

[image: Making an order in a restaurant]
Mak­ing an order in a restaurant.

After a long walk through the city, you get to a nice restau­rant and sit at the table by the win­dow. A friend­ly wait­er approach­es you and quick­ly takes your order, writ­ing it down on a piece of paper. The wait­er goes to the kitchen and sticks the order on the wall. After a while, the order gets to the chef, who reads it and cooks the meal accord­ing­ly. The cook places the meal on a tray along with the order. The wait­er dis­cov­ers the tray, checks the order to make sure every­thing is as you want­ed it, and brings every­thing to your table.

The paper order serves as a com­mand. It remains in a queue until the chef is ready to serve it. The order con­tains all the rel­e­vant infor­ma­tion required to cook the meal. It allows the chef to start cook­ing right away instead of run­ning around clar­i­fy­ing the order details from you directly.

 Struc­ture

[image: Structure of the Command design pattern]

	
The Sender class (aka invok­er) is respon­si­ble for ini­ti­at­ing requests. This class must have a field for stor­ing a ref­er­ence to a com­mand object. The sender trig­gers that com­mand instead of send­ing the request direct­ly to the receiv­er. Note that the sender isn’t respon­si­ble for cre­at­ing the com­mand object. Usu­al­ly, it gets a pre-cre­at­ed com­mand from the client via the constructor.

	
The Com­mand inter­face usu­al­ly declares just a sin­gle method for exe­cut­ing the command.

	
Con­crete Com­mands imple­ment var­i­ous kinds of requests. A con­crete com­mand isn’t sup­posed to per­form the work on its own, but rather to pass the call to one of the busi­ness logic objects. How­ev­er, for the sake of sim­pli­fy­ing the code, these class­es can be merged.

Para­me­ters required to exe­cute a method on a receiv­ing object can be declared as fields in the con­crete com­mand. You can make com­mand objects immutable by only allow­ing the ini­tial­iza­tion of these fields via the constructor.

	
The Receiv­er class con­tains some busi­ness logic. Almost any object may act as a receiv­er. Most com­mands only han­dle the details of how a request is passed to the receiv­er, while the receiv­er itself does the actu­al work.

	
The Client cre­ates and con­fig­ures con­crete com­mand objects. The client must pass all of the request para­me­ters, includ­ing a receiv­er instance, into the com­mand’s con­struc­tor. After that, the result­ing com­mand may be asso­ci­at­ed with one or mul­ti­ple senders.

 Pseudocode

In this exam­ple, the Com­mand pat­tern helps to track the his­to­ry of exe­cut­ed oper­a­tions and makes it pos­si­ble to revert an oper­a­tion if needed.

[image: Structure of the Command pattern example]
Undoable oper­a­tions in a text editor.

Com­mands which result in chang­ing the state of the edi­tor (e.g., cut­ting and past­ing) make a back­up copy of the edi­tor’s state before exe­cut­ing an oper­a­tion asso­ci­at­ed with the com­mand. After a com­mand is exe­cut­ed, it’s placed into the com­mand his­to­ry (a stack of com­mand objects) along with the back­up copy of the edi­tor’s state at that point. Later, if the user needs to revert an oper­a­tion, the app can take the most recent com­mand from the his­to­ry, read the asso­ci­at­ed back­up of the edi­tor’s state, and restore it.

The client code (GUI ele­ments, com­mand his­to­ry, etc.) isn’t cou­pled to con­crete com­mand class­es because it works with com­mands via the com­mand inter­face. This approach lets you intro­duce new com­mands into the app with­out break­ing any exist­ing code.

// The base command class defines the common interface for all

// concrete commands.

abstract class Command is

 protected field app: Application

 protected field editor: Editor

 protected field backup: text

 constructor Command(app: Application, editor: Editor) is

 this.app = app

 this.editor = editor

 // Make a backup of the editor's state.

 method saveBackup() is

 backup = editor.text

 // Restore the editor's state.

 method undo() is

 editor.text = backup

 // The execution method is declared abstract to force all

 // concrete commands to provide their own implementations.

 // The method must return true or false depending on whether

 // the command changes the editor's state.

 abstract method execute()

// The concrete commands go here.

class CopyCommand extends Command is

 // The copy command isn't saved to the history since it

 // doesn't change the editor's state.

 method execute() is

 app.clipboard = editor.getSelection()

 return false

class CutCommand extends Command is

 // The cut command does change the editor's state, therefore

 // it must be saved to the history. And it'll be saved as

 // long as the method returns true.

 method execute() is

 saveBackup()

 app.clipboard = editor.getSelection()

 editor.deleteSelection()

 return true

class PasteCommand extends Command is

 method execute() is

 saveBackup()

 editor.replaceSelection(app.clipboard)

 return true

// The undo operation is also a command.

class UndoCommand extends Command is

 method execute() is

 app.undo()

 return false

// The global command history is just a stack.

class CommandHistory is

 private field history: array of Command

 // Last in...

 method push(c: Command) is

 // Push the command to the end of the history array.

 // ...first out

 method pop():Command is

 // Get the most recent command from the history.

// The editor class has actual text editing operations. It plays

// the role of a receiver: all commands end up delegating

// execution to the editor's methods.

class Editor is

 field text: string

 method getSelection() is

 // Return selected text.

 method deleteSelection() is

 // Delete selected text.

 method replaceSelection(text) is

 // Insert the clipboard's contents at the current

 // position.

// The application class sets up object relations. It acts as a

// sender: when something needs to be done, it creates a command

// object and executes it.

class Application is

 field clipboard: string

 field editors: array of Editors

 field activeEditor: Editor

 field history: CommandHistory

 // The code which assigns commands to UI objects may look

 // like this.

 method createUI() is

 // ...

 copy = function() { executeCommand(

 new CopyCommand(this, activeEditor)) }

 copyButton.setCommand(copy)

 shortcuts.onKeyPress("Ctrl+C", copy)

 cut = function() { executeCommand(

 new CutCommand(this, activeEditor)) }

 cutButton.setCommand(cut)

 shortcuts.onKeyPress("Ctrl+X", cut)

 paste = function() { executeCommand(

 new PasteCommand(this, activeEditor)) }

 pasteButton.setCommand(paste)

 shortcuts.onKeyPress("Ctrl+V", paste)

 undo = function() { executeCommand(

 new UndoCommand(this, activeEditor)) }

 undoButton.setCommand(undo)

 shortcuts.onKeyPress("Ctrl+Z", undo)

 // Execute a command and check whether it has to be added to

 // the history.

 method executeCommand(command) is

 if (command.execute)

 history.push(command)

 // Take the most recent command from the history and run its

 // undo method. Note that we don't know the class of that

 // command. But we don't have to, since the command knows

 // how to undo its own action.

 method undo() is

 command = history.pop()

 if (command != null)

 command.undo()

 Applic­a­bil­i­ty

 Use the Com­mand pat­tern when you want to param­e­trize objects with operations.

 The Com­mand pat­tern can turn a spe­cif­ic method call into a stand-alone object. This change opens up a lot of inter­est­ing uses: you can pass com­mands as method argu­ments, store them inside other objects, switch linked com­mands at run­time, etc.

Here’s an exam­ple: you’re devel­op­ing a GUI com­po­nent such as a con­text menu, and you want your users to be able to con­fig­ure menu items that trig­ger oper­a­tions when an end user clicks an item.

 Use the Com­mand pat­tern when you want to queue oper­a­tions, sched­ule their exe­cu­tion, or exe­cute them remotely.

 As with any other object, a com­mand can be seri­al­ized, which means con­vert­ing it to a string that can be eas­i­ly writ­ten to a file or a data­base. Later, the string can be restored as the ini­tial com­mand object. Thus, you can delay and sched­ule com­mand exe­cu­tion. But there’s even more! In the same way, you can queue, log or send com­mands over the network.

 Use the Com­mand pat­tern when you want to imple­ment reversible operations.

 Although there are many ways to imple­ment undo/redo, the Com­mand pat­tern is per­haps the most pop­u­lar of all.

To be able to revert oper­a­tions, you need to imple­ment the his­to­ry of per­formed oper­a­tions. The com­mand his­to­ry is a stack that con­tains all exe­cut­ed com­mand objects along with relat­ed back­ups of the appli­ca­tion’s state.

This method has two draw­backs. First, it isn’t that easy to save an appli­ca­tion’s state because some of it can be pri­vate. This prob­lem can be mit­i­gat­ed with the Memen­to pattern.

Sec­ond, the state back­ups may con­sume quite a lot of RAM. There­fore, some­times you can resort to an alter­na­tive imple­men­ta­tion: instead of restor­ing the past state, the com­mand per­forms the inverse oper­a­tion. The reverse oper­a­tion also has a price: it may turn out to be hard or even impos­si­ble to implement.

 How to Imple­ment

	
Declare the com­mand inter­face with a sin­gle exe­cu­tion method.

	
Start extract­ing requests into con­crete com­mand class­es that imple­ment the com­mand inter­face. Each class must have a set of fields for stor­ing the request argu­ments along with a ref­er­ence to the actu­al receiv­er object. All these val­ues must be ini­tial­ized via the com­mand’s constructor.

	
Iden­ti­fy class­es that will act as senders. Add the fields for stor­ing com­mands into these class­es. Senders should com­mu­ni­cate with their com­mands only via the com­mand inter­face. Senders usu­al­ly don’t cre­ate com­mand objects on their own, but rather get them from the client code.

	
Change the senders so they exe­cute the com­mand instead of send­ing a request to the receiv­er directly.

	
The client should ini­tial­ize objects in the fol­low­ing order:

	Cre­ate receivers.

	Cre­ate com­mands, and as­so­ciate them with receivers if needed.

	Cre­ate senders, and as­so­ciate them with spe­cif­ic commands.

 Pros and Cons

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can decou­ple class­es that invoke oper­a­tions from class­es that per­form these operations.

	
 Open/Closed Prin­ci­ple. You can intro­duce new com­mands into the app with­out break­ing exist­ing client code.

	
 You can imple­ment undo/redo.

	
 You can imple­ment deferred exe­cu­tion of operations.

	
 You can assem­ble a set of sim­ple com­mands into a com­plex one.

	
 The code may become more com­pli­cat­ed since you’re intro­duc­ing a whole new layer between senders and receivers.

 Rela­tions with Other Pat­terns

	
Chain of Respon­si­bil­i­ty, Com­mand, Medi­a­tor and Observ­er address var­i­ous ways of con­nect­ing senders and receivers of requests:

	
Chain of Respon­si­bil­i­ty pass­es a request sequen­tial­ly along a dynam­ic chain of poten­tial receivers until one of them han­dles it.

	
Com­mand estab­lish­es uni­di­rec­tion­al con­nec­tions between senders and receivers.

	
Medi­a­tor elim­i­nates direct con­nec­tions between senders and receivers, forc­ing them to com­mu­ni­cate indi­rect­ly via a medi­a­tor object.

	
Observ­er lets receivers dynam­i­cal­ly sub­scribe to and unsub­scribe from receiv­ing requests.

	
Han­dlers in Chain of Respon­si­bil­i­ty can be imple­ment­ed as Com­mands. In this case, you can exe­cute a lot of dif­fer­ent oper­a­tions over the same con­text object, rep­re­sent­ed by a request.

How­ev­er, there’s anoth­er approach, where the request itself is a Com­mand object. In this case, you can exe­cute the same oper­a­tion in a series of dif­fer­ent con­texts linked into a chain.

	
You can use Com­mand and Memen­to togeth­er when imple­ment­ing “undo”. In this case, com­mands are respon­si­ble for per­form­ing var­i­ous oper­a­tions over a tar­get object, while memen­tos save the state of that object just before a com­mand gets executed.

	
Com­mand and Strat­e­gy may look sim­i­lar because you can use both to para­me­ter­ize an object with some action. How­ev­er, they have very dif­fer­ent intents.

	
You can use Com­mand to con­vert any oper­a­tion into an object. The oper­a­tion’s para­me­ters become fields of that object. The con­ver­sion lets you defer exe­cu­tion of the oper­a­tion, queue it, store the his­to­ry of com­mands, send com­mands to remote ser­vices, etc.

	
On the other hand, Strat­e­gy usu­al­ly describes dif­fer­ent ways of doing the same thing, let­ting you swap these algo­rithms with­in a sin­gle con­text class.

	
Pro­to­type can help when you need to save copies of Com­mands into history.

	
You can treat Vis­i­tor as a pow­er­ful ver­sion of the Com­mand pat­tern. Its objects can exe­cute oper­a­tions over var­i­ous objects of dif­fer­ent classes.

[image: Iterator design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Iterator

Iter­a­tor is a behav­ioral design pat­tern that lets you tra­verse ele­ments of a col­lec­tion with­out expos­ing its under­ly­ing rep­re­sen­ta­tion (list, stack, tree, etc.).

 Prob­lem

Col­lec­tions are one of the most used data types in pro­gram­ming. Nonethe­less, a col­lec­tion is just a con­tain­er for a group of objects.

[image: Various types of collections]
Var­i­ous types of collections.

Most col­lec­tions store their ele­ments in sim­ple lists. How­ev­er, some of them are based on stacks, trees, graphs and other com­plex data structures.

But no mat­ter how a col­lec­tion is struc­tured, it must pro­vide some way of access­ing its ele­ments so that other code can use these ele­ments. There should be a way to go through each ele­ment of the col­lec­tion with­out access­ing the same ele­ments over and over.

This may sound like an easy job if you have a col­lec­tion based on a list. You just loop over all of the ele­ments. But how do you sequen­tial­ly tra­verse ele­ments of a com­plex data struc­ture, such as a tree? For exam­ple, one day you might be just fine with depth-first tra­ver­sal of a tree. Yet the next day you might require breadth-first tra­ver­sal. And the next week, you might need some­thing else, like ran­dom access to the tree elements.

[image: Various traversal algorithms]
The same col­lec­tion can be tra­versed in sev­er­al dif­fer­ent ways.

Adding more and more tra­ver­sal algo­rithms to the col­lec­tion grad­u­al­ly blurs its pri­ma­ry respon­si­bil­i­ty, which is effi­cient data stor­age. Addi­tion­al­ly, some algo­rithms might be tai­lored for a spe­cif­ic appli­ca­tion, so includ­ing them into a gener­ic col­lec­tion class would be weird.

On the other hand, the client code that’s sup­posed to work with var­i­ous col­lec­tions may not even care how they store their ele­ments. How­ev­er, since col­lec­tions all pro­vide dif­fer­ent ways of access­ing their ele­ments, you have no option other than to cou­ple your code to the spe­cif­ic col­lec­tion classes.

 Solu­tion

The main idea of the Iter­a­tor pat­tern is to extract the tra­ver­sal behav­ior of a col­lec­tion into a sep­a­rate object called an iter­a­tor.

[image: Iterators implement various traversal algorithms]
Iter­a­tors imple­ment var­i­ous tra­ver­sal algo­rithms. Sev­er­al iter­a­tor objects can tra­verse the same col­lec­tion at the same time.

In addi­tion to imple­ment­ing the algo­rithm itself, an iter­a­tor object encap­su­lates all of the tra­ver­sal details, such as the cur­rent posi­tion and how many ele­ments are left till the end. Because of this, sev­er­al iter­a­tors can go through the same col­lec­tion at the same time, inde­pen­dent­ly of each other.

Usu­al­ly, iter­a­tors pro­vide one pri­ma­ry method for fetch­ing ele­ments of the col­lec­tion. The client can keep run­ning this method until it doesn’t return any­thing, which means that the iter­a­tor has tra­versed all of the elements.

All iter­a­tors must imple­ment the same inter­face. This makes the client code com­pat­i­ble with any col­lec­tion type or any tra­ver­sal algo­rithm as long as there’s a prop­er iter­a­tor. If you need a spe­cial way to tra­verse a col­lec­tion, you just cre­ate a new iter­a­tor class, with­out hav­ing to change the col­lec­tion or the client.

 Real-World Anal­o­gy

[image: Various ways to walk around Rome]
Var­i­ous ways to walk around Rome.

You plan to visit Rome for a few days and visit all of its main sights and attrac­tions. But once there, you could waste a lot of time walk­ing in cir­cles, unable to find even the Colosseum.

On the other hand, you could buy a vir­tu­al guide app for your smart­phone and use it for nav­i­ga­tion. It’s smart and inex­pen­sive, and you could be stay­ing at some inter­est­ing places for as long as you want.

A third alter­na­tive is that you could spend some of the trip’s bud­get and hire a local guide who knows the city like the back of his hand. The guide would be able to tai­lor the tour to your lik­ings, show you every attrac­tion and tell a lot of excit­ing sto­ries. That’ll be even more fun; but, alas, more expen­sive, too.

All of these options—the ran­dom direc­tions born in your head, the smart­phone nav­i­ga­tor or the human guide—act as iter­a­tors over the vast col­lec­tion of sights and attrac­tions locat­ed in Rome.

 Struc­ture

[image: Structure of the Iterator design pattern]

	
The Iter­a­tor inter­face declares the oper­a­tions required for tra­vers­ing a col­lec­tion: fetch­ing the next ele­ment, retriev­ing the cur­rent posi­tion, restart­ing iter­a­tion, etc.

	
Con­crete Iter­a­tors imple­ment spe­cif­ic algo­rithms for tra­vers­ing a col­lec­tion. The iter­a­tor object should track the tra­ver­sal progress on its own. This allows sev­er­al iter­a­tors to tra­verse the same col­lec­tion inde­pen­dent­ly of each other.

	
The Col­lec­tion inter­face declares one or mul­ti­ple meth­ods for get­ting iter­a­tors com­pat­i­ble with the col­lec­tion. Note that the return type of the meth­ods must be declared as the iter­a­tor inter­face so that the con­crete col­lec­tions can return var­i­ous kinds of iterators.

	
Con­crete Col­lec­tions return new instances of a par­tic­u­lar con­crete iter­a­tor class each time the client requests one. You might be won­der­ing, where’s the rest of the col­lec­tion’s code? Don’t worry, it should be in the same class. It’s just that these details aren’t cru­cial to the actu­al pat­tern, so we’re omit­ting them.

	
The Client works with both col­lec­tions and iter­a­tors via their inter­faces. This way the client isn’t cou­pled to con­crete class­es, allow­ing you to use var­i­ous col­lec­tions and iter­a­tors with the same client code.

Typ­i­cal­ly, clients don’t cre­ate iter­a­tors on their own, but instead get them from col­lec­tions. Yet, in cer­tain cases, the client can cre­ate one direct­ly; for exam­ple, when the client defines its own spe­cial iterator.

 Pseudocode

In this exam­ple, the Iter­a­tor pat­tern is used to walk through a spe­cial kind of col­lec­tion which encap­su­lates access to Face­book’s social graph. The col­lec­tion pro­vides sev­er­al iter­a­tors that can tra­verse pro­files in var­i­ous ways.

[image: Structure of the Iterator pattern example]
Exam­ple of iter­at­ing over social profiles.

The ‘friends’ iter­a­tor can be used to go over the friends of a given pro­file. The ‘col­leagues’ iter­a­tor does the same, except it omits friends who don’t work at the same com­pa­ny as a tar­get per­son. Both iter­a­tors imple­ment a com­mon inter­face which allows clients to fetch pro­files with­out div­ing into imple­men­ta­tion details such as authen­ti­ca­tion and send­ing REST requests.

The client code isn’t cou­pled to con­crete class­es because it works with col­lec­tions and iter­a­tors only through inter­faces. If you decide to con­nect your app to a new social net­work, you sim­ply need to pro­vide new col­lec­tion and iter­a­tor class­es with­out chang­ing the exist­ing code.

// The collection interface must declare a factory method for

// producing iterators. You can declare several methods if there

// are different kinds of iteration available in your program.

interface SocialNetwork is

 method createFriendsIterator(profileId):ProfileIterator

 method createCoworkersIterator(profileId):ProfileIterator

// Each concrete collection is coupled to a set of concrete

// iterator classes it returns. But the client isn't, since the

// signature of these methods returns iterator interfaces.

class Facebook implements SocialNetwork is

 // ... The bulk of the collection's code should go here ...

 // Iterator creation code.

 method createFriendsIterator(profileId) is

 return new FacebookIterator(this, profileId, "friends")

 method createCoworkersIterator(profileId) is

 return new FacebookIterator(this, profileId, "coworkers")

// The common interface for all iterators.

interface ProfileIterator is

 method getNext():Profile

 method hasMore():bool

// The concrete iterator class.

class FacebookIterator implements ProfileIterator is

 // The iterator needs a reference to the collection that it

 // traverses.

 private field facebook: Facebook

 private field profileId, type: string

 // An iterator object traverses the collection independently

 // from other iterators. Therefore it has to store the

 // iteration state.

 private field currentPosition

 private field cache: array of Profile

 constructor FacebookIterator(facebook, profileId, type) is

 this.facebook = facebook

 this.profileId = profileId

 this.type = type

 private method lazyInit() is

 if (cache == null)

 cache = facebook.socialGraphRequest(profileId, type)

 // Each concrete iterator class has its own implementation

 // of the common iterator interface.

 method getNext() is

 if (hasMore())

 currentPosition++

 return cache[currentPosition]

 method hasMore() is

 lazyInit()

 return currentPosition < cache.length

// Here is another useful trick: you can pass an iterator to a

// client class instead of giving it access to a whole

// collection. This way, you don't expose the collection to the

// client.

//

// And there's another benefit: you can change the way the

// client works with the collection at runtime by passing it a

// different iterator. This is possible because the client code

// isn't coupled to concrete iterator classes.

class SocialSpammer is

 method send(iterator: ProfileIterator, message: string) is

 while (iterator.hasMore())

 profile = iterator.getNext()

 System.sendEmail(profile.getEmail(), message)

// The application class configures collections and iterators

// and then passes them to the client code.

class Application is

 field network: SocialNetwork

 field spammer: SocialSpammer

 method config() is

 if working with Facebook

 this.network = new Facebook()

 if working with LinkedIn

 this.network = new LinkedIn()

 this.spammer = new SocialSpammer()

 method sendSpamToFriends(profile) is

 iterator = network.createFriendsIterator(profile.getId())

 spammer.send(iterator, "Very important message")

 method sendSpamToCoworkers(profile) is

 iterator = network.createCoworkersIterator(profile.getId())

 spammer.send(iterator, "Very important message")

 Applic­a­bil­i­ty

 Use the Iter­a­tor pat­tern when your col­lec­tion has a com­plex data struc­ture under the hood, but you want to hide its com­plex­i­ty from clients (either for con­ve­nience or secu­ri­ty reasons).

 The iter­a­tor encap­su­lates the details of work­ing with a com­plex data struc­ture, pro­vid­ing the client with sev­er­al sim­ple meth­ods of access­ing the col­lec­tion ele­ments. While this approach is very con­ve­nient for the client, it also pro­tects the col­lec­tion from care­less or mali­cious actions which the client would be able to per­form if work­ing with the col­lec­tion directly.

 Use the pat­tern to reduce dupli­ca­tion of the tra­ver­sal code across your app.

 The code of non-triv­ial iter­a­tion algo­rithms tends to be very bulky. When placed with­in the busi­ness logic of an app, it may blur the respon­si­bil­i­ty of the orig­i­nal code and make it less main­tain­able. Mov­ing the tra­ver­sal code to des­ig­nat­ed iter­a­tors can help you make the code of the appli­ca­tion more lean and clean.

 Use the Iter­a­tor when you want your code to be able to tra­verse dif­fer­ent data struc­tures or when types of these struc­tures are unknown beforehand.

 The pat­tern pro­vides a cou­ple of gener­ic inter­faces for both col­lec­tions and iter­a­tors. Given that your code now uses these inter­faces, it’ll still work if you pass it var­i­ous kinds of col­lec­tions and iter­a­tors that imple­ment these interfaces.

 How to Imple­ment

	
Declare the iter­a­tor inter­face. At the very least, it must have a method for fetch­ing the next ele­ment from a col­lec­tion. But for the sake of con­ve­nience you can add a cou­ple of other meth­ods, such as fetch­ing the pre­vi­ous ele­ment, track­ing the cur­rent posi­tion, and check­ing the end of the iteration.

	
Declare the col­lec­tion inter­face and describe a method for fetch­ing iter­a­tors. The return type should be equal to that of the iter­a­tor inter­face. You may declare sim­i­lar meth­ods if you plan to have sev­er­al dis­tinct groups of iterators.

	
Imple­ment con­crete iter­a­tor class­es for the col­lec­tions that you want to be tra­vers­a­ble with iter­a­tors. An iter­a­tor object must be linked with a sin­gle col­lec­tion instance. Usu­al­ly, this link is estab­lished via the iter­a­tor’s constructor.

	
Imple­ment the col­lec­tion inter­face in your col­lec­tion class­es. The main idea is to pro­vide the client with a short­cut for cre­at­ing iter­a­tors, tai­lored for a par­tic­u­lar col­lec­tion class. The col­lec­tion object must pass itself to the iter­a­tor’s con­struc­tor to estab­lish a link between them.

	
Go over the client code to replace all of the col­lec­tion tra­ver­sal code with the use of iter­a­tors. The client fetch­es a new iter­a­tor object each time it needs to iter­ate over the col­lec­tion elements.

 Pros and Cons

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can clean up the client code and the col­lec­tions by extract­ing bulky tra­ver­sal algo­rithms into sep­a­rate classes.

	
 Open/Closed Prin­ci­ple. You can imple­ment new types of col­lec­tions and iter­a­tors and pass them to exist­ing code with­out break­ing anything.

	
 You can iter­ate over the same col­lec­tion in par­al­lel because each iter­a­tor object con­tains its own iter­a­tion state.

	
 For the same rea­son, you can delay an iter­a­tion and con­tin­ue it when needed.

	
 Apply­ing the pat­tern can be an overkill if your app only works with sim­ple collections.

	
 Using an iter­a­tor may be less effi­cient than going through ele­ments of some spe­cial­ized col­lec­tions directly.

 Rela­tions with Other Pat­terns

	
You can use Iter­a­tors to tra­verse Com­pos­ite trees.

	
You can use Fac­to­ry Method along with Iter­a­tor to let col­lec­tion sub­class­es return dif­fer­ent types of iter­a­tors that are com­pat­i­ble with the collections.

	
You can use Memen­to along with Iter­a­tor to cap­ture the cur­rent iter­a­tion state and roll it back if necessary.

	
You can use Vis­i­tor along with Iter­a­tor to tra­verse a com­plex data struc­ture and exe­cute some oper­a­tion over its ele­ments, even if they all have dif­fer­ent classes.

[image: Mediator design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Mediator

 Also known as: Intermediary, Controller

Medi­a­tor is a behav­ioral design pat­tern that lets you reduce chaot­ic depen­den­cies between objects. The pat­tern restricts direct com­mu­ni­ca­tions between the objects and forces them to col­lab­o­rate only via a medi­a­tor object.

 Prob­lem

Say you have a dia­log for cre­at­ing and edit­ing cus­tomer pro­files. It con­sists of var­i­ous form con­trols such as text fields, check­box­es, but­tons, etc.

[image: Chaotic relations between elements of the user interface]
Rela­tions between ele­ments of the user inter­face can become chaot­ic as the appli­ca­tion evolves.

Some of the form ele­ments may inter­act with oth­ers. For instance, select­ing the “I have a dog” check­box may reveal a hid­den text field for enter­ing the dog’s name. Anoth­er exam­ple is the sub­mit but­ton that has to val­i­date val­ues of all fields before sav­ing the data.

[image: Elements of the UI are interdependent]
Ele­ments can have lots of rela­tions with other ele­ments. Hence, changes to some ele­ments may affect the others.

By hav­ing this logic imple­ment­ed direct­ly inside the code of the form ele­ments you make these ele­ments’ class­es much hard­er to reuse in other forms of the app. For exam­ple, you won’t be able to use that check­box class inside anoth­er form, because it’s cou­pled to the dog’s text field. You can use either all the class­es involved in ren­der­ing the pro­file form, or none at all.

 Solu­tion

The Medi­a­tor pat­tern sug­gests that you should cease all direct com­mu­ni­ca­tion between the com­po­nents which you want to make inde­pen­dent of each other. Instead, these com­po­nents must col­lab­o­rate indi­rect­ly, by call­ing a spe­cial medi­a­tor object that redi­rects the calls to appro­pri­ate com­po­nents. As a result, the com­po­nents depend only on a sin­gle medi­a­tor class instead of being cou­pled to dozens of their colleagues.

In our exam­ple with the pro­file edit­ing form, the dia­log class itself may act as the medi­a­tor. Most like­ly, the dia­log class is already aware of all of its sub-ele­ments, so you won’t even need to intro­duce new depen­den­cies into this class.

[image: UI elements should communicate via the mediator.]
UI ele­ments should com­mu­ni­cate indi­rect­ly, via the medi­a­tor object.

The most sig­nif­i­cant change hap­pens to the actu­al form ele­ments. Let’s con­sid­er the sub­mit but­ton. Pre­vi­ous­ly, each time a user clicked the but­ton, it had to val­i­date the val­ues of all indi­vid­ual form ele­ments. Now its sin­gle job is to noti­fy the dia­log about the click. Upon receiv­ing this noti­fi­ca­tion, the dia­log itself per­forms the val­i­da­tions or pass­es the task to the indi­vid­ual ele­ments. Thus, instead of being tied to a dozen form ele­ments, the but­ton is only depen­dent on the dia­log class.

You can go fur­ther and make the depen­den­cy even loos­er by extract­ing the com­mon inter­face for all types of dialogs. The inter­face would declare the noti­fi­ca­tion method which all form ele­ments can use to noti­fy the dia­log about events hap­pen­ing to those ele­ments. Thus, our sub­mit but­ton should now be able to work with any dia­log that imple­ments that interface.

This way, the Medi­a­tor pat­tern lets you encap­su­late a com­plex web of rela­tions between var­i­ous objects inside a sin­gle medi­a­tor object. The fewer depen­den­cies a class has, the eas­i­er it becomes to mod­i­fy, extend or reuse that class.

 Real-World Anal­o­gy

[image: Air traffic control tower]
Air­craft pilots don’t talk to each other direct­ly when decid­ing who gets to land their plane next. All com­mu­ni­ca­tion goes through the con­trol tower.

Pilots of air­craft that approach or depart the air­port con­trol area don’t com­mu­ni­cate direct­ly with each other. Instead, they speak to an air traf­fic con­troller, who sits in a tall tower some­where near the airstrip. With­out the air traf­fic con­troller, pilots would need to be aware of every plane in the vicin­i­ty of the air­port, dis­cussing land­ing pri­or­i­ties with a com­mit­tee of dozens of other pilots. That would prob­a­bly sky­rock­et the air­plane crash statistics.

The tower doesn’t need to con­trol the whole flight. It exists only to enforce con­straints in the ter­mi­nal area because the num­ber of involved actors there might be over­whelm­ing to a pilot.

 Struc­ture

[image: Structure of the Mediator design pattern]

	
Com­po­nents are var­i­ous class­es that con­tain some busi­ness logic. Each com­po­nent has a ref­er­ence to a medi­a­tor, declared with the type of the medi­a­tor inter­face. The com­po­nent isn’t aware of the actu­al class of the medi­a­tor, so you can reuse the com­po­nent in other pro­grams by link­ing it to a dif­fer­ent mediator.

	
The Medi­a­tor inter­face declares meth­ods of com­mu­ni­ca­tion with com­po­nents, which usu­al­ly include just a sin­gle noti­fi­ca­tion method. Com­po­nents may pass any con­text as argu­ments of this method, includ­ing their own objects, but only in such a way that no cou­pling occurs between a receiv­ing com­po­nent and the sender’s class.

	
Con­crete Medi­a­tors encap­su­late rela­tions between var­i­ous com­po­nents. Con­crete medi­a­tors often keep ref­er­ences to all com­po­nents they man­age and some­times even man­age their lifecycle.

	
Com­po­nents must not be aware of other com­po­nents. If some­thing impor­tant hap­pens with­in or to a com­po­nent, it must only noti­fy the medi­a­tor. When the medi­a­tor receives the noti­fi­ca­tion, it can eas­i­ly iden­ti­fy the sender, which might be just enough to decide what com­po­nent should be trig­gered in return.

From a com­po­nent’s per­spec­tive, it all looks like a total black box. The sender doesn’t know who’ll end up han­dling its request, and the receiv­er doesn’t know who sent the request in the first place.

 Pseudocode

In this exam­ple, the Medi­a­tor pat­tern helps you elim­i­nate mutu­al depen­den­cies between var­i­ous UI class­es: but­tons, check­box­es and text labels.

[image: Structure of the Mediator pattern example]
Struc­ture of the UI dia­log classes.

An ele­ment, trig­gered by a user, doesn’t com­mu­ni­cate with other ele­ments direct­ly, even if it looks like it’s sup­posed to. Instead, the ele­ment only needs to let its medi­a­tor know about the event, pass­ing any con­tex­tu­al info along with that notification.

In this exam­ple, the whole authen­ti­ca­tion dia­log acts as the medi­a­tor. It knows how con­crete ele­ments are sup­posed to col­lab­o­rate and facil­i­tates their indi­rect com­mu­ni­ca­tion. Upon receiv­ing a noti­fi­ca­tion about an event, the dia­log decides what ele­ment should address the event and redi­rects the call accordingly.

// The mediator interface declares a method used by components

// to notify the mediator about various events. The mediator may

// react to these events and pass the execution to other

// components.

interface Mediator is

 method notify(sender: Component, event: string)

// The concrete mediator class. The intertwined web of

// connections between individual components has been untangled

// and moved into the mediator.

class AuthenticationDialog implements Mediator is

 private field title: string

 private field loginOrRegisterChkBx: Checkbox

 private field loginUsername, loginPassword: Textbox

 private field registrationUsername, registrationPassword,

 registrationEmail: Textbox

 private field okBtn, cancelBtn: Button

 constructor AuthenticationDialog() is

 // Create all component objects and pass the current

 // mediator into their constructors to establish links.

 // When something happens with a component, it notifies the

 // mediator. Upon receiving a notification, the mediator may

 // do something on its own or pass the request to another

 // component.

 method notify(sender, event) is

 if (sender == loginOrRegisterChkBx and event == "check")

 if (loginOrRegisterChkBx.checked)

 title = "Log in"

 // 1. Show login form components.

 // 2. Hide registration form components.

 else

 title = "Register"

 // 1. Show registration form components.

 // 2. Hide login form components

 if (sender == okBtn && event == "click")

 if (loginOrRegister.checked)

 // Try to find a user using login credentials.

 if (!found)

 // Show an error message above the login

 // field.

 else

 // 1. Create a user account using data from the

 // registration fields.

 // 2. Log that user in.

 // ...

// Components communicate with a mediator using the mediator

// interface. Thanks to that, you can use the same components in

// other contexts by linking them with different mediator

// objects.

class Component is

 field dialog: Mediator

 constructor Component(dialog) is

 this.dialog = dialog

 method click() is

 dialog.notify(this, "click")

 method keypress() is

 dialog.notify(this, "keypress")

// Concrete components don't talk to each other. They have only

// one communication channel, which is sending notifications to

// the mediator.

class Button extends Component is

 // ...

class Textbox extends Component is

 // ...

class Checkbox extends Component is

 method check() is

 dialog.notify(this, "check")

 // ...

 Applic­a­bil­i­ty

 Use the Medi­a­tor pat­tern when it’s hard to change some of the class­es because they are tight­ly cou­pled to a bunch of other classes.

 The pat­tern lets you extract all the rela­tion­ships between class­es into a sep­a­rate class, iso­lat­ing any changes to a spe­cif­ic com­po­nent from the rest of the components.

 Use the pat­tern when you can’t reuse a com­po­nent in a dif­fer­ent pro­gram because it’s too depen­dent on other components.

 After you apply the Medi­a­tor, indi­vid­ual com­po­nents become unaware of the other com­po­nents. They could still com­mu­ni­cate with each other, albeit indi­rect­ly, through a medi­a­tor object. To reuse a com­po­nent in a dif­fer­ent app, you need to pro­vide it with a new medi­a­tor class.

 Use the Medi­a­tor when you find your­self cre­at­ing tons of com­po­nent sub­class­es just to reuse some basic behav­ior in var­i­ous contexts.

 Since all rela­tions between com­po­nents are con­tained with­in the medi­a­tor, it’s easy to define entire­ly new ways for these com­po­nents to col­lab­o­rate by intro­duc­ing new medi­a­tor class­es, with­out hav­ing to change the com­po­nents themselves.

 How to Imple­ment

	
Iden­ti­fy a group of tight­ly cou­pled class­es which would ben­e­fit from being more inde­pen­dent (e.g., for eas­i­er main­te­nance or sim­pler reuse of these classes).

	
Declare the medi­a­tor inter­face and describe the desired com­mu­ni­ca­tion pro­to­col between medi­a­tors and var­i­ous com­po­nents. In most cases, a sin­gle method for receiv­ing noti­fi­ca­tions from com­po­nents is sufficient.

This inter­face is cru­cial when you want to reuse com­po­nent class­es in dif­fer­ent con­texts. As long as the com­po­nent works with its medi­a­tor via the gener­ic inter­face, you can link the com­po­nent with a dif­fer­ent imple­men­ta­tion of the mediator.

	
Imple­ment the con­crete medi­a­tor class. This class would ben­e­fit from stor­ing ref­er­ences to all of the com­po­nents it manages.

	
You can go even fur­ther and make the medi­a­tor respon­si­ble for the cre­ation and destruc­tion of com­po­nent objects. After this, the medi­a­tor may resem­ble a fac­to­ry or a facade.

	
Com­po­nents should store a ref­er­ence to the medi­a­tor object. The con­nec­tion is usu­al­ly estab­lished in the com­po­nent’s con­struc­tor, where a medi­a­tor object is passed as an argument.

	
Change the com­po­nents’ code so that they call the medi­a­tor’s noti­fi­ca­tion method instead of meth­ods on other com­po­nents. Extract the code that involves call­ing other com­po­nents into the medi­a­tor class. Exe­cute this code when­ev­er the medi­a­tor receives noti­fi­ca­tions from that component.

 Pros and Cons

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can extract the com­mu­ni­ca­tions between var­i­ous com­po­nents into a sin­gle place, mak­ing it eas­i­er to com­pre­hend and maintain.

	
 Open/Closed Prin­ci­ple. You can intro­duce new medi­a­tors with­out hav­ing to change the actu­al components.

	
 You can reduce cou­pling between var­i­ous com­po­nents of a program.

	
 You can reuse indi­vid­ual com­po­nents more easily.

	
 Over time a medi­a­tor can evolve into a God Object.

 Rela­tions with Other Pat­terns

	
Chain of Respon­si­bil­i­ty, Com­mand, Medi­a­tor and Observ­er address var­i­ous ways of con­nect­ing senders and receivers of requests:

	
Chain of Respon­si­bil­i­ty pass­es a request sequen­tial­ly along a dynam­ic chain of poten­tial receivers until one of them han­dles it.

	
Com­mand estab­lish­es uni­di­rec­tion­al con­nec­tions between senders and receivers.

	
Medi­a­tor elim­i­nates direct con­nec­tions between senders and receivers, forc­ing them to com­mu­ni­cate indi­rect­ly via a medi­a­tor object.

	
Observ­er lets receivers dynam­i­cal­ly sub­scribe to and unsub­scribe from receiv­ing requests.

	
Facade and Medi­a­tor have sim­i­lar jobs: they try to orga­nize col­lab­o­ra­tion between lots of tight­ly cou­pled classes.

	
Facade defines a sim­pli­fied inter­face to a sub­sys­tem of objects, but it doesn’t intro­duce any new func­tion­al­i­ty. The sub­sys­tem itself is unaware of the facade. Objects with­in the sub­sys­tem can com­mu­ni­cate directly.

	
Medi­a­tor cen­tral­izes com­mu­ni­ca­tion between com­po­nents of the sys­tem. The com­po­nents only know about the medi­a­tor object and don’t com­mu­ni­cate directly.

	
The dif­fer­ence between Medi­a­tor and Observ­er is often elu­sive. In most cases, you can imple­ment either of these pat­terns; but some­times you can apply both simul­ta­ne­ous­ly. Let’s see how we can do that.

The pri­ma­ry goal of Medi­a­tor is to elim­i­nate mutu­al depen­den­cies among a set of sys­tem com­po­nents. Instead, these com­po­nents become depen­dent on a sin­gle medi­a­tor object. The goal of Observ­er is to estab­lish dynam­ic one-way con­nec­tions between objects, where some objects act as sub­or­di­nates of others.

There’s a pop­u­lar imple­men­ta­tion of the Medi­a­tor pat­tern that relies on Observ­er. The medi­a­tor object plays the role of pub­lish­er, and the com­po­nents act as sub­scribers which sub­scribe to and unsub­scribe from the medi­a­tor’s events. When Medi­a­tor is imple­ment­ed this way, it may look very sim­i­lar to Observ­er.

When you’re con­fused, remem­ber that you can imple­ment the Medi­a­tor pat­tern in other ways. For exam­ple, you can per­ma­nent­ly link all the com­po­nents to the same medi­a­tor object. This imple­men­ta­tion won’t resem­ble Observ­er but will still be an instance of the Medi­a­tor pattern.

Now imag­ine a pro­gram where all com­po­nents have become pub­lish­ers, allow­ing dynam­ic con­nec­tions between each other. There won’t be a cen­tral­ized medi­a­tor object, only a dis­trib­uted set of observers.

[image: Memento design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Memento

 Also known as: Snapshot

Memen­to is a behav­ioral design pat­tern that lets you save and restore the pre­vi­ous state of an object with­out reveal­ing the details of its imple­men­ta­tion.

 Prob­lem

Imag­ine that you’re cre­at­ing a text edi­tor app. In addi­tion to sim­ple text edit­ing, your edi­tor can for­mat text, insert inline images, etc.

At some point, you decid­ed to let users undo any oper­a­tions car­ried out on the text. This fea­ture has become so com­mon over the years that nowa­days peo­ple expect every app to have it. For the imple­men­ta­tion, you chose to take the direct approach. Before per­form­ing any oper­a­tion, the app records the state of all objects and saves it in some stor­age. Later, when a user decides to revert an action, the app fetch­es the lat­est snap­shot from the his­to­ry and uses it to restore the state of all objects.

[image: Reverting operations in the editor]
Before exe­cut­ing an oper­a­tion, the app saves a snap­shot of the objects’ state, which can later be used to restore objects to their pre­vi­ous state.

Let’s think about those state snap­shots. How exact­ly would you pro­duce one? You’d prob­a­bly need to go over all the fields in an object and copy their val­ues into stor­age. How­ev­er, this would only work if the object had quite relaxed access restric­tions to its con­tents. Unfor­tu­nate­ly, most real objects won’t let oth­ers peek inside them that eas­i­ly, hid­ing all sig­nif­i­cant data in pri­vate fields.

Ignore that prob­lem for now and let’s assume that our objects behave like hip­pies: pre­fer­ring open rela­tions and keep­ing their state pub­lic. While this approach would solve the imme­di­ate prob­lem and let you pro­duce snap­shots of objects’ states at will, it still has some seri­ous issues. In the future, you might decide to refac­tor some of the edi­tor class­es, or add or remove some of the fields. Sounds easy, but this would also require chang­ing the class­es respon­si­ble for copy­ing the state of the affect­ed objects.

[image: How to make a copy of the object’s private state?]
How to make a copy of the object’s pri­vate state?

But there’s more. Let’s con­sid­er the actu­al “snap­shots” of the edi­tor’s state. What data does it con­tain? At a bare min­i­mum, it must con­tain the actu­al text, cur­sor coor­di­nates, cur­rent scroll posi­tion, etc. To make a snap­shot, you’d need to col­lect these val­ues and put them into some kind of container.

Most like­ly, you’re going to store lots of these con­tain­er objects inside some list that would rep­re­sent the his­to­ry. There­fore the con­tain­ers would prob­a­bly end up being objects of one class. The class would have almost no meth­ods, but lots of fields that mir­ror the edi­tor’s state. To allow other objects to write and read data to and from a snap­shot, you’d prob­a­bly need to make its fields pub­lic. That would expose all the edi­tor’s states, pri­vate or not. Other class­es would become depen­dent on every lit­tle change to the snap­shot class, which would oth­er­wise hap­pen with­in pri­vate fields and meth­ods with­out affect­ing outer classes.

It looks like we’ve reached a dead end: you either expose all inter­nal details of class­es, mak­ing them too frag­ile, or restrict access to their state, mak­ing it impos­si­ble to pro­duce snap­shots. Is there any other way to imple­ment the "undo"?

 Solu­tion

All prob­lems that we’ve just expe­ri­enced are caused by bro­ken encap­su­la­tion. Some objects try to do more than they are sup­posed to. To col­lect the data required to per­form some action, they invade the pri­vate space of other objects instead of let­ting these objects per­form the actu­al action.

The Memen­to pat­tern del­e­gates cre­at­ing the state snap­shots to the actu­al owner of that state, the orig­i­na­tor object. Hence, instead of other objects try­ing to copy the edi­tor’s state from the “out­side,” the edi­tor class itself can make the snap­shot since it has full access to its own state.

The pat­tern sug­gests stor­ing the copy of the object’s state in a spe­cial object called memen­to. The con­tents of the memen­to aren’t acces­si­ble to any other object except the one that pro­duced it. Other objects must com­mu­ni­cate with memen­tos using a lim­it­ed inter­face which may allow fetch­ing the snap­shot’s meta­da­ta (cre­ation time, the name of the per­formed oper­a­tion, etc.), but not the orig­i­nal object’s state con­tained in the snapshot.

[image: The originator has full access to the memento, whereas the caretaker can only access the metadata]
The orig­i­na­tor has full access to the memen­to, where­as the care­tak­er can only access the metadata.

Such a restric­tive pol­i­cy lets you store memen­tos inside other objects, usu­al­ly called care­tak­ers. Since the care­tak­er works with the memen­to only via the lim­it­ed inter­face, it’s not able to tam­per with the state stored inside the memen­to. At the same time, the orig­i­na­tor has access to all fields inside the memen­to, allow­ing it to restore its pre­vi­ous state at will.

In our text edi­tor exam­ple, we can cre­ate a sep­a­rate his­to­ry class to act as the care­tak­er. A stack of memen­tos stored inside the care­tak­er will grow each time the edi­tor is about to exe­cute an oper­a­tion. You could even ren­der this stack with­in the app’s UI, dis­play­ing the his­to­ry of pre­vi­ous­ly per­formed oper­a­tions to a user.

When a user trig­gers the undo, the his­to­ry grabs the most recent memen­to from the stack and pass­es it back to the edi­tor, request­ing a roll-back. Since the edi­tor has full access to the memen­to, it changes its own state with the val­ues taken from the memento.

 Struc­ture

Imple­men­ta­tion based on nest­ed class­es

The clas­sic imple­men­ta­tion of the pat­tern relies on sup­port for nest­ed class­es, avail­able in many pop­u­lar pro­gram­ming lan­guages (such as C++, C#, and Java).

[image: Memento based on nested classes]

	
The Orig­i­na­tor class can pro­duce snap­shots of its own state, as well as restore its state from snap­shots when needed.

	
The Memen­to is a value object that acts as a snap­shot of the orig­i­na­tor’s state. It’s a com­mon prac­tice to make the memen­to immutable and pass it the data only once, via the constructor.

	
The Care­tak­er knows not only “when” and “why” to cap­ture the orig­i­na­tor’s state, but also when the state should be restored.

A care­tak­er can keep track of the orig­i­na­tor’s his­to­ry by stor­ing a stack of memen­tos. When the orig­i­na­tor has to trav­el back in his­to­ry, the care­tak­er fetch­es the top­most memen­to from the stack and pass­es it to the orig­i­na­tor’s restora­tion method.

	
In this imple­men­ta­tion, the memen­to class is nest­ed inside the orig­i­na­tor. This lets the orig­i­na­tor access the fields and meth­ods of the memen­to, even though they’re declared pri­vate. On the other hand, the care­tak­er has very lim­it­ed access to the memen­to’s fields and meth­ods, which lets it store memen­tos in a stack but not tam­per with their state.

Imple­men­ta­tion based on an inter­me­di­ate inter­face

There’s an alter­na­tive imple­men­ta­tion, suit­able for pro­gram­ming lan­guages that don’t sup­port nest­ed class­es (yeah, PHP, I’m talk­ing about you).

[image: Memento without nested classes]

	
In the absence of nest­ed class­es, you can restrict access to the memen­to’s fields by estab­lish­ing a con­ven­tion that care­tak­ers can work with a memen­to only through an explic­it­ly declared inter­me­di­ary inter­face, which would only declare meth­ods relat­ed to the memen­to’s metadata.

	
On the other hand, orig­i­na­tors can work with a memen­to object direct­ly, access­ing fields and meth­ods declared in the memen­to class. The down­side of this approach is that you need to declare all mem­bers of the memen­to public.

Imple­men­ta­tion with even stricter encap­su­la­tion

There’s anoth­er imple­men­ta­tion which is use­ful when you don’t want to leave even the slight­est chance of other class­es access­ing the state of the orig­i­na­tor through the memento.

[image: Memento with strict encapsulation]

	
This imple­men­ta­tion allows hav­ing mul­ti­ple types of orig­i­na­tors and memen­tos. Each orig­i­na­tor works with a cor­re­spond­ing memen­to class. Nei­ther orig­i­na­tors nor memen­tos expose their state to anyone.

	
Care­tak­ers are now explic­it­ly restrict­ed from chang­ing the state stored in memen­tos. More­over, the care­tak­er class becomes inde­pen­dent from the orig­i­na­tor because the restora­tion method is now defined in the memen­to class.

	
Each memen­to becomes linked to the orig­i­na­tor that pro­duced it. The orig­i­na­tor pass­es itself to the memen­to’s con­struc­tor, along with the val­ues of its state. Thanks to the close rela­tion­ship between these class­es, a memen­to can restore the state of its orig­i­na­tor, given that the lat­ter has defined the appro­pri­ate setters.

 Pseudocode

This exam­ple uses the Memen­to pat­tern along­side the Com­mand pat­tern for stor­ing snap­shots of the com­plex text edi­tor’s state and restor­ing an ear­li­er state from these snap­shots when needed.

[image: Structure of the Memento example]
Sav­ing snap­shots of the text edi­tor’s state.

The com­mand objects act as care­tak­ers. They fetch the edi­tor’s memen­to before exe­cut­ing oper­a­tions relat­ed to com­mands. When a user attempts to undo the most recent com­mand, the edi­tor can use the memen­to stored in that com­mand to revert itself to the pre­vi­ous state.

The memen­to class doesn’t declare any pub­lic fields, get­ters or set­ters. There­fore no object can alter its con­tents. Memen­tos are linked to the edi­tor object that cre­at­ed them. This lets a memen­to restore the linked edi­tor’s state by pass­ing the data via set­ters on the edi­tor object. Since memen­tos are linked to spe­cif­ic edi­tor objects, you can make your app sup­port sev­er­al inde­pen­dent edi­tor win­dows with a cen­tral­ized undo stack.

// The originator holds some important data that may change over

// time. It also defines a method for saving its state inside a

// memento and another method for restoring the state from it.

class Editor is

 private field text, curX, curY, selectionWidth

 method setText(text) is

 this.text = text

 method setCursor(x, y) is

 this.curX = x

 this.curY = y

 method setSelectionWidth(width) is

 this.selectionWidth = width

 // Saves the current state inside a memento.

 method createSnapshot():Snapshot is

 // Memento is an immutable object; that's why the

 // originator passes its state to the memento's

 // constructor parameters.

 return new Snapshot(this, text, curX, curY, selectionWidth)

// The memento class stores the past state of the editor.

class Snapshot is

 private field editor: Editor

 private field text, curX, curY, selectionWidth

 constructor Snapshot(editor, text, curX, curY, selectionWidth) is

 this.editor = editor

 this.text = text

 this.curX = x

 this.curY = y

 this.selectionWidth = selectionWidth

 // At some point, a previous state of the editor can be

 // restored using a memento object.

 method restore() is

 editor.setText(text)

 editor.setCursor(curX, curY)

 editor.setSelectionWidth(selectionWidth)

// A command object can act as a caretaker. In that case, the

// command gets a memento just before it changes the

// originator's state. When undo is requested, it restores the

// originator's state from a memento.

class Command is

 private field backup: Snapshot

 method makeBackup() is

 backup = editor.createSnapshot()

 method undo() is

 if (backup != null)

 backup.restore()

 // ...

 Applic­a­bil­i­ty

 Use the Memen­to pat­tern when you want to pro­duce snap­shots of the object’s state to be able to restore a pre­vi­ous state of the object.

 The Memen­to pat­tern lets you make full copies of an object’s state, includ­ing pri­vate fields, and store them sep­a­rate­ly from the object. While most peo­ple remem­ber this pat­tern thanks to the “undo” use case, it’s also indis­pens­able when deal­ing with trans­ac­tions (i.e., if you need to roll back an oper­a­tion on error).

 Use the pat­tern when direct access to the object’s fields/get­ters/set­ters vio­lates its encap­su­la­tion.

 The Memen­to makes the object itself respon­si­ble for cre­at­ing a snap­shot of its state. No other object can read the snap­shot, mak­ing the orig­i­nal object’s state data safe and secure.

 How to Imple­ment

	
Deter­mine what class will play the role of the orig­i­na­tor. It’s impor­tant to know whether the pro­gram uses one cen­tral object of this type or mul­ti­ple small­er ones.

	
Cre­ate the memen­to class. One by one, declare a set of fields that mir­ror the fields declared inside the orig­i­na­tor class.

	
Make the memen­to class immutable. A memen­to should accept the data just once, via the con­struc­tor. The class should have no setters.

	
If your pro­gram­ming lan­guage sup­ports nest­ed class­es, nest the memen­to inside the orig­i­na­tor. If not, extract a blank inter­face from the memen­to class and make all other objects use it to refer to the memen­to. You may add some meta­da­ta oper­a­tions to the inter­face, but noth­ing that expos­es the orig­i­na­tor’s state.

	
Add a method for pro­duc­ing memen­tos to the orig­i­na­tor class. The orig­i­na­tor should pass its state to the memen­to via one or mul­ti­ple argu­ments of the memen­to’s constructor.

The return type of the method should be of the inter­face you extract­ed in the pre­vi­ous step (assum­ing that you extract­ed it at all). Under the hood, the memen­to-pro­duc­ing method should work direct­ly with the memen­to class.

	
Add a method for restor­ing the orig­i­na­tor’s state to its class. It should accept a memen­to object as an argu­ment. If you extract­ed an inter­face in the pre­vi­ous step, make it the type of the para­me­ter. In this case, you need to type­cast the incom­ing object to the memen­to class, since the orig­i­na­tor needs full access to that object.

	
The care­tak­er, whether it rep­re­sents a com­mand object, a his­to­ry, or some­thing entire­ly dif­fer­ent, should know when to request new memen­tos from the orig­i­na­tor, how to store them and when to restore the orig­i­na­tor with a par­tic­u­lar memento.

	
The link between care­tak­ers and orig­i­na­tors may be moved into the memen­to class. In this case, each memen­to must be con­nect­ed to the orig­i­na­tor that had cre­at­ed it. The restora­tion method would also move to the memen­to class. How­ev­er, this would all make sense only if the memen­to class is nest­ed into orig­i­na­tor or the orig­i­na­tor class pro­vides suf­fi­cient set­ters for over­rid­ing its state.

 Pros and Cons

	
 You can pro­duce snap­shots of the object’s state with­out vio­lat­ing its encap­su­la­tion.

	
 You can sim­pli­fy the orig­i­na­tor’s code by let­ting the care­tak­er main­tain the his­to­ry of the orig­i­na­tor’s state.

	
 The app might con­sume lots of RAM if clients cre­ate memen­tos too often.

	
 Care­tak­ers should track the orig­i­na­tor’s life­cy­cle to be able to destroy obso­lete mementos.

	
 Most dynam­ic pro­gram­ming lan­guages, such as PHP, Python and JavaScript, can’t guar­an­tee that the state with­in the memen­to stays untouched.

 Rela­tions with Other Pat­terns

	
You can use Com­mand and Memen­to togeth­er when imple­ment­ing “undo”. In this case, com­mands are respon­si­ble for per­form­ing var­i­ous oper­a­tions over a tar­get object, while memen­tos save the state of that object just before a com­mand gets executed.

	
You can use Memen­to along with Iter­a­tor to cap­ture the cur­rent iter­a­tion state and roll it back if necessary.

	
Some­times Pro­to­type can be a sim­pler alter­na­tive to Memen­to. This works if the object, the state of which you want to store in the his­to­ry, is fair­ly straight­for­ward and doesn’t have links to exter­nal resources, or the links are easy to re-estab­lish.

[image: Observer Design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;Pattern]

 Observer

 Also known as: Event-Subscriber, Listener

Observ­er is a behav­ioral design pat­tern that lets you define a sub­scrip­tion mech­a­nism to noti­fy mul­ti­ple objects about any events that hap­pen to the object they’re observing.

 Prob­lem

Imag­ine that you have two types of objects: a Customer and a Store. The cus­tomer is very inter­est­ed in a par­tic­u­lar brand of prod­uct (say, it’s a new model of the iPhone) which should become avail­able in the store very soon.

The cus­tomer could visit the store every day and check prod­uct avail­abil­i­ty. But while the prod­uct is still en route, most of these trips would be pointless.

[image: Visiting store vs. sending spam]
Vis­it­ing the store vs. send­ing spam

On the other hand, the store could send tons of emails (which might be con­sid­ered spam) to all cus­tomers each time a new prod­uct becomes avail­able. This would save some cus­tomers from end­less trips to the store. At the same time, it’d upset other cus­tomers who aren’t inter­est­ed in new products.

It looks like we’ve got a con­flict. Either the cus­tomer wastes time check­ing prod­uct avail­abil­i­ty or the store wastes resources noti­fy­ing the wrong customers.

 Solu­tion

The object that has some inter­est­ing state is often called sub­ject, but since it’s also going to noti­fy other objects about the changes to its state, we’ll call it pub­lish­er. All other objects that want to track changes to the pub­lish­er’s state are called sub­scribers.

The Observ­er pat­tern sug­gests that you add a sub­scrip­tion mech­a­nism to the pub­lish­er class so indi­vid­ual objects can sub­scribe to or unsub­scribe from a stream of events com­ing from that pub­lish­er. Fear not! Every­thing isn’t as com­pli­cat­ed as it sounds. In real­i­ty, this mech­a­nism con­sists of 1) an array field for stor­ing a list of ref­er­ences to sub­scriber objects and 2) sev­er­al pub­lic meth­ods which allow adding sub­scribers to and remov­ing them from that list.

[image: Subscription mechanism]
A sub­scrip­tion mech­a­nism lets indi­vid­ual objects sub­scribe to event noti­fi­ca­tions.

Now, when­ev­er an impor­tant event hap­pens to the pub­lish­er, it goes over its sub­scribers and calls the spe­cif­ic noti­fi­ca­tion method on their objects.

Real apps might have dozens of dif­fer­ent sub­scriber class­es that are inter­est­ed in track­ing events of the same pub­lish­er class. You wouldn’t want to cou­ple the pub­lish­er to all of those class­es. Besides, you might not even know about some of them before­hand if your pub­lish­er class is sup­posed to be used by other people.

That’s why it’s cru­cial that all sub­scribers imple­ment the same inter­face and that the pub­lish­er com­mu­ni­cates with them only via that inter­face. This inter­face should declare the noti­fi­ca­tion method along with a set of para­me­ters that the pub­lish­er can use to pass some con­tex­tu­al data along with the notification.

[image: Notification methods]
Pub­lish­er noti­fies sub­scribers by call­ing the spe­cif­ic noti­fi­ca­tion method on their objects.

If your app has sev­er­al dif­fer­ent types of pub­lish­ers and you want to make your sub­scribers com­pat­i­ble with all of them, you can go even fur­ther and make all pub­lish­ers fol­low the same inter­face. This inter­face would only need to describe a few sub­scrip­tion meth­ods. The inter­face would allow sub­scribers to observe pub­lish­ers’ states with­out cou­pling to their con­crete classes.

 Real-World Anal­o­gy

[image: Magazine and newspaper subscriptions]
Mag­a­zine and news­pa­per sub­scrip­tions.

If you sub­scribe to a news­pa­per or mag­a­zine, you no longer need to go to the store to check if the next issue is avail­able. Instead, the pub­lish­er sends new issues direct­ly to your mail­box right after pub­li­ca­tion or even in advance.

The pub­lish­er main­tains a list of sub­scribers and knows which mag­a­zines they’re inter­est­ed in. Sub­scribers can leave the list at any time when they wish to stop the pub­lish­er send­ing new mag­a­zine issues to them.

 Struc­ture

[image: Structure of the Observer design pattern]

	
The Pub­lish­er issues events of inter­est to other objects. These events occur when the pub­lish­er changes its state or exe­cutes some behav­iors. Pub­lish­ers con­tain a sub­scrip­tion infra­struc­ture that lets new sub­scribers join and cur­rent sub­scribers leave the list.

	
When a new event hap­pens, the pub­lish­er goes over the sub­scrip­tion list and calls the noti­fi­ca­tion method declared in the sub­scriber inter­face on each sub­scriber object.

	
The Sub­scriber inter­face declares the noti­fi­ca­tion inter­face. In most cases, it con­sists of a sin­gle update method. The method may have sev­er­al para­me­ters that let the pub­lish­er pass some event details along with the update.

	
Con­crete Sub­scribers per­form some actions in response to noti­fi­ca­tions issued by the pub­lish­er. All of these class­es must imple­ment the same inter­face so the pub­lish­er isn’t cou­pled to con­crete classes.

	
Usu­al­ly, sub­scribers need some con­tex­tu­al infor­ma­tion to han­dle the update cor­rect­ly. For this rea­son, pub­lish­ers often pass some con­text data as argu­ments of the noti­fi­ca­tion method. The pub­lish­er can pass itself as an argu­ment, let­ting sub­scriber fetch any required data directly.

	
The Client cre­ates pub­lish­er and sub­scriber objects sep­a­rate­ly and then reg­is­ters sub­scribers for pub­lish­er updates.

 Pseudocode

In this exam­ple, the Observ­er pat­tern lets the text edi­tor object noti­fy other ser­vice objects about changes in its state.

[image: Structure of the Observer pattern example]
Noti­fy­ing objects about events that hap­pen to other objects.

The list of sub­scribers is com­piled dynam­i­cal­ly: objects can start or stop lis­ten­ing to noti­fi­ca­tions at run­time, depend­ing on the desired behav­ior of your app.

In this imple­men­ta­tion, the edi­tor class doesn’t main­tain the sub­scrip­tion list by itself. It del­e­gates this job to the spe­cial helper object devot­ed to just that. You could upgrade that object to serve as a cen­tral­ized event dis­patch­er, let­ting any object act as a publisher.

Adding new sub­scribers to the pro­gram doesn’t require changes to exist­ing pub­lish­er class­es, as long as they work with all sub­scribers through the same interface.

// The base publisher class includes subscription management

// code and notification methods.

class EventManager is

 private field listeners: hash map of event types and listeners

 method subscribe(eventType, listener) is

 listeners.add(eventType, listener)

 method unsubscribe(eventType, listener) is

 listeners.remove(eventType, listener)

 method notify(eventType, data) is

 foreach (listener in listeners.of(eventType)) do

 listener.update(data)

// The concrete publisher contains real business logic that's

// interesting for some subscribers. We could derive this class

// from the base publisher, but that isn't always possible in

// real life because the concrete publisher might already be a

// subclass. In this case, you can patch the subscription logic

// in with composition, as we did here.

class Editor is

 public field events: EventManager

 private field file: File

 constructor Editor() is

 events = new EventManager()

 // Methods of business logic can notify subscribers about

 // changes.

 method openFile(path) is

 this.file = new File(path)

 events.notify("open", file.name)

 method saveFile() is

 file.write()

 events.notify("save", file.name)

 // ...

// Here's the subscriber interface. If your programming language

// supports functional types, you can replace the whole

// subscriber hierarchy with a set of functions.

interface EventListener is

 method update(filename)

// Concrete subscribers react to updates issued by the publisher

// they are attached to.

class LoggingListener implements EventListener is

 private field log: File

 private field message: string

 constructor LoggingListener(log_filename, message) is

 this.log = new File(log_filename)

 this.message = message

 method update(filename) is

 log.write(replace('%s',filename,message))

class EmailAlertsListener implements EventListener is

 private field email: string

 private field message: string

 constructor EmailAlertsListener(email, message) is

 this.email = email

 this.message = message

 method update(filename) is

 system.email(email, replace('%s',filename,message))

// An application can configure publishers and subscribers at

// runtime.

class Application is

 method config() is

 editor = new Editor()

 logger = new LoggingListener(

 "/path/to/log.txt",

 "Someone has opened the file: %s")

 editor.events.subscribe("open", logger)

 emailAlerts = new EmailAlertsListener(

 "admin@example.com",

 "Someone has changed the file: %s")

 editor.events.subscribe("save", emailAlerts)

 Applic­a­bil­i­ty

 Use the Observ­er pat­tern when changes to the state of one object may require chang­ing other objects, and the actu­al set of objects is unknown before­hand or changes dynamically.

 You can often expe­ri­ence this prob­lem when work­ing with class­es of the graph­i­cal user inter­face. For exam­ple, you cre­at­ed cus­tom but­ton class­es, and you want to let the clients hook some cus­tom code to your but­tons so that it fires when­ev­er a user press­es a button.

The Observ­er pat­tern lets any object that imple­ments the sub­scriber inter­face sub­scribe for event noti­fi­ca­tions in pub­lish­er objects. You can add the sub­scrip­tion mech­a­nism to your but­tons, let­ting the clients hook up their cus­tom code via cus­tom sub­scriber classes.

 Use the pat­tern when some objects in your app must observe oth­ers, but only for a lim­it­ed time or in spe­cif­ic cases.

 The sub­scrip­tion list is dynam­ic, so sub­scribers can join or leave the list when­ev­er they need to.

 How to Imple­ment

	
Look over your busi­ness logic and try to break it down into two parts: the core func­tion­al­i­ty, inde­pen­dent from other code, will act as the pub­lish­er; the rest will turn into a set of sub­scriber classes.

	
Declare the sub­scriber inter­face. At a bare min­i­mum, it should declare a sin­gle update method.

	
Declare the pub­lish­er inter­face and describe a pair of meth­ods for adding a sub­scriber object to and remov­ing it from the list. Remem­ber that pub­lish­ers must work with sub­scribers only via the sub­scriber interface.

	
Decide where to put the actu­al sub­scrip­tion list and the imple­men­ta­tion of sub­scrip­tion meth­ods. Usu­al­ly, this code looks the same for all types of pub­lish­ers, so the obvi­ous place to put it is in an abstract class derived direct­ly from the pub­lish­er inter­face. Con­crete pub­lish­ers extend that class, inher­it­ing the sub­scrip­tion behavior.

How­ev­er, if you’re apply­ing the pat­tern to an exist­ing class hier­ar­chy, con­sid­er an approach based on com­po­si­tion: put the sub­scrip­tion logic into a sep­a­rate object, and make all real pub­lish­ers use it.

	
Cre­ate con­crete pub­lish­er class­es. Each time some­thing impor­tant hap­pens inside a pub­lish­er, it must noti­fy all its subscribers.

	
Imple­ment the update noti­fi­ca­tion meth­ods in con­crete sub­scriber class­es. Most sub­scribers would need some con­text data about the event. It can be passed as an argu­ment of the noti­fi­ca­tion method.

But there’s anoth­er option. Upon receiv­ing a noti­fi­ca­tion, the sub­scriber can fetch any data direct­ly from the noti­fi­ca­tion. In this case, the pub­lish­er must pass itself via the update method. The less flex­i­ble option is to link a pub­lish­er to the sub­scriber per­ma­nent­ly via the constructor.

	
The client must cre­ate all nec­es­sary sub­scribers and reg­is­ter them with prop­er publishers.

 Pros and Cons

	
 Open/Closed Prin­ci­ple. You can intro­duce new sub­scriber class­es with­out hav­ing to change the pub­lish­er’s code (and vice versa if there’s a pub­lish­er interface).

	
 You can estab­lish rela­tions between objects at runtime.

	
 Sub­scribers are noti­fied in ran­dom order.

 Rela­tions with Other Pat­terns

	
Chain of Respon­si­bil­i­ty, Com­mand, Medi­a­tor and Observ­er address var­i­ous ways of con­nect­ing senders and receivers of requests:

	
Chain of Respon­si­bil­i­ty pass­es a request sequen­tial­ly along a dynam­ic chain of poten­tial receivers until one of them han­dles it.

	
Com­mand estab­lish­es uni­di­rec­tion­al con­nec­tions between senders and receivers.

	
Medi­a­tor elim­i­nates direct con­nec­tions between senders and receivers, forc­ing them to com­mu­ni­cate indi­rect­ly via a medi­a­tor object.

	
Observ­er lets receivers dynam­i­cal­ly sub­scribe to and unsub­scribe from receiv­ing requests.

	
The dif­fer­ence between Medi­a­tor and Observ­er is often elu­sive. In most cases, you can imple­ment either of these pat­terns; but some­times you can apply both simul­ta­ne­ous­ly. Let’s see how we can do that.

The pri­ma­ry goal of Medi­a­tor is to elim­i­nate mutu­al depen­den­cies among a set of sys­tem com­po­nents. Instead, these com­po­nents become depen­dent on a sin­gle medi­a­tor object. The goal of Observ­er is to estab­lish dynam­ic one-way con­nec­tions between objects, where some objects act as sub­or­di­nates of others.

There’s a pop­u­lar imple­men­ta­tion of the Medi­a­tor pat­tern that relies on Observ­er. The medi­a­tor object plays the role of pub­lish­er, and the com­po­nents act as sub­scribers which sub­scribe to and unsub­scribe from the medi­a­tor’s events. When Medi­a­tor is imple­ment­ed this way, it may look very sim­i­lar to Observ­er.

When you’re con­fused, remem­ber that you can imple­ment the Medi­a­tor pat­tern in other ways. For exam­ple, you can per­ma­nent­ly link all the com­po­nents to the same medi­a­tor object. This imple­men­ta­tion won’t resem­ble Observ­er but will still be an instance of the Medi­a­tor pattern.

Now imag­ine a pro­gram where all com­po­nents have become pub­lish­ers, allow­ing dynam­ic con­nec­tions between each other. There won’t be a cen­tral­ized medi­a­tor object, only a dis­trib­uted set of observers.

[image: State Design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;Pattern]

 State

State is a behav­ioral design pat­tern that lets an object alter its behav­ior when its inter­nal state changes. It appears as if the object changed its class.

 Prob­lem

The State pat­tern is close­ly relat­ed to the con­cept of a Finite-State Machine.

[image: Finite-State Machine]
Finite-State Machine.

The main idea is that, at any given moment, there’s a finite num­ber of states which a pro­gram can be in. With­in any unique state, the pro­gram behaves dif­fer­ent­ly, and the pro­gram can be switched from one state to anoth­er instan­ta­neous­ly. How­ev­er, depend­ing on a cur­rent state, the pro­gram may or may not switch to cer­tain other states. These switch­ing rules, called tran­si­tions, are also finite and pre­de­ter­mined.

You can also apply this approach to objects. Imag­ine that we have a Document class. A doc­u­ment can be in one of three states: Draft, Moderation and Published. The publish method of the doc­u­ment works a lit­tle bit dif­fer­ent­ly in each state:

	In Draft, it moves the doc­u­ment to moderation.

	In Moderation, it makes the doc­u­ment pub­lic, but only if the cur­rent user is an admin­is­tra­tor.

	In Published, it doesn’t do any­thing at all.

[image: Possible states of a document object]
Pos­si­ble states and tran­si­tions of a doc­u­ment object.

State machines are usu­al­ly imple­ment­ed with lots of con­di­tion­al oper­a­tors (if or switch) that select the appro­pri­ate behav­ior depend­ing on the cur­rent state of the object. Usu­al­ly, this “state” is just a set of val­ues of the object’s fields. Even if you’ve never heard about finite-state machines before, you’ve prob­a­bly imple­ment­ed a state at least once. Does the fol­low­ing code struc­ture ring a bell?

class Document is

 field state: string

 // ...

 method publish() is

 switch (state)

 "draft":

 state = "moderation"

 break

 "moderation":

 if (currentUser.role == 'admin')

 state = "published"

 break

 "published":

 // Do nothing.

 break

 // ...

The biggest weak­ness of a state machine based on con­di­tion­als reveals itself once we start adding more and more states and state-depen­dent behav­iors to the Document class. Most meth­ods will con­tain mon­strous con­di­tion­als that pick the prop­er behav­ior of a method accord­ing to the cur­rent state. Code like this is very dif­fi­cult to main­tain because any change to the tran­si­tion logic may require chang­ing state con­di­tion­als in every method.

The prob­lem tends to get big­ger as a project evolves. It’s quite dif­fi­cult to pre­dict all pos­si­ble states and tran­si­tions at the design stage. Hence, a lean state machine built with a lim­it­ed set of con­di­tion­als can grow into a bloat­ed mess over time.

 Solu­tion

The State pat­tern sug­gests that you cre­ate new class­es for all pos­si­ble states of an object and extract all state-spe­cif­ic behav­iors into these classes.

Instead of imple­ment­ing all behav­iors on its own, the orig­i­nal object, called con­text, stores a ref­er­ence to one of the state objects that rep­re­sents its cur­rent state, and del­e­gates all the state-relat­ed work to that object.

[image: Document delegates the work to a state object]
Doc­u­ment del­e­gates the work to a state object.

To tran­si­tion the con­text into anoth­er state, replace the active state object with anoth­er object that rep­re­sents that new state. This is pos­si­ble only if all state class­es fol­low the same inter­face and the con­text itself works with these objects through that interface.

This struc­ture may look sim­i­lar to the Strat­e­gy pat­tern, but there’s one key dif­fer­ence. In the State pat­tern, the par­tic­u­lar states may be aware of each other and ini­ti­ate tran­si­tions from one state to anoth­er, where­as strate­gies almost never know about each other.

 Real-World Anal­o­gy

The but­tons and switch­es in your smart­phone behave dif­fer­ent­ly depend­ing on the cur­rent state of the device:

	When the phone is unlocked, press­ing but­tons leads to exe­cut­ing var­i­ous functions.

	When the phone is locked, press­ing any but­ton leads to the unlock screen.

	When the phone’s charge is low, press­ing any but­ton shows the charg­ing screen.

 Struc­ture

[image: Structure of the State design pattern]

	
Con­text stores a ref­er­ence to one of the con­crete state objects and del­e­gates to it all state-spe­cif­ic work. The con­text com­mu­ni­cates with the state object via the state inter­face. The con­text expos­es a set­ter for pass­ing it a new state object.

	
The State inter­face declares the state-spe­cif­ic meth­ods. These meth­ods should make sense for all con­crete states because you don’t want some of your states to have use­less meth­ods that will never be called.

	
Con­crete States pro­vide their own imple­men­ta­tions for the state-spe­cif­ic meth­ods. To avoid dupli­ca­tion of sim­i­lar code across mul­ti­ple states, you may pro­vide inter­me­di­ate abstract class­es that encap­su­late some com­mon behavior.

State objects may store a back­ref­er­ence to the con­text object. Through this ref­er­ence, the state can fetch any required info from the con­text object, as well as ini­ti­ate state transitions.

	
Both con­text and con­crete states can set the next state of the con­text and per­form the actu­al state tran­si­tion by replac­ing the state object linked to the context.

 Pseudocode

In this exam­ple, the State pat­tern lets the same con­trols of the media play­er behave dif­fer­ent­ly, depend­ing on the cur­rent play­back state.

[image: Structure of the State pattern example]
Exam­ple of chang­ing object behav­ior with state objects.

The main object of the play­er is always linked to a state object that per­forms most of the work for the play­er. Some actions replace the cur­rent state object of the play­er with anoth­er, which changes the way the play­er reacts to user interactions.

// The AudioPlayer class acts as a context. It also maintains a

// reference to an instance of one of the state classes that

// represents the current state of the audio player.

class AudioPlayer is

 field state: State

 field UI, volume, playlist, currentSong

 constructor AudioPlayer() is

 this.state = new ReadyState(this)

 // Context delegates handling user input to a state

 // object. Naturally, the outcome depends on what state

 // is currently active, since each state can handle the

 // input differently.

 UI = new UserInterface()

 UI.lockButton.onClick(this.clickLock)

 UI.playButton.onClick(this.clickPlay)

 UI.nextButton.onClick(this.clickNext)

 UI.prevButton.onClick(this.clickPrevious)

 // Other objects must be able to switch the audio player's

 // active state.

 method changeState(state: State) is

 this.state = state

 // UI methods delegate execution to the active state.

 method clickLock() is

 state.clickLock()

 method clickPlay() is

 state.clickPlay()

 method clickNext() is

 state.clickNext()

 method clickPrevious() is

 state.clickPrevious()

 // A state may call some service methods on the context.

 method startPlayback() is

 // ...

 method stopPlayback() is

 // ...

 method nextSong() is

 // ...

 method previousSong() is

 // ...

 method fastForward(time) is

 // ...

 method rewind(time) is

 // ...

// The base state class declares methods that all concrete

// states should implement and also provides a backreference to

// the context object associated with the state. States can use

// the backreference to transition the context to another state.

abstract class State is

 protected field player: AudioPlayer

 // Context passes itself through the state constructor. This

 // may help a state fetch some useful context data if it's

 // needed.

 constructor State(player) is

 this.player = player

 abstract method clickLock()

 abstract method clickPlay()

 abstract method clickNext()

 abstract method clickPrevious()

// Concrete states implement various behaviors associated with a

// state of the context.

class LockedState extends State is

 // When you unlock a locked player, it may assume one of two

 // states.

 method clickLock() is

 if (player.playing)

 player.changeState(new PlayingState(player))

 else

 player.changeState(new ReadyState(player))

 method clickPlay() is

 // Locked, so do nothing.

 method clickNext() is

 // Locked, so do nothing.

 method clickPrevious() is

 // Locked, so do nothing.

// They can also trigger state transitions in the context.

class ReadyState extends State is

 method clickLock() is

 player.changeState(new LockedState(player))

 method clickPlay() is

 player.startPlayback()

 player.changeState(new PlayingState(player))

 method clickNext() is

 player.nextSong()

 method clickPrevious() is

 player.previousSong()

class PlayingState extends State is

 method clickLock() is

 player.changeState(new LockedState(player))

 method clickPlay() is

 player.stopPlayback()

 player.changeState(new ReadyState(player))

 method clickNext() is

 if (event.doubleclick)

 player.nextSong()

 else

 player.fastForward(5)

 method clickPrevious() is

 if (event.doubleclick)

 player.previous()

 else

 player.rewind(5)

 Applic­a­bil­i­ty

 Use the State pat­tern when you have an object that behaves dif­fer­ent­ly depend­ing on its cur­rent state, the num­ber of states is enor­mous, and the state-spe­cif­ic code changes frequently.

 The pat­tern sug­gests that you extract all state-spe­cif­ic code into a set of dis­tinct class­es. As a result, you can add new states or change exist­ing ones inde­pen­dent­ly of each other, reduc­ing the main­te­nance cost.

 Use the pat­tern when you have a class pol­lut­ed with mas­sive con­di­tion­als that alter how the class behaves accord­ing to the cur­rent val­ues of the class’s fields.

 The State pat­tern lets you extract branch­es of these con­di­tion­als into meth­ods of cor­re­spond­ing state class­es. While doing so, you can also clean tem­po­rary fields and helper meth­ods involved in state-spe­cif­ic code out of your main class.

 Use State when you have a lot of dupli­cate code across sim­i­lar states and tran­si­tions of a con­di­tion-based state machine.

 The State pat­tern lets you com­pose hier­ar­chies of state class­es and reduce dupli­ca­tion by extract­ing com­mon code into abstract base classes.

 How to Imple­ment

	
Decide what class will act as the con­text. It could be an exist­ing class which already has the state-depen­dent code; or a new class, if the state-spe­cif­ic code is dis­trib­uted across mul­ti­ple classes.

	
Declare the state inter­face. Although it may mir­ror all the meth­ods declared in the con­text, aim only for those that may con­tain state-spe­cif­ic behavior.

	
For every actu­al state, cre­ate a class that derives from the state inter­face. Then go over the meth­ods of the con­text and extract all code relat­ed to that state into your newly cre­at­ed class.

While mov­ing the code to the state class, you might dis­cov­er that it depends on pri­vate mem­bers of the con­text. There are sev­er­al workarounds:

	Make these fields or meth­ods public.

	Turn the behav­ior you’re extract­ing into a pub­lic method in the con­text and call it from the state class. This way is ugly but quick, and you can always fix it later.

	Nest the state class­es into the con­text class, but only if your pro­gram­ming lan­guage sup­ports nest­ing classes.

	
In the con­text class, add a ref­er­ence field of the state inter­face type and a pub­lic set­ter that allows over­rid­ing the value of that field.

	
Go over the method of the con­text again and replace empty state con­di­tion­als with calls to cor­re­spond­ing meth­ods of the state object.

	
To switch the state of the con­text, cre­ate an instance of one of the state class­es and pass it to the con­text. You can do this with­in the con­text itself, or in var­i­ous states, or in the client. Wher­ev­er this is done, the class becomes depen­dent on the con­crete state class that it instantiates.

 Pros and Cons

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. Orga­nize the code relat­ed to par­tic­u­lar states into sep­a­rate classes.

	
 Open/Closed Prin­ci­ple. Intro­duce new states with­out chang­ing exist­ing state class­es or the context.

	
 Sim­pli­fy the code of the con­text by elim­i­nat­ing bulky state machine conditionals.

	
 Apply­ing the pat­tern can be overkill if a state machine has only a few states or rarely changes.

 Rela­tions with Other Pat­terns

	
Bridge, State, Strat­e­gy (and to some degree Adapter) have very sim­i­lar struc­tures. Indeed, all of these pat­terns are based on com­po­si­tion, which is del­e­gat­ing work to other objects. How­ev­er, they all solve dif­fer­ent prob­lems. A pat­tern isn’t just a recipe for struc­tur­ing your code in a spe­cif­ic way. It can also com­mu­ni­cate to other devel­op­ers the prob­lem the pat­tern solves.

	
State can be con­sid­ered as an exten­sion of Strat­e­gy. Both pat­terns are based on com­po­si­tion: they change the behav­ior of the con­text by del­e­gat­ing some work to helper objects. Strat­e­gy makes these objects com­plete­ly inde­pen­dent and unaware of each other. How­ev­er, State doesn’t restrict depen­den­cies between con­crete states, let­ting them alter the state of the con­text at will.

[image: Strategy design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Strategy

Strat­e­gy is a behav­ioral design pat­tern that lets you define a fam­i­ly of algo­rithms, put each of them into a sep­a­rate class, and make their objects inter­change­able.

 Prob­lem

One day you decid­ed to cre­ate a nav­i­ga­tion app for casu­al trav­el­ers. The app was cen­tered around a beau­ti­ful map which helped users quick­ly ori­ent them­selves in any city.

One of the most request­ed fea­tures for the app was auto­mat­ic route plan­ning. A user should be able to enter an address and see the fastest route to that des­ti­na­tion dis­played on the map.

The first ver­sion of the app could only build the routes over roads. Peo­ple who trav­eled by car were burst­ing with joy. But appar­ent­ly, not every­body likes to drive on their vaca­tion. So with the next update, you added an option to build walk­ing routes. Right after that, you added anoth­er option to let peo­ple use pub­lic trans­port in their routes.

How­ev­er, that was only the begin­ning. Later you planned to add route build­ing for cyclists. And even later, anoth­er option for build­ing routes through all of a city’s tourist attractions.

[image: The code of the navigator became very bloated]
The code of the nav­i­ga­tor became bloated.

While from a busi­ness per­spec­tive the app was a suc­cess, the tech­ni­cal part caused you many headaches. Each time you added a new rout­ing algo­rithm, the main class of the nav­i­ga­tor dou­bled in size. At some point, the beast became too hard to maintain.

Any change to one of the algo­rithms, whether it was a sim­ple bug fix or a slight adjust­ment of the street score, affect­ed the whole class, increas­ing the chance of cre­at­ing an error in already-work­ing code.

In addi­tion, team­work became inef­fi­cient. Your team­mates, who had been hired right after the suc­cess­ful release, com­plain that they spend too much time resolv­ing merge con­flicts. Imple­ment­ing a new fea­ture requires you to change the same huge class, con­flict­ing with the code pro­duced by other people.

 Solu­tion

The Strat­e­gy pat­tern sug­gests that you take a class that does some­thing spe­cif­ic in a lot of dif­fer­ent ways and extract all of these algo­rithms into sep­a­rate class­es called strate­gies.

The orig­i­nal class, called con­text, must have a field for stor­ing a ref­er­ence to one of the strate­gies. The con­text del­e­gates the work to a linked strat­e­gy object instead of exe­cut­ing it on its own.

The con­text isn’t respon­si­ble for select­ing an appro­pri­ate algo­rithm for the job. Instead, the client pass­es the desired strat­e­gy to the con­text. In fact, the con­text doesn’t know much about strate­gies. It works with all strate­gies through the same gener­ic inter­face, which only expos­es a sin­gle method for trig­ger­ing the algo­rithm encap­su­lat­ed with­in the select­ed strategy.

This way the con­text becomes inde­pen­dent of con­crete strate­gies, so you can add new algo­rithms or mod­i­fy exist­ing ones with­out chang­ing the code of the con­text or other strategies.

[image: Route planning strategies]
Route plan­ning strategies.

In our nav­i­ga­tion app, each rout­ing algo­rithm can be extract­ed to its own class with a sin­gle buildRoute method. The method accepts an ori­gin and des­ti­na­tion and returns a col­lec­tion of the route’s checkpoints.

Even though given the same argu­ments, each rout­ing class might build a dif­fer­ent route, the main nav­i­ga­tor class doesn’t real­ly care which algo­rithm is select­ed since its pri­ma­ry job is to ren­der a set of check­points on the map. The class has a method for switch­ing the active rout­ing strat­e­gy, so its clients, such as the but­tons in the user inter­face, can replace the cur­rent­ly select­ed rout­ing behav­ior with anoth­er one.

 Real-World Anal­o­gy

[image: Various transportation strategies]
Var­i­ous strate­gies for get­ting to the airport.

Imag­ine that you have to get to the air­port. You can catch a bus, order a cab, or get on your bicy­cle. These are your trans­porta­tion strate­gies. You can pick one of the strate­gies depend­ing on fac­tors such as bud­get or time constraints.

 Struc­ture

[image: Structure of the Strategy design pattern]

	
The Con­text main­tains a ref­er­ence to one of the con­crete strate­gies and com­mu­ni­cates with this object only via the strat­e­gy interface.

	
The Strat­e­gy inter­face is com­mon to all con­crete strate­gies. It declares a method the con­text uses to exe­cute a strategy.

	
Con­crete Strate­gies imple­ment dif­fer­ent vari­a­tions of an algo­rithm the con­text uses.

	
The con­text calls the exe­cu­tion method on the linked strat­e­gy object each time it needs to run the algo­rithm. The con­text doesn’t know what type of strat­e­gy it works with or how the algo­rithm is executed.

	
The Client cre­ates a spe­cif­ic strat­e­gy object and pass­es it to the con­text. The con­text expos­es a set­ter which lets clients replace the strat­e­gy asso­ci­at­ed with the con­text at runtime.

 Pseudocode

In this exam­ple, the con­text uses mul­ti­ple strate­gies to exe­cute var­i­ous arith­metic operations.

// The strategy interface declares operations common to all

// supported versions of some algorithm. The context uses this

// interface to call the algorithm defined by the concrete

// strategies.

interface Strategy is

 method execute(a, b)

// Concrete strategies implement the algorithm while following

// the base strategy interface. The interface makes them

// interchangeable in the context.

class ConcreteStrategyAdd implements Strategy is

 method execute(a, b) is

 return a + b

class ConcreteStrategySubtract implements Strategy is

 method execute(a, b) is

 return a - b

class ConcreteStrategyMultiply implements Strategy is

 method execute(a, b) is

 return a * b

// The context defines the interface of interest to clients.

class Context is

 // The context maintains a reference to one of the strategy

 // objects. The context doesn't know the concrete class of a

 // strategy. It should work with all strategies via the

 // strategy interface.

 private strategy: Strategy

 // Usually the context accepts a strategy through the

 // constructor, and also provides a setter so that the

 // strategy can be switched at runtime.

 method setStrategy(Strategy strategy) is

 this.strategy = strategy

 // The context delegates some work to the strategy object

 // instead of implementing multiple versions of the

 // algorithm on its own.

 method executeStrategy(int a, int b) is

 return strategy.execute(a, b)

// The client code picks a concrete strategy and passes it to

// the context. The client should be aware of the differences

// between strategies in order to make the right choice.

class ExampleApplication is

 method main() is

 Create context object.

 Read first number.

 Read last number.

 Read the desired action from user input.

 if (action == addition) then

 context.setStrategy(new ConcreteStrategyAdd())

 if (action == subtraction) then

 context.setStrategy(new ConcreteStrategySubtract())

 if (action == multiplication) then

 context.setStrategy(new ConcreteStrategyMultiply())

 result = context.executeStrategy(First number, Second number)

 Print result.

 Applic­a­bil­i­ty

 Use the Strat­e­gy pat­tern when you want to use dif­fer­ent vari­ants of an algo­rithm with­in an object and be able to switch from one algo­rithm to anoth­er dur­ing runtime.

 The Strat­e­gy pat­tern lets you indi­rect­ly alter the object’s behav­ior at run­time by asso­ci­at­ing it with dif­fer­ent sub-objects which can per­form spe­cif­ic sub-tasks in dif­fer­ent ways.

 Use the Strat­e­gy when you have a lot of sim­i­lar class­es that only dif­fer in the way they exe­cute some behavior.

 The Strat­e­gy pat­tern lets you extract the vary­ing behav­ior into a sep­a­rate class hier­ar­chy and com­bine the orig­i­nal class­es into one, there­by reduc­ing dupli­cate code.

 Use the pat­tern to iso­late the busi­ness logic of a class from the imple­men­ta­tion details of algo­rithms that may not be as impor­tant in the con­text of that logic.

 The Strat­e­gy pat­tern lets you iso­late the code, inter­nal data, and depen­den­cies of var­i­ous algo­rithms from the rest of the code. Var­i­ous clients get a sim­ple inter­face to exe­cute the algo­rithms and switch them at runtime.

 Use the pat­tern when your class has a mas­sive con­di­tion­al oper­a­tor that switch­es between dif­fer­ent vari­ants of the same algorithm.

 The Strat­e­gy pat­tern lets you do away with such a con­di­tion­al by extract­ing all algo­rithms into sep­a­rate class­es, all of which imple­ment the same inter­face. The orig­i­nal object del­e­gates exe­cu­tion to one of these objects, instead of imple­ment­ing all vari­ants of the algorithm.

 How to Imple­ment

	
In the con­text class, iden­ti­fy an algo­rithm that’s prone to fre­quent changes. It may also be a mas­sive con­di­tion­al that selects and exe­cutes a vari­ant of the same algo­rithm at runtime.

	
Declare the strat­e­gy inter­face com­mon to all vari­ants of the algorithm.

	
One by one, extract all algo­rithms into their own class­es. They should all imple­ment the strat­e­gy interface.

	
In the con­text class, add a field for stor­ing a ref­er­ence to a strat­e­gy object. Pro­vide a set­ter for replac­ing val­ues of that field. The con­text should work with the strat­e­gy object only via the strat­e­gy inter­face. The con­text may define an inter­face which lets the strat­e­gy access its data.

	
Clients of the con­text must as­so­ciate it with a suit­able strat­e­gy that match­es the way they expect the con­text to per­form its pri­ma­ry job.

 Pros and Cons

	
 You can swap algo­rithms used inside an object at runtime.

	
 You can iso­late the imple­men­ta­tion details of an algo­rithm from the code that uses it.

	
 You can replace inher­i­tance with composition.

	
 Open/Closed Prin­ci­ple. You can intro­duce new strate­gies with­out hav­ing to change the context.

	
 If you only have a cou­ple of algo­rithms and they rarely change, there’s no real rea­son to over­com­pli­cate the pro­gram with new class­es and inter­faces that come along with the pattern.

	
 Clients must be aware of the dif­fer­ences between strate­gies to be able to select a prop­er one.

	
 A lot of mod­ern pro­gram­ming lan­guages have func­tion­al type sup­port that lets you imple­ment dif­fer­ent ver­sions of an algo­rithm inside a set of anony­mous func­tions. Then you could use these func­tions exact­ly as you’d have used the strat­e­gy objects, but with­out bloat­ing your code with extra class­es and interfaces.

 Rela­tions with Other Pat­terns

	
Bridge, State, Strat­e­gy (and to some degree Adapter) have very sim­i­lar struc­tures. Indeed, all of these pat­terns are based on com­po­si­tion, which is del­e­gat­ing work to other objects. How­ev­er, they all solve dif­fer­ent prob­lems. A pat­tern isn’t just a recipe for struc­tur­ing your code in a spe­cif­ic way. It can also com­mu­ni­cate to other devel­op­ers the prob­lem the pat­tern solves.

	
Com­mand and Strat­e­gy may look sim­i­lar because you can use both to para­me­ter­ize an object with some action. How­ev­er, they have very dif­fer­ent intents.

	
You can use Com­mand to con­vert any oper­a­tion into an object. The oper­a­tion’s para­me­ters become fields of that object. The con­ver­sion lets you defer exe­cu­tion of the oper­a­tion, queue it, store the his­to­ry of com­mands, send com­mands to remote ser­vices, etc.

	
On the other hand, Strat­e­gy usu­al­ly describes dif­fer­ent ways of doing the same thing, let­ting you swap these algo­rithms with­in a sin­gle con­text class.

	
Dec­o­ra­tor lets you change the skin of an object, while Strat­e­gy lets you change the guts.

	
Tem­plate Method is based on inher­i­tance: it lets you alter parts of an algo­rithm by extend­ing those parts in sub­class­es. Strat­e­gy is based on com­po­si­tion: you can alter parts of the object’s behav­ior by sup­ply­ing it with dif­fer­ent strate­gies that cor­re­spond to that behav­ior. Tem­plate Method works at the class level, so it’s sta­t­ic. Strat­e­gy works on the object level, let­ting you switch behav­iors at runtime.

	
State can be con­sid­ered as an exten­sion of Strat­e­gy. Both pat­terns are based on com­po­si­tion: they change the behav­ior of the con­text by del­e­gat­ing some work to helper objects. Strat­e­gy makes these objects com­plete­ly inde­pen­dent and unaware of each other. How­ev­er, State doesn’t restrict depen­den­cies between con­crete states, let­ting them alter the state of the con­text at will.

[image: Template method design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;pattern]

 Template Method

Tem­plate Method is a behav­ioral design pat­tern that defines the skele­ton of an algo­rithm in the super­class but lets sub­class­es over­ride spe­cif­ic steps of the algo­rithm with­out chang­ing its structure.

 Prob­lem

Imag­ine that you’re cre­at­ing a data min­ing appli­ca­tion that ana­lyzes cor­po­rate doc­u­ments. Users feed the app doc­u­ments in var­i­ous for­mats (PDF, DOC, CSV), and it tries to extract mean­ing­ful data from these docs in a uni­form format.

The first ver­sion of the app could work only with DOC files. In the fol­low­ing ver­sion, it was able to sup­port CSV files. A month later, you “taught” it to extract data from PDF files.

[image: Data mining classes contained a lot of duplicate code]
Data min­ing class­es con­tained a lot of dupli­cate code.

At some point, you noticed that all three class­es have a lot of sim­i­lar code. While the code for deal­ing with var­i­ous data for­mats was entire­ly dif­fer­ent in all class­es, the code for data pro­cess­ing and analy­sis is almost iden­ti­cal. Wouldn’t it be great to get rid of the code dupli­ca­tion, leav­ing the algo­rithm struc­ture intact?

There was anoth­er prob­lem relat­ed to client code that used these class­es. It had lots of con­di­tion­als that picked a prop­er course of action depend­ing on the class of the pro­cess­ing object. If all three pro­cess­ing class­es had a com­mon inter­face or a base class, you’d be able to elim­i­nate the con­di­tion­als in client code and use poly­mor­phism when call­ing meth­ods on a pro­cess­ing object.

 Solu­tion

The Tem­plate Method pat­tern sug­gests that you break down an algo­rithm into a series of steps, turn these steps into meth­ods, and put a series of calls to these meth­ods inside a sin­gle tem­plate method. The steps may either be abstract, or have some default imple­men­ta­tion. To use the algo­rithm, the client is sup­posed to pro­vide its own sub­class, imple­ment all abstract steps, and over­ride some of the option­al ones if need­ed (but not the tem­plate method itself).

Let’s see how this will play out in our data min­ing app. We can cre­ate a base class for all three pars­ing algo­rithms. This class defines a tem­plate method con­sist­ing of a series of calls to var­i­ous doc­u­ment-pro­cess­ing steps.

[image: Template method defines the skeleton of the algorithm]
Tem­plate method breaks the algo­rithm into steps, allow­ing sub­class­es to over­ride these steps but not the actu­al method.

At first, we can declare all steps abstract, forc­ing the sub­class­es to pro­vide their own imple­men­ta­tions for these meth­ods. In our case, sub­class­es already have all nec­es­sary imple­men­ta­tions, so the only thing we might need to do is adjust sig­na­tures of the meth­ods to match the meth­ods of the superclass.

Now, let’s see what we can do to get rid of the dupli­cate code. It looks like the code for open­ing/clos­ing files and extract­ing/pars­ing data is dif­fer­ent for var­i­ous data for­mats, so there’s no point in touch­ing those meth­ods. How­ev­er, imple­men­ta­tion of other steps, such as ana­lyz­ing the raw data and com­pos­ing reports, is very sim­i­lar, so it can be pulled up into the base class, where sub­class­es can share that code.

As you can see, we’ve got two types of steps:

	
abstract steps must be imple­ment­ed by every sub­class

	
option­al steps already have some default imple­men­ta­tion, but still can be over­rid­den if need­ed

There’s anoth­er type of step, called hooks. A hook is an option­al step with an empty body. A tem­plate method would work even if a hook isn’t over­rid­den. Usu­al­ly, hooks are placed before and after cru­cial steps of algo­rithms, pro­vid­ing sub­class­es with addi­tion­al exten­sion points for an algorithm.

 Real-World Anal­o­gy

[image: Mass housing construction]
A typ­i­cal archi­tec­tur­al plan can be slight­ly altered to bet­ter fit the client’s needs.

The tem­plate method approach can be used in mass hous­ing con­struc­tion. The archi­tec­tur­al plan for build­ing a stan­dard house may con­tain sev­er­al exten­sion points that would let a poten­tial owner adjust some details of the result­ing house.

Each build­ing step, such as lay­ing the foun­da­tion, fram­ing, build­ing walls, installing plumb­ing and wiring for water and elec­tric­i­ty, etc., can be slight­ly changed to make the result­ing house a lit­tle bit dif­fer­ent from others.

 Struc­ture

[image: Structure of the Template Method design pattern]

	
The Abstract Class declares meth­ods that act as steps of an algo­rithm, as well as the actu­al tem­plate method which calls these meth­ods in a spe­cif­ic order. The steps may either be declared abstract or have some default imple­men­ta­tion.

	
Con­crete Class­es can over­ride all of the steps, but not the tem­plate method itself.

 Pseudocode

In this exam­ple, the Tem­plate Method pat­tern pro­vides a “skele­ton” for var­i­ous branch­es of arti­fi­cial intel­li­gence in a sim­ple strat­e­gy video game.

[image: Structure of the Template Method pattern example]
AI class­es of a sim­ple video game.

All races in the game have almost the same types of units and build­ings. There­fore you can reuse the same AI struc­ture for var­i­ous races, while being able to over­ride some of the details. With this approach, you can over­ride the orcs’ AI to make it more aggres­sive, make humans more defense-ori­ent­ed, and make mon­sters unable to build any­thing. Adding a new race to the game would require cre­at­ing a new AI sub­class and over­rid­ing the default meth­ods declared in the base AI class.

// The abstract class defines a template method that contains a

// skeleton of some algorithm composed of calls, usually to

// abstract primitive operations. Concrete subclasses implement

// these operations, but leave the template method itself

// intact.

class GameAI is

 // The template method defines the skeleton of an algorithm.

 method turn() is

 collectResources()

 buildStructures()

 buildUnits()

 attack()

 // Some of the steps may be implemented right in a base

 // class.

 method collectResources() is

 foreach (s in this.builtStructures) do

 s.collect()

 // And some of them may be defined as abstract.

 abstract method buildStructures()

 abstract method buildUnits()

 // A class can have several template methods.

 method attack() is

 enemy = closestEnemy()

 if (enemy == null)

 sendScouts(map.center)

 else

 sendWarriors(enemy.position)

 abstract method sendScouts(position)

 abstract method sendWarriors(position)

// Concrete classes have to implement all abstract operations of

// the base class but they must not override the template method

// itself.

class OrcsAI extends GameAI is

 method buildStructures() is

 if (there are some resources) then

 // Build farms, then barracks, then stronghold.

 method buildUnits() is

 if (there are plenty of resources) then

 if (there are no scouts)

 // Build peon, add it to scouts group.

 else

 // Build grunt, add it to warriors group.

 // ...

 method sendScouts(position) is

 if (scouts.length > 0) then

 // Send scouts to position.

 method sendWarriors(position) is

 if (warriors.length > 5) then

 // Send warriors to position.

// Subclasses can also override some operations with a default

// implementation.

class MonstersAI extends GameAI is

 method collectResources() is

 // Monsters don't collect resources.

 method buildStructures() is

 // Monsters don't build structures.

 method buildUnits() is

 // Monsters don't build units.

 Applic­a­bil­i­ty

 Use the Tem­plate Method pat­tern when you want to let clients extend only par­tic­u­lar steps of an algo­rithm, but not the whole algo­rithm or its structure.

 The Tem­plate Method lets you turn a mono­lith­ic algo­rithm into a series of indi­vid­ual steps which can be eas­i­ly extend­ed by sub­class­es while keep­ing intact the struc­ture defined in a superclass.

 Use the pat­tern when you have sev­er­al class­es that con­tain almost iden­ti­cal algo­rithms with some minor dif­fer­ences. As a result, you might need to mod­i­fy all class­es when the algo­rithm changes.

 When you turn such an algo­rithm into a tem­plate method, you can also pull up the steps with sim­i­lar imple­men­ta­tions into a super­class, elim­i­nat­ing code dupli­ca­tion. Code that varies between sub­class­es can remain in subclasses.

 How to Imple­ment

	
Ana­lyze the tar­get algo­rithm to see whether you can break it into steps. Con­sid­er which steps are com­mon to all sub­class­es and which ones will always be unique.

	
Cre­ate the abstract base class and declare the tem­plate method and a set of abstract meth­ods rep­re­sent­ing the algo­rithm’s steps. Out­line the algo­rithm’s struc­ture in the tem­plate method by exe­cut­ing cor­re­spond­ing steps. Con­sid­er mak­ing the tem­plate method final to pre­vent sub­class­es from over­rid­ing it.

	
It’s okay if all the steps end up being abstract. How­ev­er, some steps might ben­e­fit from hav­ing a default imple­men­ta­tion. Sub­class­es don’t have to imple­ment those methods.

	
Think of adding hooks between the cru­cial steps of the algorithm.

	
For each vari­a­tion of the algo­rithm, cre­ate a new con­crete sub­class. It must imple­ment all of the abstract steps, but may also over­ride some of the option­al ones.

 Pros and Cons

	
 You can let clients over­ride only cer­tain parts of a large algo­rithm, mak­ing them less affect­ed by changes that hap­pen to other parts of the algorithm.

	
 You can pull the dupli­cate code into a superclass.

	
 Some clients may be lim­it­ed by the pro­vid­ed skele­ton of an algorithm.

	
 You might vio­late the Liskov Sub­sti­tu­tion Prin­ci­ple by sup­press­ing a default step imple­men­ta­tion via a subclass.

	
 Tem­plate meth­ods tend to be hard­er to main­tain the more steps they have.

 Rela­tions with Other Pat­terns

	
Fac­to­ry Method is a spe­cial­iza­tion of Tem­plate Method. At the same time, a Fac­to­ry Method may serve as a step in a large Tem­plate Method.

	
Tem­plate Method is based on inher­i­tance: it lets you alter parts of an algo­rithm by extend­ing those parts in sub­class­es. Strat­e­gy is based on com­po­si­tion: you can alter parts of the object’s behav­ior by sup­ply­ing it with dif­fer­ent strate­gies that cor­re­spond to that behav­ior. Tem­plate Method works at the class level, so it’s sta­t­ic. Strat­e­gy works on the object level, let­ting you switch behav­iors at runtime.

[image: Visitor Design<html5-dom-document-internal-entity1-amp></html5-dom-document-internal-entity1-amp>nbsp;Pattern]

 Visitor

Vis­i­tor is a behav­ioral design pat­tern that lets you sep­a­rate algo­rithms from the objects on which they operate.

 Prob­lem

Imag­ine that your team devel­ops an app which works with geo­graph­ic infor­ma­tion struc­tured as one colos­sal graph. Each node of the graph may rep­re­sent a com­plex enti­ty such as a city, but also more gran­u­lar things like indus­tries, sight­see­ing areas, etc. The nodes are con­nect­ed with oth­ers if there’s a road between the real objects that they rep­re­sent. Under the hood, each node type is rep­re­sent­ed by its own class, while each spe­cif­ic node is an object.

[image: Exporting the graph into XML]
Export­ing the graph into XML.

At some point, you got a task to imple­ment export­ing the graph into XML for­mat. At first, the job seemed pret­ty straight­for­ward. You planned to add an export method to each node class and then lever­age recur­sion to go over each node of the graph, exe­cut­ing the export method. The solu­tion was sim­ple and ele­gant: thanks to poly­mor­phism, you weren’t cou­pling the code which called the export method to con­crete class­es of nodes.

Unfor­tu­nate­ly, the sys­tem archi­tect refused to allow you to alter exist­ing node class­es. He said that the code was already in pro­duc­tion and he didn’t want to risk break­ing it because of a poten­tial bug in your changes.

[image: The XML export method had to be added into all node classes]
The XML export method had to be added into all node class­es, which bore the risk of break­ing the whole appli­ca­tion if any bugs slipped through along with the change.

Besides, he ques­tioned whether it makes sense to have the XML export code with­in the node class­es. The pri­ma­ry job of these class­es was to work with geo­da­ta. The XML export behav­ior would look alien there.

There was anoth­er rea­son for the refusal. It was high­ly like­ly that after this fea­ture was imple­ment­ed, some­one from the mar­ket­ing depart­ment would ask you to pro­vide the abil­i­ty to export into a dif­fer­ent for­mat, or request some other weird stuff. This would force you to change those pre­cious and frag­ile class­es again.

 Solu­tion

The Vis­i­tor pat­tern sug­gests that you place the new behav­ior into a sep­a­rate class called vis­i­tor, instead of try­ing to inte­grate it into exist­ing class­es. The orig­i­nal object that had to per­form the behav­ior is now passed to one of the vis­i­tor’s meth­ods as an argu­ment, pro­vid­ing the method access to all nec­es­sary data con­tained with­in the object.

Now, what if that behav­ior can be exe­cut­ed over objects of dif­fer­ent class­es? For exam­ple, in our case with XML export, the actu­al imple­men­ta­tion will prob­a­bly be a lit­tle bit dif­fer­ent across var­i­ous node class­es. Thus, the vis­i­tor class may define not one, but a set of meth­ods, each of which could take argu­ments of dif­fer­ent types, like this:

class ExportVisitor implements Visitor is

 method doForCity(City c) { ... }

 method doForIndustry(Industry f) { ... }

 method doForSightSeeing(SightSeeing ss) { ... }

 // ...

But how exact­ly would we call these meth­ods, espe­cial­ly when deal­ing with the whole graph? These meth­ods have dif­fer­ent sig­na­tures, so we can’t use poly­mor­phism. To pick a prop­er vis­i­tor method that’s able to process a given object, we’d need to check its class. Doesn’t this sound like a night­mare?

foreach (Node node in graph)

 if (node instanceof City)

 exportVisitor.doForCity((City) node)

 if (node instanceof Industry)

 exportVisitor.doForIndustry((Industry) node)

 // ...

}

You might ask, why don’t we use method over­load­ing? That’s when you give all meth­ods the same name, even if they sup­port dif­fer­ent sets of para­me­ters. Unfor­tu­nate­ly, even assum­ing that our pro­gram­ming lan­guage sup­ports it at all (as Java and C# do), it won’t help us. Since the exact class of a node object is unknown in advance, the over­load­ing mech­a­nism won’t be able to deter­mine the cor­rect method to exe­cute. It’ll default to the method that takes an object of the base Node class.

How­ev­er, the Vis­i­tor pat­tern address­es this prob­lem. It uses a tech­nique called Dou­ble Dis­patch, which helps to exe­cute the prop­er method on an object with­out cum­ber­some con­di­tion­als. Instead of let­ting the client select a prop­er ver­sion of the method to call, how about we del­e­gate this choice to objects we’re pass­ing to the vis­i­tor as an argu­ment? Since the objects know their own class­es, they’ll be able to pick a prop­er method on the vis­i­tor less awk­ward­ly. They “accept” a vis­i­tor and tell it what vis­it­ing method should be executed.

// Client code

foreach (Node node in graph)

 node.accept(exportVisitor)

// City

class City is

 method accept(Visitor v) is

 v.doForCity(this)

 // ...

// Industry

class Industry is

 method accept(Visitor v) is

 v.doForIndustry(this)

 // ...

I con­fess. We had to change the node class­es after all. But at least the change is triv­ial and it lets us add fur­ther behav­iors with­out alter­ing the code once again.

Now, if we extract a com­mon inter­face for all vis­i­tors, all exist­ing nodes can work with any vis­i­tor you intro­duce into the app. If you find your­self intro­duc­ing a new behav­ior relat­ed to nodes, all you have to do is imple­ment a new vis­i­tor class.

 Real-World Anal­o­gy

[image: Insurance agent]
A good insur­ance agent is always ready to offer dif­fer­ent poli­cies to var­i­ous types of orga­ni­za­tions.

Imag­ine a sea­soned insur­ance agent who’s eager to get new cus­tomers. He can visit every build­ing in a neigh­bor­hood, try­ing to sell insur­ance to every­one he meets. Depend­ing on the type of orga­ni­za­tion that occu­pies the build­ing, he can offer spe­cial­ized insur­ance policies:

	If it’s a res­i­den­tial build­ing, he sells med­ical insurance.

	If it’s a bank, he sells theft insurance.

	If it’s a cof­fee shop, he sells fire and flood insurance.

 Struc­ture

[image: Structure of the Visitor design pattern]

	
The Vis­i­tor inter­face declares a set of vis­it­ing meth­ods that can take con­crete ele­ments of an object struc­ture as argu­ments. These meth­ods may have the same names if the pro­gram is writ­ten in a lan­guage that sup­ports over­load­ing, but the type of their para­me­ters must be different.

	
Each Con­crete Vis­i­tor imple­ments sev­er­al ver­sions of the same behav­iors, tai­lored for dif­fer­ent con­crete ele­ment classes.

	
The Ele­ment inter­face declares a method for “accept­ing” vis­i­tors. This method should have one para­me­ter declared with the type of the vis­i­tor interface.

	
Each Con­crete Ele­ment must imple­ment the accep­tance method. The pur­pose of this method is to redi­rect the call to the prop­er vis­i­tor’s method cor­re­spond­ing to the cur­rent ele­ment class. Be aware that even if a base ele­ment class imple­ments this method, all sub­class­es must still over­ride this method in their own class­es and call the appro­pri­ate method on the vis­i­tor object.

	
The Client usu­al­ly rep­re­sents a col­lec­tion or some other com­plex object (for exam­ple, a Com­pos­ite tree). Usu­al­ly, clients aren’t aware of all the con­crete ele­ment class­es because they work with objects from that col­lec­tion via some abstract interface.

 Pseudocode

In this exam­ple, the Vis­i­tor pat­tern adds XML export sup­port to the class hier­ar­chy of geo­met­ric shapes.

[image: Structure of the Visitor pattern example]
Export­ing var­i­ous types of objects into XML for­mat via a vis­i­tor object.

// The element interface declares an `accept` method that takes

// the base visitor interface as an argument.

interface Shape is

 method move(x, y)

 method draw()

 method accept(v: Visitor)

// Each concrete element class must implement the `accept`

// method in such a way that it calls the visitor's method that

// corresponds to the element's class.

class Dot implements Shape is

 // ...

 // Note that we're calling `visitDot`, which matches the

 // current class name. This way we let the visitor know the

 // class of the element it works with.

 method accept(v: Visitor) is

 v.visitDot(this)

class Circle implements Shape is

 // ...

 method accept(v: Visitor) is

 v.visitCircle(this)

class Rectangle implements Shape is

 // ...

 method accept(v: Visitor) is

 v.visitRectangle(this)

class CompoundShape implements Shape is

 // ...

 method accept(v: Visitor) is

 v.visitCompoundShape(this)

// The Visitor interface declares a set of visiting methods that

// correspond to element classes. The signature of a visiting

// method lets the visitor identify the exact class of the

// element that it's dealing with.

interface Visitor is

 method visitDot(d: Dot)

 method visitCircle(c: Circle)

 method visitRectangle(r: Rectangle)

 method visitCompoundShape(cs: CompoundShape)

// Concrete visitors implement several versions of the same

// algorithm, which can work with all concrete element classes.

//

// You can experience the biggest benefit of the Visitor pattern

// when using it with a complex object structure such as a

// Composite tree. In this case, it might be helpful to store

// some intermediate state of the algorithm while executing the

// visitor's methods over various objects of the structure.

class XMLExportVisitor implements Visitor is

 method visitDot(d: Dot) is

 // Export the dot's ID and center coordinates.

 method visitCircle(c: Circle) is

 // Export the circle's ID, center coordinates and

 // radius.

 method visitRectangle(r: Rectangle) is

 // Export the rectangle's ID, left-top coordinates,

 // width and height.

 method visitCompoundShape(cs: CompoundShape) is

 // Export the shape's ID as well as the list of its

 // children's IDs.

// The client code can run visitor operations over any set of

// elements without figuring out their concrete classes. The

// accept operation directs a call to the appropriate operation

// in the visitor object.

class Application is

 field allShapes: array of Shapes

 method export() is

 exportVisitor = new XMLExportVisitor()

 foreach (shape in allShapes) do

 shape.accept(exportVisitor)

If you won­der why we need the accept method in this exam­ple, my arti­cle Vis­i­tor and Dou­ble Dis­patch address­es this ques­tion in detail.

 Applic­a­bil­i­ty

 Use the Vis­i­tor when you need to per­form an oper­a­tion on all ele­ments of a com­plex object struc­ture (for exam­ple, an object tree).

 The Vis­i­tor pat­tern lets you exe­cute an oper­a­tion over a set of objects with dif­fer­ent class­es by hav­ing a vis­i­tor object imple­ment sev­er­al vari­ants of the same oper­a­tion, which cor­re­spond to all tar­get classes.

 Use the Vis­i­tor to clean up the busi­ness logic of aux­il­iary behaviors.

 The pat­tern lets you make the pri­ma­ry class­es of your app more focused on their main jobs by extract­ing all other behav­iors into a set of vis­i­tor classes.

 Use the pat­tern when a behav­ior makes sense only in some class­es of a class hier­ar­chy, but not in others.

 You can extract this behav­ior into a sep­a­rate vis­i­tor class and imple­ment only those vis­it­ing meth­ods that accept objects of rel­e­vant class­es, leav­ing the rest empty.

 How to Imple­ment

	
Declare the vis­i­tor inter­face with a set of “vis­it­ing” meth­ods, one per each con­crete ele­ment class that exists in the program.

	
Declare the ele­ment inter­face. If you’re work­ing with an exist­ing ele­ment class hier­ar­chy, add the abstract “accep­tance” method to the base class of the hier­ar­chy. This method should accept a vis­i­tor object as an argument.

	
Imple­ment the accep­tance meth­ods in all con­crete ele­ment class­es. These meth­ods must sim­ply redi­rect the call to a vis­it­ing method on the incom­ing vis­i­tor object which match­es the class of the cur­rent element.

	
The ele­ment class­es should only work with vis­i­tors via the vis­i­tor inter­face. Vis­i­tors, how­ev­er, must be aware of all con­crete ele­ment class­es, ref­er­enced as para­me­ter types of the vis­it­ing methods.

	
For each behav­ior that can’t be imple­ment­ed inside the ele­ment hier­ar­chy, cre­ate a new con­crete vis­i­tor class and imple­ment all of the vis­it­ing methods.

You might encounter a sit­u­a­tion where the vis­i­tor will need access to some pri­vate mem­bers of the ele­ment class. In this case, you can either make these fields or meth­ods pub­lic, vio­lat­ing the ele­ment’s encap­su­la­tion, or nest the vis­i­tor class in the ele­ment class. The lat­ter is only pos­si­ble if you’re lucky to work with a pro­gram­ming lan­guage that sup­ports nest­ed classes.

	
The client must cre­ate vis­i­tor objects and pass them into ele­ments via “accep­tance” methods.

 Pros and Cons

	
 Open/Closed Prin­ci­ple. You can intro­duce a new behav­ior that can work with objects of dif­fer­ent class­es with­out chang­ing these classes.

	
 Sin­gle Respon­si­bil­i­ty Prin­ci­ple. You can move mul­ti­ple ver­sions of the same behav­ior into the same class.

	
 A vis­i­tor object can accu­mu­late some use­ful infor­ma­tion while work­ing with var­i­ous objects. This might be handy when you want to tra­verse some com­plex object struc­ture, such as an object tree, and apply the vis­i­tor to each object of this structure.

	
 You need to update all vis­i­tors each time a class gets added to or removed from the ele­ment hierarchy.

	
 Vis­i­tors might lack the nec­es­sary access to the pri­vate fields and meth­ods of the ele­ments that they’re sup­posed to work with.

 Rela­tions with Other Pat­terns

	
You can treat Vis­i­tor as a pow­er­ful ver­sion of the Com­mand pat­tern. Its objects can exe­cute oper­a­tions over var­i­ous objects of dif­fer­ent classes.

	
You can use Vis­i­tor to exe­cute an oper­a­tion over an entire Com­pos­ite tree.

	
You can use Vis­i­tor along with Iter­a­tor to tra­verse a com­plex data struc­ture and exe­cute some oper­a­tion over its ele­ments, even if they all have dif­fer­ent classes.

 Conclusion

 Con­grats! You have reached the end of the book!

How­ev­er, there are many other pat­terns in the world. I hope that the book will become your start­ing point for learn­ing pat­terns and devel­op­ing super­hero pro­gram design abilities.

Here are a cou­ple of ideas that will help you decide what to do next.

	
 Don’t for­get that you also have access to an archive of down­load­able code sam­ples in dif­fer­ent pro­gram­ming languages.

	
 Read Joshua Kerievsky’s “Refac­tor­ing To Pat­terns”.

	
 Know noth­ing about refac­tor­ing? I have a course for you.

	
 Print out these pat­terns cheat sheets and put them some­where where you’ll be able to see them all the time.

	
 Leave feed­back on this book. I’ll be very excit­ed to learn your opin­ion, even a high­ly crit­i­cal one

#98645

Footnotes

1. A Pattern Language: Towns, Buildings, Construction: https://refactoring.guru/pattern-language-book

2. Design Patterns: Elements of Reusable Object-Oriented Software: https://refactoring.guru/gof-book

3. Erich Gamma on Flexibility and Reuse: https://refactoring.guru/gamma-interview

4. Agile Software Development, Principles, Patterns, and Practices: https://refactoring.guru/principles-book

5. This principle is named by Barbara Liskov, who defined it in 1987 in her work Data abstraction and hierarchy: https://refactoring.guru/liskov/dah

6. “Gang of Four” is a nickname given to the four authors of the original book about design patterns: Design Patterns: Elements of Reusable Object-Oriented Software https://refactoring.guru/gof-book.

7. Aggregation: object A contains objects B; B can live without A.
Composition: object A consists of objects B; A manages life cycle of B; B can’t live without A.

OEBPS/images/patterns/diagrams/intro/aggregation-en.png
Department H

OEBPS/images/patterns/diagrams/observer/solution2-en.png
Guys, I just want
to let you know that
something has just
happened to me.

OEBPS/images/patterns/diagrams/intro-principles/program-to-interface-before.png
+ designArchitecture()

+ testSoftware()

+ createSoftware()

Designer d = new Designer()
d.designArchitecture()
Programmer p = new Programmer()
p.writeCode()

Tester t = new Tester()
t.testSoftware()

OEBPS/images/patterns/diagrams/intro-solid/isp-before-en.png
«interface»

CloudProvider

+ storeFile(name)

+ getFile(name)

+ createServer(region)
+ listServers(region)

+ getCDNAddress()

........... S ——

+ storeFile(name)

+ getFile(name)

+ createServer(region)
+ listServers(region)

+ getCDNAddress()

H

+ storeFile(name)
+ getFile(name)

+ createServer(region)
+ listServers(region)
+ getCDNAddress()

Not
implemented.

OEBPS/images/patterns/diagrams/intro-solid/lsp-before-en.png
- documents

- filename foreach (doc in documents) {
+ openAll() doc.open()
+open() +saveAll) © | |3
+save()
/\

foreach (doc in documents) {
if (!doc instanceof ReadOnlyDocument)
ReadOnlyDocument doc.save()

}
throw new Exception(“Unable to save read-only file.)

}

OEBPS/images/patterns/diagrams/factory-method/structure-indexed.png
Product p = createProduct()
p.doStuff()

5

+ someOperation()
+ createProduct(): Product

\)

«interface»
Product

+ doStuff()

i H
Concrete Concrete
ProductA ProductB

ConcreteCreatorA

+ createProduct(): Product

ConcreteCreatorB

+ createProduct(): Product

return new ConcreteProductA()

OEBPS/images/patterns/content/prototype/prototype-comic-3-en.png
HEY, BRO!

HELLO, BRO!

OEBPS/images/patterns/diagrams/chain-of-responsibility/problem2-en.png
Authentication + Authorization +
Validation + Caching +...

Ordering

Request System

OEBPS/images/patterns/diagrams/adapter/structure-object-adapter-indexed.png
«interface»
Client Interface
+ method(data
A
@® 3
[e
E

@
)

®

+ method(data)

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

OEBPS/images/patterns/diagrams/mediator/problem2.png
Checkbox if (dialog.name == "profile_form")

W o
if (dialog.name == "login_form")
+ onCheck() /.

- dialog

OEBPS/images/patterns/diagrams/intro-solid/srp-after.png
TimeSheetReport Employee

-name

+ print(employee) + getName()

OEBPS/images/patterns/cards/factory-method-mini.png

OEBPS/images/patterns/diagrams/factory-method/problem1-en.png

OEBPS/images/patterns/diagrams/visitor/problem1.png
LOWER EAST
SIDE

OEBPS/images/patterns/diagrams/intro-solid/srp-before.png
Employee

-name

+ getName()
+ printTimeSheetReport()

OEBPS/images/patterns/diagrams/intro-solid/ocp-after-en.png
«interface»
Shipping

+ getTotal()) + getCost(order)
+ getTotalWeight() + getDate(order)
+ setShippingType(shipping)

£\

+ getShippingCost()
+ getShippingDate()

return shipping.getCost(this)

+ getCost(order) + getCost(order)
+ getDate(order) + getDate(order)

// Free ground delivery on big orders.
if (order.getTotal() > 100) {
return 0

// $1.5 per kilogram, but $10 minimum.
return max(10, order.getTotalWeight() * 1.5)

OEBPS/images/patterns/content/prototype/prototype-comic-1-en.png
ONE MONTH LATER I
DO YOU THINK Al

WE'D BE ABLE

T0 COPY IT?

OEBPS/images/patterns/diagrams/bridge/example-en.png
abstraction.featurel()

Bridge

«interface»
Device
Remote

+ isEnabled()
+enable()

+ togglePower() + disable()

+ volumeDown() + getVolume()

+ volumeUp() + setVolume(percent)
+ channelDown() + getChannel()

+ channelUp() + setChannel(channel)

]

]

]

]

]

]

]

]

]

]

:

if (device.isEnabled()) | !
device.disable() |
else 1
device.enable() H
i

]

]

:

]

1

old = device.getChannel()
device.setChannel(old+1)

device.setVolume(0)

OEBPS/images/patterns/diagrams/chain-of-responsibility/example2-en.png
Dialog
Print
Panel
Settings
Panel
Color

Button

Grayscale

OEBPS/images/patterns/diagrams/chain-of-responsibility/structure-indexed.png
(B
«interface»
Handler

+ setNext(h: Handler)
+ handle(request)

2 ’
i BaseHandler

+ setNext(h: Handler)
+ handle(request)

/\
3p
ConcreteHandlers

+ handle(request) I

|

h1 = new HandlerA()
h2 = new HandlerB()
h3 = new HandlerC()
hl.setNext(h2)
h2.setNext(h3)

/..
h1.handle(request)

if (next != null)
next.handle(request)

if (canHandle(request)) {
/-

}else {
parent:handle(request)

}

OEBPS/images/patterns/diagrams/builder/structure-indexed.png
b = new ConcreteBuilder1()

d = new Director(b)

d.make() @
Productl p = b.getResult()

1

«interface»
Builder

- builder: Builder
+ reset()
+ buildStepA() + Director(builder)

+ buildStepB() + changeBuilder(builder)
+ buildStepZ() + make(type)

: builder.reset()
HE H if (type == "simple”) {
builder.buildStepA()
}else {
builder.buildStepB()
builder.buildStepZ()

N

Concrete Concrete
Builderl Builder2

- result: Productl - result: Product2 }

+ reset| + reset|
0 0 result = new Product2()

+ buildStepA() + buildStepA()
+ buildStepB() + buildStepB()
+ buildStepZ() + buildStepZ() result.setFeatureB()
+ getResult(): + getResult():

Productl Product2 return this.result

R

OEBPS/images/patterns/diagrams/state/problem2-en.png
Published
by user

Review
failed

Publication %
expired P
- &
Approved

by admin

Published
—

—
~—~——

=)

Published
by admin

OEBPS/images/patterns/diagrams/intro/hierarchy-simplified.png
Cat

OEBPS/images/patterns/content/builder/builder-comic-1-en.png
GUYS, I NEED A HOUSE WITH 4 WALLS,
1 DOOR, Z WINDOWS, ...

3

OEBPS/images/patterns/content/adapter/adapter-comic-1-en.png
TRAVELING ABROAD
I1ST TIME 10TH TIME

OEBPS/images/patterns/content/memento/memento-en.png

OEBPS/images/patterns/content/abstract-factory/abstract-factory-comic-2-en.png
GIMME A CHAIR!
1 HAVE A NAME\ 2 R &
A\ vouknow.) R\)) P
\\

OEBPS/images/patterns/diagrams/iterator/solution1.png
TreeCollection

+ getDepthlterator()
+ getBreadthlterator()

Depth-first Iterator
- currentElement

+ getNext(): Element
+ hasMore(): bool

¥ 17

Breadth-first Iterator

- currentElement

+ getNext(): Element
+ hasMore(): bool

<

OEBPS/images/patterns/diagrams/template-method/solution-en.png
rawData = extractData(file)
— data = parseData(rawData)
Template method _< . analysis = analyzeData(data)
+ mine(path) sendReport(analysis)

+ openFile(path) closeFile(file)
+ extractData(file)
Steps + pa 9

analyzeData(data Steps with default

< (data)
sendReport(analyst
+ closeFile(file)

vData

implementation.

/\

PDFDataMiner

+ openFile(path)

+ extractData(file)

+ parseData(rawData)
+ closeFile(file)

PDF-related overrides.

OEBPS/images/patterns/diagrams/template-method/live-example.png
0 - EIEI+E’BB+/9*
PR

a

OEBPS/images/patterns/diagrams/intro/objects-en.png
54

name = "Oscar" name = "Luna"
sex = "male" sex = "female"
age = 3 age = 2
weight = 7 weight = 5
color = brown color = gray
texture = striped texture = plain

OEBPS/images/patterns/diagrams/intro-principles/program-to-interface-after.png
+ getEmployees()
+ createSoftware()
/\
GameDev
Company

+ getEmployees()

«interface»
Employee

+ doWork()

employees = getEmployees()

foreach (Employee e in employees) {
e.doWork()

}

[Cosme]I
£
0
[Foovor 1
A

Outsourcing
Company

+ getEmployees()

return [return [
new Designer(), new Programmer(),
new Artist(), new Tester(),

) < W) =
]]

OEBPS/images/patterns/diagrams/proxy/live-example.png
«interface»
Payment

+ pay(amount)

OEBPS/images/patterns/diagrams/intro/corner-stones-en.png
Abstraction

OBJECT
ORIENTED
PROGRAMMING

Encapsulation

Polymorphism

OEBPS/images/patterns/diagrams/observer/structure-indexed.png
@

foreach (s in subscribers)
s.update(this)

mainState = newState
notifySubscribers()

CDW
- subscribers: Subscriber([]
- mainState

3

«interface»
Subscriber

+ update(context)
+ subscribe(s: Subscriber)

+ unsubscribe(s: Subscriber)
+ notifySubscribers()

+ mainBusinessLogic()

Concrete ‘:’

Subscribers

s = new ConcreteSubscriber() -
publisher.subscribe(s)

® Cam]

+ update(context) [

OEBPS/images/patterns/diagrams/intro-solid/isp-after.png
«interface» «interface» «interface»
CloudHostingProvider CDNProvider CloudStorageProvider
+ createServer(region) + getCDNAddress() + storeFile(name)
+ listServers(region) A\ + getFile(name)

/\

+ storeFile(name)

+ getFile(name) + storeFile(name)
+ createServer(region) + getFile(name)
+ listServers(region)

+ getCDNAddress()

OEBPS/images/patterns/diagrams/factory-method/solution3-en.png
H Transport i

{ Transport | j

OEBPS/images/patterns/diagrams/builder/problem1.png
v

OEBPS/images/patterns/diagrams/command/solution2-en.png
User Interface Business Logic

update(2, "John Smith")

OEBPS/images/patterns/content/strategy/strategy-comic-1-en.png

OEBPS/images/patterns/cards/singleton-mini.png

OEBPS/images/patterns/diagrams/facade/live-example-en.png
A
e
T T Seepliers

OEBPS/images/patterns/diagrams/command/example.png
CopyCommand

+ getSelection() _
+ deleteSelection()
+ replaceSelection(text)

. I

+ editors: Editor[]

+ activeEditor: Editor UndoCommand
+ history: CommandHistory
CommandHistory

- history: Command[]

+ Command(app, editor)
+ saveBackup

+undo

+ execute()

==

+ createUl()

+ executeCommand(
¢: Command)

+undo()

+ push(c: Command)
+ pop(): Command

OEBPS/images/patterns/diagrams/mediator/solution1-en.png
Profile Dialog Loglin Dialog

(o] R
e “

EZn e

—

L

OEBPS/images/patterns/diagrams/prototype/example.png
Shape

=X,y
- color

+ Shape(source)
+ clone()

- width
- height

+ Rectangle()
+ clone()

+ Circle()
+ clone()

OEBPS/images/patterns/diagrams/intro/composition-en.png
(et J&——>omprmen]

OEBPS/images/patterns/cards/chain-of-responsibility-mini.png

OEBPS/images/patterns/diagrams/iterator/structure-indexed.png
Client

«interface» «interface»
Iterator IterableCollection

+getNext) — |<--------- + createlterator(): Iterator

+ hasMore(): bool

e
Concretelterator

]
- collection: ConcreteCollection
- iterationState

+ Concretelterator(
c¢: ConcreteCollection)

+ getNext()
+ hasMore(): bool

OEBPS/images/patterns/diagrams/adapter/structure-class-adapter-indexed.png
Existing Class
+ method(data)

/\

+ serviceMethod(specialData)
/\

Adapter

+ method(data)

specialData = convertToServiceFormat(data)
return serviceMethod(specialData)

OEBPS/images/patterns/diagrams/flyweight/solution2-en.png
+ coords
+ vectors
+ speeds

- mps: MovingParticles[]

- particles: Particle[] - particles: Particle[]

+ addParticle(coords, vector,
speed, color, sprite): Particle
+ draw(canvas)

+ addParticle(particle) + references
+ draw(canvas) + particles: Particle[]

+ addParticle(particle)
+ draw(canvas)

foreach (p in mps)
p.draw(canvas)

1. Go over the particles array and try to find an existing particle with

the given color and sprite. If there’s none then create a new one.

2. Create a moving particle with given data and the particle object
from the first step.

OEBPS/images/patterns/diagrams/intro/abstraction.png
A

- rollAngle + reserveSeat(n)

- pitchAngle
-yawAngle

OEBPS/images/patterns/diagrams/builder/example-en.png
director = new Director()

CarBuilder builder = new CarBuilder()
director.makeSportsCar(builder)

Car car = builder.getResult()

«interface»
Builder

+ reset()
+ setSeats(number)
+ setEngine(engine)
+ setTripComputer()
+ setGPS() builder.reset()
A builder.setSeats(2)
......... - builder.setEngine(

new SportEngine())
CarManual builder.setTripComputer()
Builder builder.setGPS()

- manual: Manual

+ makeSUV(builder)
+ makeSportsCar(builder)

this.manual =

+ reset() + reset()
new Manual()

+ setSeats(number) + setSeats(number)
+ setEngine(engine) + setEngine(engine) Add a trip computer
+ setTripComputer() + setTripComputer() instruction.

+ setGPS() + setGPS()

+ getResult(): Car + getResult(): Manual return this.manual

OEBPS/images/patterns/diagrams/memento/problem2-en.png
- text
private = can't copy |- cursorPos
- selection

public = unsafe - currentFont
- styles

OEBPS/images/patterns/content/iterator/iterator-en.png

OEBPS/images/patterns/diagrams/memento/example.png
- state - state - backup: Snapshot

+ setState(x) + Snapshot(state) + makeBackup()
+ createSnapshot() + restore() +undo()

OEBPS/images/patterns/diagrams/facade/structure-indexed.png
Additional
Facade

+ anotherOperation()

R WP, /
! [P ’ R \ % Py
] =N \ ; .
1 7 &
|
\

/
el TR
m 4 g
VT) Subsystem class <
: E class J
e T

OEBPS/images/patterns/diagrams/intro-principles/prefer-inheritance-over-composition-before.png
Electric

Car
CombustionEngine CombustionEngine
Truck Car
/\ /\

Autopilot Autopilot Autopilot
Electric CombustionEngine CombustionEngine

Autopilot

Electric

Truck Truck Car Car

OEBPS/images/patterns/diagrams/mediator/problem1-en.png
Profile Dialog Loglin Dialog

| (]

\ / /

e ey, | [

|\

OEBPS/images/patterns/content/prototype/prototype.png

OEBPS/images/patterns/cards/builder-mini.png
¢!
&

OEBPS/images/patterns/diagrams/decorator/problem3.png
Facebook Notifier

SMS + Slack SMS + Facebook + Slack
Notifier Notifier

SMS + Facebook
Notifier

Slack Notifier

Facebook + Slack
Notifier

<l fR

OEBPS/images/patterns/diagrams/intro-principles/encapsulate-what-varies-before-en.png
- lineltems
- country

- state

- city

...20+ fields

+ getOrderTotal()
+ getTaxRate(country, state, product)

OEBPS/images/patterns/content/builder/builder-en.png

OEBPS/images/patterns/diagrams/observer/example.png
EventManager

- listeners

+ Editor() + subscribe(eventType, listener)
+ openFile() + unsubscribe(eventType, listener)
+ saveFile() + notify(eventType, data)

«interface»
EventListeners

+ update(filename)

/\

........... S ——

1 1
1 1
i LoggingListener

+ events: EventManager

EmailAlertsListener

+ update(filename) + update(filename)

OEBPS/images/patterns/diagrams/composite/live-example.png

OEBPS/images/patterns/diagrams/flyweight/problem-en.png
foreach (p in particles)
p.draw(canvas)

p = new Particle()
p.coords = coords
p.vector = target.coords
p.speed = weaponPower
p. color ="red"

p.sprite = “bullet.jpeg”
Game.addParticle(p)

+ particles: Particle[]

+ addParticle(particle)
+ draw(canvas)

+ fireAt(target: Unit)

+ move()
+ draw(canvas)

RAM cost

coords: 8B
vector: 16B
speed: 4B
color: 4B
sprite: 20KB
D ~ 21KB
X 1,000,000

OEBPS/images/patterns/cards/command-mini.png
= = = =

OEBPS/images/patterns/cards/strategy-mini.png

OEBPS/images/patterns/diagrams/mediator/structure-indexed.png
@
«interface»
Mediator

~
A

- m: Mediator
|- m:Mediator | () '
ConcreteMediator + operationD()

- componentA
- componentB
- componentC
- componentD

+ notify(sender) if (sender == componentA)
+ reactOnA() reactOnA()
+ reactOnB()

+ reactOnC()
+ reactOnD()

OEBPS/images/patterns/diagrams/intro-solid/dip-before-en.png
High level

BudgetReport

- database

+ open(date)
+save()

Low level

MySQLDatabase

OEBPS/images/patterns/diagrams/intro-principles/prefer-inheritance-over-composition-after.png
-engine
- driver

+ deliver(destination, cargo)
§

«interface» «interface»
Engine Driver

/\ /\

1]
1 1
CombustionEngine

OEBPS/images/patterns/diagrams/decorator/solution2.png
+ send(message)

/\

- wrappee: Notifier

+ BaseDecorator(notifier)
+ send(message)

SMS
Decorator

+ send(message)

wrappee.send(message);

Facebook
Decorator

+ send(message)

Slack
Decorator

+ send(message)

super::send(message); Q n “
sendSMS(message);

OEBPS/images/patterns/content/singleton/singleton.png
%
a
E1e

OEBPS/images/patterns/content/state/state-en.png

OEBPS/images/patterns/content/chain-of-responsibility/chain-of-responsibility-comic-1-en.png
HELLO, HAVE YOU TRIED 0K, HERE'S
I NEED SOME TURNING IT OFF WHERE YOU
TECH SUPPORT, AND ON AGAIN? CAN DOWNLOAD

SOME DRIVERS.

OEBPS/images/patterns/cards/decorator-mini.png

OEBPS/images/patterns/content/singleton/singleton-comic-1-en.png
SORRY, T THOUGHT
THIS ROOM WASN'T
0CCUPIED.

OEBPS/images/patterns/diagrams/abstract-factory/example.png
Application

1
\V4
«interface» - factory: GUIFactory
GUIFactory - button: Button

V
Checkbox
+ createButton(): Button
A A + createCheckbox(): Checkbox + Application(f: GUIFactory)

+ createUl()
+ paint()

+ createButton(): Button
+ createCheckbox(): Checkbox

OEBPS/images/patterns/diagrams/mediator/example.png
dialog: Mediator

«interface»
Mediator
+ notify(sender: Component, event: string)
/\

+ Component(dialog)
+ click()
+ keypress()

AuthenticationDialog

title: string
loginOrRegister: bool

loginUsername, loginPassword: Textbox

regUsername, regPassword, regEmail: Textbox
ok, cancel: Button
berMe: Checkb:
Checkbox rememberMe: Checkbox

+ AuthenticationDialog()
+ notify(sender, event)

OEBPS/images/patterns/content/abstract-factory/abstract-factory-en.png
>
S
=
(S
<<
w
[
Q
<<
o
[y
o)
©

L__fa

OEBPS/images/patterns/cards/memento-mini.png

OEBPS/images/patterns/cards/bridge-mini.png

OEBPS/images/patterns/diagrams/proxy/solution-en.png
I

|
l e

Y

—_—————

OEBPS/images/patterns/diagrams/memento/structure2-indexed.png
Originator

- state

+ save(): Memento
+ restore(m: Memento)

cm = (ConcreteMemento) m
state = cm.getState()

Client

- originator
- history: Memento[]

«interface»
Memento

/\

O

+undo()

ConcreteMemento

+ ConcreteMemento(state)
+ getState()

OEBPS/images/patterns/content/decorator/decorator.png
0 N— 2 AN

Wy

—

Ss—sN A =~ 7\=
VAVAVA VA =\

W 5

|/|1

OEBPS/images/patterns/diagrams/singleton/structure-en-indexed.png
- instance: Singleton

- Singleton()
+ getlnstance(): Singleton

Client

if (instance == null) {

// Note: if you're creating an app with
// multithreading support, you should
// place a thread lock here.
instance = new Singleton()

}

return instance

OEBPS/images/patterns/diagrams/mediator/live-example.png

OEBPS/images/patterns/diagrams/state/example.png
- state
+ Ul, volume, playlist, currentSong
+ State(player)

+ Player() + clickLock()
+ changeState(state) + clickPlay()
+ clickLock() + clickNext()

+ clickPlay() + clickPrevious()
+ clickNext()

+ clickPrevious()
+ startPlayback()

+ stopPlayback() -
+ nextSong() ReadyState PlayingState
+ previousSong()

+ fastForward() LockedState
+ rewind()

OEBPS/images/patterns/diagrams/template-method/problem.png
B

DocDataMiner

+ mine(path)

file = openFile(path)

rawData = extractDocData(file)
data = parseDocData(rawData)
analysis = analyzeData(data)
sendReport(analysis)
closeFile(file)

8

CSVDataMiner

+ mine(path)

file = openFile(path)

rawData = extractCSVData(file)
data = parseCSVData(rawData)
analysis = analyzeData(data)
sendReport(analysis)
closeFile(file)

_—
DATA

g

PDFDataMiner

+ mine(path)

file = openFile(path)

rawData = extractPDFData(file)
data = parsePDFData(rawData)
analysis = analyzeData(data)
sendReport(analysis)
closeFile(file)

OEBPS/images/patterns/content/command/command-comic-1.png

OEBPS/images/patterns/diagrams/chain-of-responsibility/solution2-en.png
& Crae]
6\(\

(sorma] [rom) (o] \ (o]

o [E i)
:
(suton | (image |

OEBPS/images/patterns/content/proxy/proxy.png

OEBPS/images/patterns/diagrams/factory-method/solution1.png
+ planDelivery()
+ createlransport()

A

Sealogistics
+ createTransport()

Transport t = createTransport()

NHA ~ O

return new Ship()

OEBPS/images/patterns/diagrams/abstract-factory/solution2.png
«interface»
FurnitureFactory

+ createChair(): Chair

+ createCoffeeTable(): CoffeeTable
+ createSofa(): Sofa

[mmm——————————— . N
1

1
@ VictorianFurnitureFactory ModernFurnitureFactory

+ createChair(): Chair
+ createCoffeeTable(): CoffeeTable
+ createSofa(): Sofa

+ createChair(): Chair
+ createCoffeeTable(): CoffeeTable
+ createSofa(): Sofa

OEBPS/images/patterns/diagrams/intro/hierarchy-en.png
+weight Arrows with empty triangle
heads indicate inheritance

+

color and always go from a
subclass to a superclass.

+

breathe() Arrows from several
+ eat(food) subclasses can overlap (as in
+ run(destination) this diagram) or be drawn

separately. This doesn’t
+
SleeP(hourS) change their meaning.

- bestFriend: Human

N

Subclasses

OEBPS/images/patterns/cards/adapter-mini.png

OEBPS/images/patterns/diagrams/composite/problem-en.png
Complex
order

Phone

>

Headphones

Charger

OEBPS/images/patterns/content/command/command-en.png

OEBPS/images/patterns/diagrams/command/structure-indexed.png
copy = new CopyCommand(editor)
button.setCommand(copy)

(5

m”
- command

+ setCommand(command)
+ executeCommand()

@
«interface»
Command

A

Client

~
0N
~
N

(4
Receiver -
- receiver
- params
+ operation(a,b,c) + Command1(receiver, params)

+ execute()

receiver.operation(params)

OEBPS/images/patterns/diagrams/intro/polymorphism-en.png
Names of
abstract
classes and
methods are
in jtalics.

+ makeSound()

/\

+ makeSound() + makeSound()

System.out.print("Meow!") System.out.print("Bark!")

\/V

These are UML comments. Usually they explain
implementation details of the given classes or methods.

OEBPS/images/patterns/diagrams/intro-solid/dip-after-en.png
High level
Abstraction

BudgetReport «interface»
Database

- database

+ open(date)
+save()

+insert()
+ update()
Low level | |*delete(

OEBPS/images/patterns/diagrams/observer/solution1-en.png
Hey, sign me
up, please!

+ addSubscriber(subscriber)
+ removeSubscriber(subscriber)

OEBPS/images/patterns/diagrams/intro/association-en.png

OEBPS/images/patterns/diagrams/decorator/problem2.png
Facebook Notifier

OEBPS/images/patterns/diagrams/chain-of-responsibility/problem1-en.png
Authentication +

Authorization Ordering

Request System

OEBPS/images/patterns/diagrams/prototype/structure-indexed.png
«interface»
Prototype

[/
Client

l@

+ clone(): Prototype

1
2)
ConcretePrototype

- field1

copy = existing.clone()

this.field1 = prototype.field1
+ ConcretePrototype(prototype)
return new ConcretePrototype(this) + clone(): Prototype

SubclassPrototype
- field2

+ SubclassPrototype(prototype)
return new SubclassPrototype(this) + clone(): Prototype

super(prototype)
this.field2 = prototype.field2

OEBPS/images/patterns/content/visitor/visitor.png

OEBPS/images/patterns/content/bridge/bridge.png

OEBPS/images/patterns/cards/prototype-mini.png

OEBPS/images/patterns/diagrams/chain-of-responsibility/example-en.png
«interface»

ComponentWith
ContextualHelp

+ showHelp()
AN
[
1

- container: Container
+ tooltipText

+ showHelp()
/\

A

e
- modalHelpText - wikiPageURL
+ showHelp() + showHelp()

if (tooltipText != null)
// Show tooltip...

else
// ...or ask the container
// to do it.
container.showHelp()

Inherit showHelp
behavior from the
parent class.

if (modalHelpText != null)
// Show modal window
// with a help text.
else
parent::showHelp()

if (wikiPageURL != null)
// Open a wiki page.

else
parent::showHelp()

OEBPS/images/patterns/diagrams/intro-principles/encapsulate-what-varies-after-en.png
- taxCalculator TaxCalculator

- country
- state

- city
...20+ fields

+ getOrderTotal()

total =0
foreach item in lineltems
subtotal = item.price " item.quantity
total += subtotal * taxCalc.getTaxRate(country, state, item.product)

+ getTaxRate(country, state, product)
- getUSTax(state)

- getEUTax(country)

- getChineseTax(product)

return total

OEBPS/images/patterns/diagrams/command/problem2.png

OEBPS/toc.xhtml

Table of Contents

		Cover

		Copyright

		Thanks!

		Table of Contents

		How to Read This Book

		Introduction to OOP

		Basics of OOP

		Pillars of OOP

		Relations Between Objects

		Introduction to Design Patterns

		What's a Design Pattern?

		Why Should I Learn Patterns?

		Software Design Principles

		Features of Good Design

		Design Principles

		Encapsulate What Varies

		Program to an Interface, not an Implementation

		Favor Composition Over Inheritance

		SOLID Principles

		Single Responsibility Principle

		Open/Closed Principle

		Liskov Substitution Principle

		Interface Segregation Principle

		Dependency Inversion Principle

		Catalog of Design Patterns

		Creational Design Patterns

		Factory Method

		Abstract Factory

		Builder

		Prototype

		Singleton

		Structural Design Patterns

		Adapter

		Bridge

		Composite

		Decorator

		Facade

		Flyweight

		Proxy

		Behavioral Design Patterns

		Chain of Responsibility

		Command

		Iterator

		Mediator

		Memento

		Observer

		State

		Strategy

		Template Method

		Visitor

		Conclusion

OEBPS/images/patterns/diagrams/intro/class-en.png
} Name

Visibility —{+hame

+ = public)
- = private fltelss)
state
The ellipsis means _w»
that there’s more
stuff in the class, + breathe()
but it's not relevant + eat(food) Methods
at the moment. + fun(destinatiOn) (bEhaVior)

+ sleep(hours)
+ meow()

OEBPS/images/patterns/content/observer/observer-comic-1-en.png

OEBPS/images/patterns/diagrams/command/solution1-en.png
User Interface Business Logic

- update(2, "John Smith")
- update(2, "John Smith")
- update(2, "John Smith")

OEBPS/images/patterns/content/facade/facade.png
SEANNITTTN
NN

)

Y
SEETTR

N\

OEBPS/images/patterns/content/chain-of-responsibility/chain-of-responsibility.png

OEBPS/images/patterns/content/bridge/bridge-3-en.png
7N

CHANGES

OEBPS/images/patterns/diagrams/state/solution-en.png
«interface»
State

+ render|
state.render() + render() + publisr?o
+ publish() A

+ changeState(state) T
L]
else II
// Show an error message. I

+ render()
if (user.isAdmin) + publish()
document.changeState(new Published(document))

else
document.changeState(new Moderation(document))

if (user.isAdmin or user.isAuthor)
// Render the document.

OEBPS/images/patterns/diagrams/template-method/structure-indexed.png
AbstractClass

stepl()
if (step2() {
step3()
+ templateMethod() }
+stepl() else {
+step2() step4()
+step3() }

ConcreteClass1
+ step3()
+ step4()

ConcreteClass2

OEBPS/images/patterns/book/cover-en.png
Dive Into

DESIG
PATTERNS

Alexander Shvets

OEBPS/images/patterns/diagrams/intro/encapsulation-en.png
indicate that one
class uses another

(more on this type i n
of arrow later). | * accept(vehicle: FlyingTransport)
Interfaces in UML Arrows with empty

look almost like «interface» triangle heads and

classes, but only _y, FlyingTransport dashed lines indicate
have methods. that classes implement

+ fly(origin, destination, passengers) an interface.

[}

1

A . Domesticated
Helicopter Airplane Gryphon

+ fly(origin, + fly(origin,
destination, destination,
passengers) passengers)

+ fly(origin,
destination,
passengers)

OEBPS/images/patterns/diagrams/command/solution3-en.png
«interface»
Command

+ execute()

f> B Code f. f; = Code f. f> & Code f,

Seconi =" Seconi =" Seconi ="

OEBPS/images/patterns/content/template-method/template-method.png
D
CRCY
Ny

OEBPS/images/patterns/book/tablet-scrolling-view.png

OEBPS/images/patterns/diagrams/abstract-factory/problem-en.png
Coffee
Chair Sofa Table

Art Deco @
Victorian %
Modern % @

D
#

i
i\

\

OEBPS/images/content-public/as-portrait.png

OEBPS/images/patterns/diagrams/strategy/solution.png
Navigator

«interface»
RouteStrategy

+ buildRoute(A, B)
route = routeStrategy.buildRoute(A, B) roTTTTTTT

Road PublicTransport
Strategy Strategy
Walking
Strategy

- routeStrategy
+ buildRoute(A, B)

it

OEBPS/images/patterns/diagrams/strategy/problem.png
+ buildRoute(A, B)

OEBPS/images/patterns/content/composite/composite.png

OEBPS/images/patterns/cards/abstract-factory-mini.png
L

OEBPS/images/patterns/content/abstract-factory/abstract-factory-comic-1-en.png
LISTEN, I ORDERED SOME
CHAIRS LAST WEEK, BUT I
GUESS T NEED A SOFA T00..

SOMETHING
DOES NOT
LOOK RIGHT.

OEBPS/images/patterns/diagrams/composite/example.png
«interface»
Graphic

ImageEditor

+ move(x, y)
+ draw()

Q
CompoundGraphic
- children: Graphic[]

+ add(child: Graphic)
+ remove(child: Graphic)

+ Dot(x,y)
+ move(x, y)
+ draw()

A

+ Circle(x, y, radius)
+ draw()

+ move(x, y)
+ draw()

OEBPS/images/patterns/diagrams/proxy/problem-en.png
o J ANV

OEBPS/images/patterns/diagrams/adapter/problem-en.png

OEBPS/images/patterns/cards/observer-mini.png

OEBPS/images/patterns/cards/state-mini.png

OEBPS/images/patterns/cards/composite-mini.png

OEBPS/images/patterns/diagrams/prototype/structure-prototype-cache-indexed.png
button = new Button(10, 40, "red")
registry.addltem(“LandingButton”, button)

button = registry.getByColor(‘red”)

i PrototypeRegistry
- items : Prototype][]

+ addltem(id: string, p: Prototype) + getColor(): string
+ getByld(id: string): Prototype + clone(): Prototype
+ getByColor(color: string): Prototype

«interface»
Prototype

foreach (item in items)

+ Button(x, y, color)

+ Button(prototype)
+ getColor(): string
+ clone(): Prototype

return new Button(this)

OEBPS/images/patterns/diagrams/composite/structure-en-indexed.png
(1
«interface»
Component
AN
[ettt te]
1
2

5

- children: Component([]

+ add(c: Component)

+ remove(c: Component)

Do some work. + getChildren(): Component[]
+ execute()

Delegate all work to
child components.

OEBPS/images/patterns/content/composite/composite-comic-1-en.png
WHAT'S HOLD ON,
YOUR PLEASE.
PRICE?

HEY, WHAT'S
YOUR PRICE?

OEBPS/images/patterns/cards/iterator-mini.png

OEBPS/images/patterns/content/factory-method/factory-method-en.png

OEBPS/images/patterns/diagrams/intro/relations-en.png
Dependency

(A}---->{(8]
Association Implementation
A—>(e) (a)---D>(8)
Aggregation Inheritance
A)S>(8) (aA—>(e)
Composition

(aA}o—=>(s)

OEBPS/images/patterns/diagrams/visitor/problem2-en.png
Existing application’s classes

Residential

i

</> XML Export
Implementation

OEBPS/images/patterns/diagrams/abstract-factory/solution1.png
)

7K

7/

<)

«interface»
Chair
+ haslLegs()
+sitOn()

]

1
]
ModernChair

+ haslLegs()
+sitOn()

+ haslLegs()
+sitOn()

OEBPS/images/patterns/cards/proxy-mini.png
D:>E

OEBPS/images/patterns/content/flyweight/flyweight.png
N 1'
iy W
v .Vh/l|..(
3(3[5¢] 1..\m.m\.’

A SRS

OEBPS/images/patterns/diagrams/iterator/problem2.png
- =
..........

OEBPS/images/patterns/content/prototype/prototype-comic-2-en.png

OEBPS/images/patterns/diagrams/visitor/structure-en-indexed.png
(L
«interface» «interface»
Visitor Element

+ visit(e: ElementA) + accept(v: Visitor)
+ visit(e: ElementB) A

ConcreteVisitors

+ visit(e: ElementA) SV EVELSD)

4
+ visit(e: ElementB) o 5 Q
ement|

+ featureB()

]
]
]
]
4
]
]
]
]
1
I + featureA() H
]
]
]
]
]
]
]
]
]
]
‘I

// Visitor methods know the
// concrete type of the

// element it works with.
e.featureB()

+ accept(v: Visitor)

~ vyisit(this)

element.accept(new ConcreteVisitor())

OEBPS/images/patterns/diagrams/flyweight/structure-indexed.png
3
- uniqueState
- flyweight
+ Context(repeatingState, uniqueState)
| + operation()

this.uniqueState = uniqueState

this.flyweight =
factory.getFlyweight(repeatingState) @

FlyweightFactory 1
- cache: Flyweight[]
+ getFlyweight(repeatingState)
Q

if (cache[repeatingState] == null) {
cache[repeatingState] =
new Flyweight(repeatingState)

}

return cache[repeatingState]

© @

Flyweight
+ operation(uniqueState)

flyweight.operation(uniqueState)

OEBPS/images/patterns/content/strategy/strategy.png

OEBPS/images/patterns/diagrams/decorator/problem1-en.png
Notification Library

Application

+ setNotifier(notifier)
+ doSomething()

+ send(message)

notifier.send('Alert!")

OEBPS/images/patterns/diagrams/flyweight/solution1-en.png
Unique (extrinsic) state
(mutable)

MovingParticle

- particle
- coords
- vector
- speed

+ MovingParticle(...)
+ move()
+ draw(canvas)

+ move()
+ draw(canvas)

particle.move(
coords, vector, speed)

Repeating (intrinsic) state
(immutable)

- color
- sprite

+ Particle(color, sprite)
Few| + move(coords, vector, speed)
+ draw(coords, canvas)

particle.draw(
coords, canvas)

OEBPS/images/patterns/diagrams/memento/problem1-en.png
History Undo

OEBPS/images/patterns/diagrams/bridge/structure-en-indexed.png
i.method1()

i.method2()
i.method3()

i.methodN()
i.methodM()

abstraction.featurel()

Cam

«interface»
Implementation

+ method1()
+ method2()

Abstraction

+ featurel()
+ feature2()
/\

(4

Refined Abstraction

+ method3()

(optional)

Concrete
Implementations

OEBPS/images/patterns/diagrams/intro-principles/program-to-interface-basic.png
+ eat(Sausage s)

v

+ getNutrition()

+ getColor()
+ getExpiration()

this.energy +=
s.getNutrition()

+ eat(Food s)

«interface»
Food
A

+ getNutrition()
+ getColor()
+ getExpiration()

OEBPS/images/patterns/diagrams/flyweight/solution3-en.png
+ mps: MovingParticles[]
- particles: Particle[]

- color
- sprite
+ addParticle(coords, vector, + Particle(color, sprite)

speed, color, sprite) + move(coords, vector, speed)
+ draw(canvas) + draw(coords, canvas)

MovingParticle

+ fireAt(target: Unit)

Game.addParticle(coords,
target.coords, weaponPower, + move()
"red”, “bullet.jpeg”) + draw(canvas)

+ MovingParticle(...)

RAM cost coords: 8B

vector: 16B D x 1
color: 4B speed: 4B 77> x 1,000,000
sprite: 20KB particle: 4B

———————————— 32MB

B ~ 21KB 7> = 32B

OEBPS/images/patterns/content/mediator/mediator.png

OEBPS/images/patterns/cards/flyweight-mini.png

OEBPS/images/patterns/content/decorator/decorator-comic-1.png

OEBPS/images/patterns/diagrams/command/problem3-en.png
AY
- Code = Code 'i;

Sea=y

'~

Y
/

a2

S=ee N7 ~———T

OEBPS/images/patterns/diagrams/bridge/solution-en.png
m o contains 5

o oo
O@W‘V

OEBPS/images/patterns/diagrams/decorator/solution3-en.png
stack = new Notifier()
if (facebookEnabled)

stack = new FacebookDecorator(stack)
if (slackEnabled)

stack = new SlackDecorator(stack)

app.setNotifier(stack)

Application

+ setNotifier(notifier)
+ doSomething()

notifier.send("Alert!")
// Email — Facebook — Slack

OEBPS/images/patterns/diagrams/chain-of-responsibility/solution1-en.png
Chain of Responsibility

Spen

OEBPS/images/patterns/diagrams/decorator/structure-indexed.png
a = new ConcComponent()

b = new ConcDecoratorl(a)

¢ = new ConcDecorator2(b) @
c.execute()

// Decorator -> Decorator -> Component

(L
«interface»
Component

/\

: (3)
_/

_ - wrappee: Component

+ BaseDecorator(c: Component)
Concrete

/\
(4
Decorators I

wrappee = ¢

wrappee.execute()

+ execute()
+ extra()

super:execute()
extra()

OEBPS/images/patterns/diagrams/factory-method/solution2-en.png
Deliver by land
in a box.

Deliver by sea

+ delivero in a container.

OEBPS/images/patterns/diagrams/intro-solid/lsp-after.png
- data - allDocs

- filename - writableDocs

+ openAll()

+ saveAll()

foreach (doc in allDocs) {
doc.open()

}

+ open()

foreach (doc in writableDocs) {
doc.save()

}

WritableDocument

OEBPS/images/patterns/diagrams/command/problem1.png

OEBPS/images/patterns/cards/facade-mini.png

OEBPS/images/patterns/diagrams/adapter/solution-en.png
Stock Data[———

XML

XML to JSON
Adapter

———— Analytics
ISON Library

OEBPS/images/patterns/diagrams/bridge/problem-en.png
RedCircle

OEBPS/images/patterns/diagrams/abstract-factory/structure-indexed.png
\/
(o) ® [
A A

"cet“"‘ "eF‘,” ductA? + createProductA(): ProductA
OncreteRiodUcta) + createProductB(): ProductB

OEBPS/images/patterns/diagrams/decorator/solution1-en.png
Inheritance Aggregation

Cam Jo>{Tme

OEBPS/images/patterns/content/observer/observer.png
-~

| B
g

oA T —
q d P
\| 2N =
0 -

OEBPS/images/patterns/book/iphone7-scrolling-view-en.jpg
100% (=

A Q N

A

AQu Fonts Original

This g

O.Q.

Auto-Night Theme

B SOl

OEBPS/images/patterns/diagrams/state/structure-en-indexed.png
R \J
«interface»
State

+ doThis()
+doThat()

ConcreteStates 0

+ setContext(context)

---------- s

+doThat()

¢

+ Context(initialState)
+ changeState(state)

+ doThis()
+doThat()

'@

this.state = state
state.setContext(this)

state.doThis()

initialState = new ConcreteState()
context = new Context(initialState)

context.doThis() // A state may issue state
// Current state may have been @ // transition in context.
state = new OtherState()

// changed by context or the state
// object itself. context.changeState(state)

OEBPS/images/patterns/diagrams/decorator/example.png
«interface»
DataSource
+ writeData(data)
+ readData()
/\

- filename - wrappee: DataSource

+ FileDataSource(filename) + DataSourceDecorator(s: DataSource)
+ writeData(data) + writeData(data)
+ readData() + readData()

Encryption
Decorator

+ writeData(data)
+ readData()

Compression
Decorator

+ writeData(data)
+ readData()

OEBPS/images/patterns/content/adapter/adapter-en.png

OEBPS/images/patterns/diagrams/visitor/example.png
«interface»

+ visitDot(d: Dot) + move(x, y)
+ visitCircle(c: Circle) + draw()

+ visitRectangle(r: Rectangle) + accept(v: Visitor)
+ visitCompoundGraphic(cs:
CompoundGraphic)

F'._
+ visitDot(d: Dot) II CompoundShape

+ visitCircle(c: Circle) _
+ accept(v: Visitor)

+ visitCompoundGraphic(cs:

+ visitRectangle(r: Rectangle) +
+
CompoundGraphic)

OEBPS/images/patterns/diagrams/iterator/example.png
SocialSpammer

Application
- spammer
- network
+ sendSpamToFriends(profile)
+ sendSpamToCoworkers(profile)

+ send(iterator, message)

+ getld()
+ getEmail()

«interface» «interface»
Profilelterator SocialNetwork

+ getNext(): Profile + createFriendslterator(profileld): Profilelterator
+ hasMore(): bool + createCoworkerslterator(profileld): Profilelterator
£\

Facebooklterator

]
1
- profileld, type
- currentPosition

- cache: Profile[] + createFriendslterator(profileld): Profilelterator

+ Facebooklterator(...) + createCoworkerslterator(profileld): Profilelterator

- lazylnit()
+ getNext(): Profile
+ hasMore(): bool

OEBPS/images/patterns/cards/visitor-mini.png

OEBPS/images/patterns/diagrams/template-method/example.png
+ takeTurn()

+ collectResources()

+ buildStructures()

+ buildUnits()

+ attack()

+ sendScouts(position)
+ sendWarriors(position)

+ buildStructures() + collectResources()

+ buildUnits() + buildStructures()

+ sendScouts(position) + buildUnits()

+ sendWarriors(position) + sendScouts(position)
+ sendWarriors(position)

OEBPS/images/patterns/diagrams/intro/inheritance.png
«interface»
FourLegged

+ run(destination)

«interface»
OxygenBreather

Cat

OEBPS/images/patterns/content/builder/builder-comic-2-en.png
I'VE GOT YOU A BUILDER.
YOU KNOW WHAT T0 DO.
0K, B0SS!
\ =

. %

OEBPS/images/patterns/cards/template-method-mini.png

OEBPS/images/patterns/diagrams/state/problem1.png

OEBPS/images/patterns/diagrams/intro-solid/ocp-before-en.png
-lineltems
- shipping

+ getTotal()

+ getTotalWeight()

+ setShippingType(st)
+ getShippingCost()
+ getShippingDate()

if (shipping == "ground") {

}

// Free ground delivery on big orders.
if (getTotal() > 100) {
return 0

// $1.5 per kilogram, but $10 minimum.
return max(10, getTotalWeight() * 1.5)

if (shipping == "air") {

}

// $3 per kilogram, but $20 minimum.
return max(20, getTotalWeight() * 3)

OEBPS/images/patterns/diagrams/factory-method/example.png
Button okButton = createButton()
okButton.onClick(closeDialog)
okButton.render()

+ render()
+ createButton(): Button
/\

WindowsDialog WebDialog

return new WindowsButton()

«interface»
Button

+ render()
+ onClick()
/\

OEBPS/images/patterns/diagrams/builder/solution1.png
HouseBuilder

7
+ buildWalls() %
+ buildDoors() @

+ buildWindows()

+ buildRoof(HE8

+ buildGarage()

+ getResult(): House H H

OEBPS/images/patterns/diagrams/intro-principles/program-to-interface-middle-en.png
«interface»
Employee

+ doWork()
/\

]
[]

+ createSoftware()

employees = [
new Designer(),
new Programmer(),
new Tester()

]

foreach (Employee e in employees) {
e.doWork() Design

} architecture.

OEBPS/images/patterns/diagrams/memento/structure1-indexed.png
1
]

Originator Memento ; Caretaker
]

- originator
- history: Memento[]

- state > -state

+ save(): Memento - Memento(state)

1

1

1

1 .
+ restore(m: Memento) - getState() i Al ey
!

+undo()

m = history.pop() m = originator.save()
originator.restore(m) history.push(m)
// originator.change()

OEBPS/images/patterns/diagrams/memento/structure3-indexed.png
«interface» «interface»
Originator Memento
A A
® i |
1 1
]
ConcreteMemento

- originator
- state

O

+undo()

ConcreteOriginator

- state

+ save(): Memento
+ setState(state)

+ ConcreteMemento(originator, state)
+ restore()

originator.setState(state)

Caretaker

- history: Memento

[

]

OEBPS/images/patterns/content/visitor/visitor-comic-1.png

OEBPS/images/patterns/diagrams/adapter/example.png
RoundHole

* RoundHole(radius: int) + RoundPeg(radius: int)
* getRadius(): int + getRadius(): int
+ fits(peg: RoundPeg): bool

RoundPeg

-radius: int

SquarePegAdapter

SquarePeg

+ SquarePeg(width: int)
+ getWidth(): int

- peg: SquarePeg

+ SquarePegAdapter(peg: SquarePeg)
+ getRadius(): int

return peg.getWidth() * sqrt(2) / 2

OEBPS/images/patterns/content/observer/observer-comic-2-en.png
Ehye New Pork Times

THANKS!
YOU ARE
SUBSCRIBED!

L TLTETLTLTLILTLTETETLD,
LIETETL9L ¢

OEBPS/images/patterns/diagrams/facade/example.png
VideoConverter
+ convertVideo(filename, format)

v

Application

’
[}
]
]
\

VideoFile

I N

AudioMixer

CodecFactory

0OggCompression MPEG4
Codec CompressionCodec

BitrateReader

OEBPS/images/patterns/cards/mediator-mini.png
el o]

OEBPS/images/patterns/diagrams/strategy/structure-indexed.png
(B
Context

+ setStrategy(strategy)
+ doSomething()

3

«interface»
Strategy

+ execute(data)

strategy.execute()

+ execute(data)
str = new SomeStrategy()

context.setStrategy(str)

context.doSomething()
®|
other = new OtherStrategy()

context.setStrategy(other)
context.doSomething()

@) [Conmmasaeges

OEBPS/images/patterns/diagrams/proxy/example.png
«interface»
YouTubeManager ThirdParty
YouTubeLib
+ listVideos()
+ getVideolnfo(id)
+ downloadVideo(id)

Cached ThirdParty
YouTubeClass YouTubeClass
- service: ThirdPartyYouTubelLib

+ CachedYouTubeClass(+ listVideos()
s: ThirdPartyYouTubeLib) + getVideolnfo(id)
+ listVideos() + downloadVideo(id)

+ getVideolnfo(id)
+ downloadVideo(id)

OEBPS/images/patterns/content/bridge/bridge-2-en.png
’0(,6
pemo € R

g{ YOUR APP
1.0

2.0 3.0

MULTI
PLATFORM

FRAMEWORK

OEBPS/images/patterns/diagrams/builder/problem2.png
+ House(windows, doors, rooms,
hasGarage, hasSwimPool,
hasStatues, hasGarden, ...)

new House(4, 2, 4, true, null, null, null, ...) new House(4, 2, 4, true, true, true, true, ...)

OEBPS/images/patterns/diagrams/proxy/structure-indexed.png
«interface»
Servicelnterface

)

+ Proxy(s: Service)
+ checkAccess()
+ operation()

realService =s

if (checkAccess()) {
realService.operation()

}

OEBPS/images/patterns/diagrams/iterator/problem1.png
00000 §33 oBn

OEBPS/images/patterns/diagrams/flyweight/example.png
TreeFactol

- treeTypes: TreeType
b ypell + plantTree(x, y, name, color,
+ getTreeType(name, color, texture) texture): Tree
O

+ draw(canvas)

TreeType

- name
- color
- texture

+ type: TreeType

+ TreeType(name, color, texture)
+ draw(canvas, X, Y)

OEBPS/images/patterns/diagrams/memento/solution-en.png
Originator

Snapshot . __________ \
- text - text vV
- cursorPos - cursorPos «interface»
- selection - selection Memento
- z:rlr:sntFont - z:rlr:sntFont + getName()
Y Y + getSnapshotDate()
+ makeSnapshot()
+ restore(s: Memento) snapshot.getName()
history.add(snapshot)

snapshot = editor.makeSnapshot()

editor.restore(snapshot)

OEBPS/images/patterns/diagrams/intro/dependency-en.png

OEBPS/images/patterns/content/iterator/iterator-comic-1-en.png
—
]
=
-
=

